Faculty of Computer \& Information Sciences Ain Shams University
Course Name: Discrete Math and LInear Algebra
Offering Dept: Scientific Computing
Academic year: 2015-2016
Instructors: Prof. Dr. Essam Khalefa \& Dr. Mohammed Marey

Exam: (Final)11/1/2016
Year: ($1^{\text {st }}$ term) $2^{\text {nd }}$ year
Duration: 3 hours
Total Grade: 95 (+ 5 bonus) points

Part 1: Discrete Mathematics (DM) - Solve (DM1 $\wedge(D M 2 \bigvee D M 3))$

Questn DM1

9 -Find the integer a such that $a \equiv-11(\bmod 21)$ and $80 \leq a \leq 100$.
10- Find each of these values.
a) $(-133 \bmod 23+261 \bmod 23) \bmod 23$
b) $(992 \bmod 32) 3 \bmod 15$

11- Find $\operatorname{gcd}(1000,5050)$ and $\operatorname{Icm}(1000,5050)$ using prime factorization method
12- Suppose that $\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{~b}\end{array}\right]$ wzhere a, b, and $\mathrm{c} \in R$, using mathematical induction show that $A^{n}=$ $\left[\begin{array}{ccc}a^{n} & 0 & 0 \\ 0 & b^{n} & 0 \\ 0 & 0 & c^{n}\end{array}\right]$ for every positive integer n.

13- Let $\mathrm{P}(\mathrm{n})$ be the statement that a postage of n cents can be formed using just 4-cent stamps and 7-cent stamps. The parts of this exercise outline a strong induction proof that $\mathrm{P}(\mathrm{n})$ is true for $\mathrm{n} \geq 18$.

Question DM2

25 points
1- Give the converse, the contrapositive, and the inverse of the conditional statement "If $n>3$ then $n^{2}>9 "$

2- Let $\mathrm{P}(\mathrm{x})::=$ "Student x knows LA" and let $\mathrm{Q}(\mathrm{y})::=$ "Class y contains a student who knows calculus."
Express each of these as quantifications of $P(x)$ and $Q(y)$.
a) Some students know LA.
b) Not every student knows LA.
c) Every class has a student in it who knows LA.
d) Every student in every class knows LA.
e) There is at least one class with no students who know LA.

3- Let $\mathrm{P}(\mathrm{m}, \mathrm{n})::==\mathrm{m}$ dividesn," where the domain for both variables consists of all positive integers. Determine the truth values of each of these statements.
a) $\mathrm{P}(4,5)$
b) $\mathrm{P}(2,4)$
c) $\forall \mathrm{m} \forall \mathrm{n} P(\mathrm{~m}, \mathrm{n})$
d) $\exists \mathrm{m} \forall \mathrm{n} P(\mathrm{~m}, \mathrm{n})$
e) $\exists \mathrm{n} \forall \mathrm{mP}(\mathrm{m}, \mathrm{n})$
f
) $\forall \mathrm{n} P(1, n)$

4- Prove that if $m+n$ and $n+p$ are even integers, then $m+p$ is even, where m, n, and p are integers.
5- Show that $\mathrm{p} \leftrightarrow \mathrm{q}$ and $(\mathrm{p} \wedge \mathrm{q}) \vee(\neg \mathrm{p} \wedge \neg \mathrm{q})$ are logically equivalent by developing a series of logically equivalences.

6- Translate the following specifications into English where $F(p)::=$ "Printer p is out of service," $B(p)::=$ Printer p is busy," $L(\mathrm{j})::=$ "Print job j is lost," and $\mathrm{Q}(\mathrm{j})::=$ "Print job j is queued."
a) $\exists \mathrm{p}(\mathrm{F}(\mathrm{p}) \wedge \mathrm{B}(\mathrm{p})) \rightarrow \exists \mathrm{jL}(\mathrm{j})$
b) $\forall \mathrm{pB}(\mathrm{p}) \rightarrow \exists \mathrm{jQ}(\mathrm{j})$
c) $\exists \mathrm{j}(\mathrm{Q}(\mathrm{j}) \wedge \mathrm{L}(\mathrm{j})) \rightarrow \exists \mathrm{pF}(\mathrm{p})$
d) $(\forall \mathrm{pB}(\mathrm{p}) \wedge \forall \mathrm{jQ}(\mathrm{j})) \rightarrow \exists \mathrm{jL}(\mathrm{j})$

7- Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.
a) $\forall x \forall y\left(x^{2}=y 2 \rightarrow x=y\right)$
b) $\forall x \exists y\left(y^{2}=x\right)$
c) $\forall x \forall y(x y \geq x)$

8- Determine whether each of these conditional statements is true or false.
a) If cat can fly, then you can pass MATH 3 exam
a) If cat cannot fly, then you can fly
a) If you can fly, then the cat can fly
a) If you can fly, then $25+25+25+25=0$
I. Use rules of inference to show that

$$
u \rightarrow q, \quad r \vee s, \neg s \rightarrow \neg p, \quad((\neg p) \wedge r) \rightarrow u, \quad \neg s, \quad \therefore q
$$

Question DM3

14- Let $\mathrm{R} 1=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ divides b$\}$ and $\mathrm{R} 2=\{(\mathrm{a}, \mathrm{b}) \mid \mathrm{a}$ is a multiple of b$\}$. be two relations on the set of all positive integers, respectively. Find $R 1 \cup R 2, R 1 \cap R 2, R 1-R 2, R 2-R 1$, and $R 1 \oplus R 2$.

