FCIS - Ain Shams University
Subject: (CIS240)
Statistical Analysis
Exam: (Mid-Term) 09/12/2020
Year: ($2^{\text {nd }}$ year) undergraduate

Examiners: Prof. Dr. Mohamed El-
Sharkawy
Dr. Mahmoud Mounir
Offering Dept.: Basic Sciences
Academic year: $1^{\text {st }}$ term 2020-2021
Duration: 45 Minutes

Version (B) - MODEL ANSWER

Answer the following THREE questions:

Question 1:

A study on the pedaling technique of endurance cyclists reported the following data on single-led power at a high workload:

244	191	160	187	180	176	174	205	211	183	211	180	194	200

a) ($\mathbf{3}$ mark) Calculate the mean, median, the first quartile, the third quartile and the IQR.

- Mean $=\frac{\sum X}{N}=\frac{2969}{14}=\mathbf{1 9 2 . 5 7}$
- \quad Median $=$ Q2 $=\frac{\mathbf{1 8 7 + 1 9 1}}{2}=\frac{378}{2}=\underline{\mathbf{1 8 9}}$
- $\mathrm{Q} 1=\underline{\mathbf{1 8 0}}$
- $\mathrm{Q} 3=\underline{\underline{205}}$
$\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1=205-180=\underline{\mathbf{2 5}}$
b) ($\mathbf{2}$ mark) Construct a box plot for this data.

c) ($\mathbf{1} \mathbf{~ m a r k}$) What is the shape of the distribution?

Since (O2-O1 < O3-O2) \rightarrow Positive or Right Skewing

Question 2:

 marks: 5
Education and crime rate ratings for selected US cities are given below:

Education rating is an index for public/teacher ratio, academic options in higher education: the higher the rating the better and other factors and crime is the crime rate per 100 people.

City	New York	Detroit	Los Angeles	Boston	Chicago	Washington, DC
Education (\mathbf{X})	30	31	32	35	35	36
Crime (\mathbf{Y})	25	16	20	12	10	13

$$
\left(\bar{x}=33.1667, S_{X}=2.4833, \bar{Y}=16, S_{Y}=5.6214\right)
$$

a) ($\mathbf{3}$ mark) Compute and interpret the correlation coefficient between X and Y .

Education (X)	30	31	32	35	35	36
$\mathbf{Z x}$	-1.2752	-0.873	-0.4698	0.7383	0.7383	1.1409
Crime (\boldsymbol{Y})	25	16	20	12	10	13
$\mathbf{Z y}$	1.601	0	0.7116	-0.712	-1.0673	-0.5337
$\mathbf{Z x} \mathbf{*} \mathbf{y}$	-2.0416	0	-0.3343	-0.525	-0.788	-0.6089
Σ	$\Sigma Z x * Z y$					

$\mathrm{r}=\frac{\sum Z x * Z y}{n-1}=\frac{-4.2982}{5}=\underline{-0.8596}$ It is a STRONG NEGATIVE or INVERSE Relation
b) ($\mathbf{2} \mathbf{~ m a r k}$) Estimate the crime rate for an education rating of 34 .

$$
\begin{array}{r}
\hat{y}=b o+b 1 X \quad \mathrm{~b}_{1}=\mathrm{r} \frac{S y}{S x}=-0.8596 \frac{5.6214}{2.4833}=\underline{\mathbf{- 1 . 9 4 5 9}} \\
\mathrm{b}_{\mathrm{o}}=\bar{y}-\mathrm{b}_{1} \bar{x}=16-(-1.9459)(33.1667)=\underline{\mathbf{8 0 . 5 3 9}} \\
\hat{y}=b o+b 1 X=\widehat{\boldsymbol{y}}=\mathbf{8 0 . 5 3 9 - \mathbf { 1 . 9 4 5 9 X }}
\end{array}
$$

$$
\text { At } X=34 \quad \widehat{\boldsymbol{y}}=80.539-1.9459(34)=14.3784
$$

Suppose the highway fuel consumption of cars sold in a city follows a normal distribution with a mean of $8.7 \mathrm{~L} / 100 \mathrm{~km}$ and a standard deviation of $2.5 \mathrm{~L} / 100 \mathrm{~km}$.

$$
\mu=8.7, \sigma=2.5
$$

a) (2 mark) What percentage of cars will consume more than $10.375 \mathrm{~L} / 100 \mathrm{~km}$? $P(X>10.375)=1-P(X<10.375)=1-P\left(Z<\frac{\mathbf{1 0 . 3 7 5 - 8 . 7}}{2.5}\right)=1-P(Z<0.67)=1-0.7486=\underline{\mathbf{0 . 2 5 1 4}}$
b) ($\mathbf{2}$ mark) Determine the fuel consumption rate above which 90% of the cars will fall.

$$
\begin{aligned}
& \mathbf{Z}=\frac{X-\mu}{\sigma} \rightarrow-1.28=\frac{X-8.7}{2.5} \\
& X-8.7=-1.28(2.5) \rightarrow \underline{X=5.5 \text { L/100KM }}
\end{aligned}
$$

