

FCIS – Ain Shams UniversityIn
O
O
ASubject: Discrete Mathematics & Linear AlgebraA
P
AExam date: 10/1/2015D
Year: (1st term) 2st undergraduateT
T

cs & Linear AlgebraInstructor: Mohammed Marey
Offering Dept.: Bioinformatics Dept.
Academic year: 2014-2015
Duration: 3 hours
Total mark: 50Solve (DM1 ∧ (DM2 ∨ DM3))(Part 1total marks:25)

а

е5

e10

Part 1: Discrete Mathematics - Solve (DM1 \land (DM2 \lor DM3))	(Part 1total marks:25)
1 st Question : DM1	marks: 15

- A. Show that the argument $u \to q$, $(\neg q) \lor t$, $r \lor s$, $\neg s \to \neg p$, $((\neg p) \land r) \to u$, $\neg s$, \therefore t is valid by deducing the conclusion from the premises step by step through the use of the basic rules of inference or lows of logic.
- **B.** Give a proof by contradiction of the theorem "If 3n+2 is odd, then n is odd".
- **C.** Prove that the sum of the first *n* positive odd integers is n^2 , i.e.

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

D. Find the value of $\sum_{k=99}^{200} (k-3)^2$, where $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$ and $\sum_{k=1}^n k = \frac{n(n+1)}{2}$

2nd Question : DM 2

marks: 10

h

е8

d

e3

- **A.** Given a directed graph G=(V,E) in (Fig: D-Graph),
 - i- State the two sets V and E.
 - ii- Show that $\sum_{v \in V} \deg^{-}(v) = \sum_{v \in V} \deg^{+}(v) = |E|$ iii- Determine whether G is strongly connected and if
 - not, whether it is weakly connected.
 - iv- Using adjacency matrix of G, determine the number of paths of length 4 from any vertex to any other vertex in G.

v- Represent the graph using the incidence matrix.

e4

е1

<u>e</u>6

́е7

B. Given $A = \{a_1, a_2, a_3, ..., a_n\}$, deduce the formulas representing the (number of all relation, number of all reflexive relations, number of all symmetric relations, number of all (symmetric \land reflexive) relations) which can be defined on set A.

3nd Question : DM 3	marks: 10
A. Find x, y, z, and w if you know that :	
: 1(00000 100550)	

- i- x = gcd (92928, 123552).
- ii- y = lcm (92928, 123552).
- iii- $z \equiv -11 \pmod{21}$ where $(90 \le x \le 110)$.
- iv- $w = ((-133 \mod 23 + 261 \mod 23) \mod 23).$
- **B.** Given A = {1,2,3,4}, if R and S are two relations on A such that $R = \{(x, y), x \le x \mid y\}$ and S = {(x, y), x \equiv y mod 2}
 - i- Write the corresponding matrix representation for each of R and S.
 - ii- Determine whether R is reflexive, symmetric, anti-symmetric or transitive.
 - iii- Find the symmetric, reflexive and transitive closures of R.
 - iv- Prove that S is an equivalence relation and find its equivalence classes.
 - v- Find \overline{R} , S⁻¹, R \cap S, R \circ S.

Part 2: Linear Algebra - Solve (LA1 ∧ LA2)

4st Question : LA1

A. Let
$$v_1 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, $v_3 = \begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix}$ and $H = span\{v_1, v_2, v_3\}$.

- i- Write the linearly dependence relation of v_1 , v_2 , and v_3 .
- ii- Show that span $\{v_1, v_2, v_3\}$ =span $\{v_2, v_3\}$.
- iii- Find the base and dimension of the subspace H.

B. Using the augmented matrix [A I], find the inverse of A = $\begin{bmatrix} 0 & 5 & 1 \\ 1 & 4 & 0 \\ 3 & 6 & 2 \end{bmatrix}$, if it exists.

C. Let $H = \{ \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} : a, b, c \in R \}$ be the set of diagonal 3x3 matrices and let V be the

vector space V of all 3×3 matrices.

- i- Show that H is a subspace of V.
- ii- Write the set of bases of the subspace H.
- iii- If G has a definition as H after setting (b=1), show that G is not a subspace of V

5st Question : LA 2

A.	Given A =	<u>r-2</u>	-5	8	0	-17ן	
		1	3	-5	1	5	
		3	11	-19	7	1	•
		L 1	7	-13	5	_3]	

- i- Find base for the row space of A
- ii- Find base of the column space of A
- iii- Find a spanning set for the null space of the matrix A
- iv- What is the dimension of Row A, Col A, and Nul A.
- **B.** Let $M_{2\times 2}$ be the vector space of all 2×2 matrices, and define $T: M_{2\times 2} \to M_{2\times 2}$ by

$$T(A) = A + A^{T}$$
, where $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$.

- i- Show that T is a linear transformation.
- ii- Show that the range of T is the set of B in $M_{2\times 2}$ with the property that $B^T = B$.
- iii- Describe the kernel of T.

Good Luck (f)

Dr. Mohammed Abdel-Rahman Marey

(Part 2 total marks:25)

marks: 15

marks: 10