FCIS - Ain Shams University
Subject: (CIS240)
Statistical Analysis
Exam: (Mid-Term) 09/12/2020
Year: ($2^{\text {nd }}$ year) undergraduate

Examiners: Prof. Dr. Mohamed El-
Sharkawy
Dr. Mahmoud Mounir
Offering Dept.: Basic Sciences
Academic year: $1^{\text {st }}$ term 2020-2021
Duration: 45 Minutes

Version (A) - MODEL ANSWER

Answer the following THREE questions:

Question 1:

a) (3 marks) Dieticians إخصائي التغذية are concerned about sugar consumption in teenagers', diets (a 12-ounce can of soft drink typically has 10 teaspoons of sugar). In a random sample of 55 students, the number of teaspoons of sugar consumed for each student on a randomly selected day is tabulated. Summary statistics are noted as: $\operatorname{Min}=\mathbf{1 0}$, Max $=\mathbf{6 0}$, First quartile $=25$, Third quartile $=38$, Median $=31$, Mean $=31.4, n=55$, and $S=11.6$,
i. Find the interquartile range.

$$
\mathrm{IQR}=\mathrm{Q} 3-\mathrm{Q} 1=38-25=\underline{13}
$$

ii. What is the shape of distribution?

Positive or (Right) Skewing

iii. What could you conclude about the value of 60 ?
$\mathrm{Q} 1-1.5(\mathrm{IQR})=25-1.5(13)=5.5$
Q3+1.5(IQR) $=38+1.5(13)=57.5$
Sinc $60>57.5 \rightarrow 60$ is an outlier.
b) (2 marks) Suppose the average score on a national test is 500 with a standard deviation of 100 . If each score is increased by 25 , what are the new mean and standard deviation?

$$
\begin{aligned}
& \mu_{1}=500, \sigma_{1}=100 \\
& \text { After increasing the score by } 25 \rightarrow \mu_{2}=525, \sigma_{2}=\sigma_{1}=500
\end{aligned}
$$

Question 2:
marks: 5
A recent study noted prices in US Dollars and battery lives in hours of 10 top-selling tablet computers. The data follow:

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
Cost (\boldsymbol{X})	303	450	260	480	540	390	350	400	600	450
Battery Life (\boldsymbol{Y})	8.5	10	7	11	10	9	8	9.5	11	9.5

a) ($\mathbf{3}$ mark) Calculate the correlation coefficient between the cost of tablets and their battery lives and Comment on its value. ($\overline{\boldsymbol{x}}=\mathbf{4 2 2 . 3}, \overline{\boldsymbol{y}}=\mathbf{9 . 3 5}, \mathrm{S}_{\mathrm{x}}=\mathbf{1 0 4 . 1 5 5 9}, \mathrm{S}_{\mathrm{y}}=1.2704$).

\boldsymbol{X}	303	450	260	480	540	390	350	400	600	450	
$\mathbf{Z x}$	$-\mathbf{1 . 1 4 5 4}$	$\mathbf{0 . 2 6 5 9 5}$	-1.5582	0.55398	1.13004	$-\mathbf{0 . 3 1 0 1}$	$-\mathbf{0 . 6 9 4 2}$	$-\mathbf{0 . 2 1 4 1}$	1.7061	$\mathbf{0 . 2 6 5 9 5}$	
\boldsymbol{Y}	8.5	10	7	11	10	9	8	9.5	11	9.5	
$\boldsymbol{Z y}$	$-\mathbf{0 . 6 6 9 1}$	0.51165	-1.8498	1.2988	0.51165	$-\mathbf{- 0 . 2 7 5 5}$	$-\mathbf{1 . 0 6 2 7}$	0.11807	1.2988	0.11807	
$\mathbf{Z x * Z y}$	0.766364	0.136072	2.882452	0.719508	0.578183	0.085437	0.73765	-0.02528	2.21588	0.0314	$\sum \mathbf{Z x} * \mathbf{Z y}$
								$\mathbf{8 . 1 2 7 6 6 6}$			

$\mathrm{r}=\frac{\sum Z x * Z y}{n-1}=\frac{-8.127666}{9}=\mathbf{0 . 9 0 3 1}$, It is a STRONG POSITIVE OR DIRECT Relation
b) ($\mathbf{2}$ mark) What would be the error in the predicted value of the battery life for a tablet that costs 350 UD Dollars?

$$
\begin{aligned}
& \qquad \widehat{\boldsymbol{y}}=\boldsymbol{b o}+\boldsymbol{b} \mathbf{1} \boldsymbol{X} \\
& \mathrm{b}_{1}=\mathrm{r} \frac{S y}{S x}=0.9031 \frac{1.2704}{104.1559}=\underline{\mathbf{0 . 0 1 1},} \mathrm{b}_{0}=\bar{y}-\mathrm{b}_{1} \bar{x}=9.35-(0.011)(422.3)=\underline{\mathbf{4 . 7 4 0 7}} \\
& \hat{y}=b o+b 1 X=\widehat{\widehat{\boldsymbol{y}}=\mathbf{4 . 7 4 0 7}+\mathbf{0 . 0 1 1} \boldsymbol{X}} \\
& \text { At } \mathrm{X}=350 \quad \hat{y}=4.7407+0.011(350)=\underline{\mathbf{8 . 5 5 4 7}} \\
& \text { Error }=|\mathbf{8 . 5 5 4 7}-\mathbf{8}|=\underline{\mathbf{0 . 5 5 4 7}}
\end{aligned}
$$

Suppose that 60% of students who take the AP Statistics exam score 4 or $5,25 \%$ score 3, and the rest score 1 or 2 . Suppose further that 95% of those scoring 4 or 5 receive college credit, 50% of those scoring 3 receive such credit, and 4% of those scoring 1 or 2 receive credit.
a) ($\mathbf{3} \mathbf{~ m a r k}$) What is the probability that a student will get a college credit?

b) ($\mathbf{2} \mathbf{~ m a r k}$) If a student who is chosen at random from among those taking the exam receives college credit, what is the probability that she received a 3 on the exam?
$\mathbf{P}(\mathbf{3} \backslash$ Credit $)=\frac{P(\text { Credit } \backslash 3) P(3)}{P(\text { Credit })}=\frac{(0.5)(0.25)}{0.701}=\underline{0.178}$
with My Best Regards.
Prof. Dr. Mohamed El-Sharkawy
D_{r}. Mahmoun Mounir

