FCIS – Ain Shams University Subject: (CIS240) Statistical Analysis Exam: (Mid-Term) 09/12/2020 Year: (2nd year) undergraduate

Examiners: Prof. Dr. Mohamed El-Sharkawy Dr. Mahmoud Mounir Offering Dept.: Basic Sciences Academic year: 1st term 2020-2021 Duration: 45 Minutes

Version (B) - MODEL ANSWER

Answer the following THREE questions:

(Total Marks: 15)

Question 1:

marks: 6

A study on the pedaling technique of endurance cyclists reported the following data on single-led power at a high workload:

	•												
244	191	160	187	180	176	174	205	211	183	211	180	194	200

a) (3 mark) Calculate the mean, median, the first quartile, the third quartile and the IQR.

Mean =
$$\frac{\sum X}{N} = \frac{2969}{14} = \frac{192.57}{14}$$

- Median =
$$Q2 = \frac{187+191}{2} = \frac{378}{2} = \frac{189}{2}$$

-
$$Q3 = 205$$

 $IQR = Q3 - Q1 = 205 - 180 = \underline{25}$

b) (2 mark) Construct a box plot for this data.

c) (1 mark) What is the shape of the distribution?
Since (Q2-Q1 < Q3-Q2) → Positive or Right Skewing

Question 2:

marks: 5

Education and crime rate ratings for selected US cities are given below:

Education rating is an index for public/teacher ratio, academic options in higher education: the higher the rating the better and other factors and crime is the crime rate per 100 people.

City	New York	Detroit	Los Angeles	Boston	Chicago	Washington, DC
Education (X)	30	31	32	35	35	36
Crime (Y)	25	16	20	12	10	13

 $(\overline{x} = 33.1667, S_X = 2.4833, \overline{Y} = 16, S_Y = 5.6214)$

a) (3 mark) Compute and interpret the correlation coefficient between X and Y.

Education (X)	30	31	32	35	35	36	
Zx	-1.2752	-0.873	-0.4698	0.7383	0.7383	1.1409	
Crime (Y)	25	16	20	12	10	13	
Zy	1.601	0	0.7116	-0.712	-1.0673	-0.5337	
Zx*Zy	-2.0416	0	-0.3343	-0.525	-0.788	-0.6089	$\Sigma Zx * Zy$
							-4.2982

 $\mathbf{r} = \frac{\sum Zx * Zy}{n-1} = \frac{-4.2982}{5} = \frac{-0.8596}{5}$ It is a <u>STRONG NEGATIVE or INVERSE</u> Relation

b) (2 mark) Estimate the crime rate for an education rating of 34.

$$\hat{y} = bo + b1 X$$
 $b_1 = r \frac{Sy}{Sx} = -0.8596 \frac{5.6214}{2.4833} = -1.9459$

$$b_o = \bar{y} - b_1 \bar{x} = 16$$
- (-1.9459)(33.1667) = **80.539**

$$\hat{y} = bo + b1 X = \hat{y} = 80.539 - 1.9459 X$$

At X = 34
$$\hat{y} = 80.539 - 1.9459(34) = 14.3784$$

Suppose the highway fuel consumption of cars sold in a city follows a normal distribution with a mean of 8.7 L/100km and a standard deviation of 2.5 L/100km.

$\mu = 8.7, \sigma = 2.5$

- a) (2 mark) What percentage of cars will consume more than 10.375 L/100km? $P(X > 10.375) = 1 - P(X < 10.375) = 1 - P(Z < \frac{10.375 - 8.7}{2.5}) = 1 - P(Z < 0.67) = 1 - 0.7486 = 0.2514$
- b) (2 mark) Determine the fuel consumption rate above which 90% of the cars will fall. $\mathbf{Z} = \frac{X - \mu}{\sigma} \rightarrow -1.28 = \frac{X - 8.7}{2.5}$ $X - 8.7 = -1.28 (2.5) \Rightarrow \underline{X} = 5.5 L/100KM$

With My Best Regards, Prof. Dr. Mohamed El-Sharkawy Dr. Mahmoud Mounir