15- Let $R 1$ and $R 2$ be relations on a set A represented by the matrices $M_{R_{1}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0\end{array}\right]$ and $M_{R_{2}}=$ $\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$, Find the matrices that represent $R 1 \cup R 2, R 1 \cap R 2, R 2 \circ R 1, R 1 \circ R 1, R 1 \oplus R 2, R_{1}^{-1}$, symmetric closure of R_{1}, reflexive closure of R_{1}, and transitive closure of R_{1}^{-1}.

16- Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a+d=b+c$. Show that R is an equivalence relation.

17 -Let R be the relation on the set of ordered pairs of positive integers such that $((a, b),(c, d)) \in R$ if and only if $a d=b c$. Show that R is an equivalence relation.

18- Let m be an integer with $m>1$. Show that the relation $=\{(a, b) \mid a \equiv b(\bmod m)\}$ is an equivalence relation on the set of integers.

19- what are the equivalent classes of the following relations:
$R_{1}=\{(a, b): a \equiv b(\bmod 7), a, b \in Z\}$,
$R_{2}=\{(a, b): a \equiv b(\bmod 7), a, b \in$ even $\}$,
$R_{3}=\left\{(a, b): a \equiv b(\bmod 7), a, b \in\right.$ Primes $\left.^{+}\right\}$,
$R_{4}=\{(a, b): a \equiv b(\bmod 7), a, b \in\{1,2, \ldots, 14\}\}$,
$R_{5}=\{(a, b): a \equiv b(\bmod 7), a, b \in\{1,2, \ldots, 5\}\}$

Part 2: Linear Algebra (LA) - Solve(LA1^(LA2\LA3))

Question LA1

25 points

1- Find the parametric form of the general solution of the system whose augmented matrix is give by

$$
\mathrm{A}=\left[\begin{array}{rrrrrr}
1 & 0 & -5 & 0 & -8 & 3 \\
0 & 1 & 4 & -1 & 0 & 6 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

2-Show that the transformation T defined by $T\left(x_{1}, x_{2}\right)=\left(x_{1}-2 x_{2}, x_{1}-3,2 x_{1}-5 x_{2}\right)$ is not a linear.
3- If v_{1}, v_{2}, v_{3}, and v_{4} are in R^{4} and $v_{3}=2 v_{1}+v_{2}$ then $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a linearly independent set.
4- let $u=\left[\begin{array}{c}2 \\ -1\end{array}\right], v=\left[\begin{array}{l}2 \\ 1\end{array}\right]$, show that $\left[\begin{array}{l}n \\ k\end{array}\right]$ is in span $\{u, v\}$ for all real numbers n and k.

Question LA2

5- Let $\mathrm{A}=\left[\begin{array}{ccc}-1 & -7 & -3 \\ 2 & 15 & 6 \\ 1 & 3 & 2\end{array}\right]$, find the third column of A^{-1} without computing the other columns.
6- Let $\mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 8 \\ 2 & 4 & 11 \\ 1 & 2 & 5\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}-3 & 5 \\ 1 & 5 \\ 3 & 4\end{array}\right]$, how to compute $\mathrm{A}^{-1} \mathrm{~B}$ without computing A^{-1}.
[you do not have to find the solution, just write the idea as steps]
7- Given $A=\left[\begin{array}{cc}1 & 0 \\ 2 & -1\end{array}\right]$ where $A^{2}=I$, use the partitions of the matrix to show that $M^{2}=I$ where

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -2 & 1
\end{array}\right]
$$

8- Given det $\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=7$, find the determinants $\left[\begin{array}{ccc}5 g & 5 h & 5 i \\ 2 d+a & 2 e+b & 2 f+c \\ a & b & c\end{array}\right]$.
9- Let H be the set of points inside and on the unit circle in the $x y$-plane, i.e. $H=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x^{2}+y^{2} \leq 1\right\}$, show that H is not a subspace of R^{2}.

10- Given subspace $H \& M$ of a vector space V, if $H+M=\{w: w=u+v ;(u \in H) \wedge(v \in M)\}$, show that

1) $H+M$ is a subspace of V.
2) H is a subspace of $H+M$.

Question LA3

25 points
11- Diagonalize the following matrix $\quad \mathrm{A}=\left[\begin{array}{cccc}5 & -3 & 0 & 9 \\ 0 & 3 & 1 & -2 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2\end{array}\right]$, then find A^{50} if possible.
[show the following: characteristic equation, eginvalues, bases of eigenspaces, matrix D, matrix P]

12- Given $p_{1}=\left[\begin{array}{c}-1 \\ 4 \\ -3\end{array}\right], p_{2}=\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right], p_{3}=\left[\begin{array}{c}3 \\ -4 \\ -7\end{array}\right]$ find the following: length of p_{1}; unit vector of p_{2}; distance between p_{2} and p_{1}, finally determine whether the set $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}\right\}$ is orthogonal set.

13-Find the matrix of quadratic form, assume $x \in R^{5}$ and $4 x_{1}^{2}+4 x_{2}^{2}-3 x_{3}^{2}+2 x_{4}^{2}+3 x_{1} x_{2}-5 x_{3} x_{4}-$ $4 \mathrm{x}_{1} \mathrm{x}_{4}$.

Good Luck

