FCIS - Ain Shams University
Subject: Discrete Mathematics \& Linear Algebra
Exam date: 10/1/2015
Year: ($1^{\text {st }}$ term) $2^{\text {st }}$ undergraduate

Instructor: Mohammed Marey
Offering Dept.: Bioinformatics Dept.
Academic year: 2014-2015
Duration: 3 hours
Total mark: 50

Part 1: Discrete Mathematics - Solve (DM1 $\wedge($ DM2 \vee DM3))	(Part 1total marks:25)
$1^{\text {st }}$ Question : DM1	marks: 15

A. Show that the argument $u \rightarrow q,(\neg q) \vee \mathrm{t}, \mathrm{r} \vee \mathrm{s}, \neg \mathrm{s} \rightarrow \neg \mathrm{p},((\neg \mathrm{p}) \wedge \mathrm{r}) \rightarrow \mathrm{u}, \neg \mathrm{s}, \therefore \mathrm{t}$ is valid by deducing the conclusion from the premises step by step through the use of the basic rules of inference or lows of logic.
B. Give a proof by contradiction of the theorem " If $3 n+2$ is odd, then n is odd".
C. Prove that the sum of the first n positive odd integers is n^{2}, i.e.

$$
1+3+5+\cdots+(2 n-1)=n^{2}
$$

D. Find the value of $\sum_{k=99}^{200}(k-3)^{2}$, where $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ and $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$

2 ${ }^{\text {nd }}$ Question : DM 2

A. Given a directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ in (Fig: D-Graph),
i- \quad State the two sets V and E.
ii- \quad Show that $\sum_{\mathrm{v} \in \mathrm{V}} \operatorname{deg}^{-}(\mathrm{v})=\sum_{\mathrm{v} \in \mathrm{V}} \operatorname{deg}^{+}(\mathrm{v})=|\mathrm{E}|$
iii- Determine whether G is strongly connected and if not, whether it is weakly connected.
iv- Using adjacency matrix of G, determine the number of paths of length 4 from any vertex to any other vertex in G.
v- Represent the graph using the incidence matrix.

Fig: D-graph
B. Given $A=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$, deduce the formulas representing the (number of all relation, number of all reflexive relations, number of all symmetric relations, number of all (symmetric \wedge reflexive) relations) which can be defined on set A.

3nd Question: DM 3
A. Find x, y, z, and w if you know that :
i- $\quad x=\operatorname{gcd}(92928,123552)$.
ii- $\quad y=\operatorname{lcm}(92928,123552)$.
iii- $\mathrm{z} \equiv-11(\bmod 21)$ where $(90 \leq x \leq 110)$.
iv- $w=((-133 \bmod 23+261 \bmod 23) \bmod 23)$.
B. Given $A=\{1,2,3,4\}$, if R and S are two relations on A such that $R=\{(x, y), x \leq x \mid y\}$ and $S=\{(x, y), x \equiv y \bmod 2\}$
i- Write the corresponding matrix representation for each of R and S .
ii- Determine whether R is reflexive, symmetric, anti-symmetric or transitive.
iii- Find the symmetric, reflexive and transitive closures of R.
iv- Prove that S is an equivalence relation and find its equivalence classes.
v - Find $\overline{\mathrm{R}}, \mathrm{S}^{-1}$, R $\cap \mathrm{S}$, R.S.
A. Let $\mathrm{v}_{1}=\left[\begin{array}{c}2 \\ 2 \\ -1\end{array}\right], \mathrm{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right], \mathrm{v}_{3}=\left[\begin{array}{l}5 \\ 5 \\ 5\end{array}\right]$ and $\mathrm{H}=\operatorname{span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}$.
i- Write the linearly dependence relation of $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3}.
ii- Show that span $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right\}=\operatorname{span}\left\{\mathrm{v}_{2}, \mathrm{v}_{3}\right\}$.
iii- Find the base and dimension of the subspace H .
B. Using the augmented matrix [A I], find the inverse of $A=\left[\begin{array}{lll}0 & 5 & 1 \\ 1 & 4 & 0 \\ 3 & 6 & 2\end{array}\right]$, if it exists.
C. Let $\mathrm{H}=\left\{\left[\begin{array}{lll}\mathrm{a} & 0 & 0 \\ 0 & \mathrm{~b} & 0 \\ 0 & 0 & \mathrm{c}\end{array}\right]: \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{R}\right\}$ be the set of diagonal 3×3 matrices and let V be the vector space V of all 3×3 matrices.
i- Show that H is a subspace of V .
ii- Write the set of bases of the subspace H.
iii- If G has a definition as H after setting $(\mathrm{b}=1)$, show that G is not a subspace of V

| $5^{\text {st }}$ Question : LA 2 | | marks: 10 |
| :--- | :--- | :--- | :--- | :--- |
| A. Given $A=\left[\begin{array}{ccccc}-2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3\end{array}\right]:$ | | |

i- Find base for the row space of A
ii- Find base of the column space of A
iii- Find a spanning set for the null space of the matrix A
iv- What is the dimension of Row A, Col A, and Nul A.
B. Let $M_{2 \times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ by $T(A)=A+A^{T}$, where $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
i- Show that T is a linear transformation.
ii- \quad Show that the range of T is the set of B in $M_{2 \times 2}$ with the property that $B^{T}=B$.
iii- Describe the kernel of T.

Good Luck
Dr. Mohammed Abdel-Rahman Marey

