FCIS – Ain Shams University Subject: Discrete Math Exam: (Midterm) /12/2020 Year: (2nd) undergraduate

Discrete Math. - Model -A-

Answer the following questions:

Prove that for every positive integer n

1	_ 1	_ 1	+···+ ¹ –1-	1
2	2^{2}	2^{3}	$\frac{1}{2^n} = 1$	2^n

2.

1.

[3 Marks] Show whether the statement: $[\neg p \land (p \lor q)] \rightarrow q$ is a *Tautology* or a *Contradiction* by developing a series of <u>logical equivalences</u> and constructing a truth table.

3.

State the converse, inverse and contrapositive of the proposition: 'If Jack plays his guitar then Sara will sing'.

4.

Let P(m,n) ::= "m divides n," where the domain for both variables consists of all positive integers. **Determine** the truth values of each of these statements.

a) P(4, 6)	b) P(2, 4)	c) $\forall m \forall n P(m,n)$
d) ∃m ∀n P(m,n)	e) ∃n ∀m P(m,n)	f) ∀n P(1,n)
5.		[3 Marks]

Prove that if *n* is a positive integer, then *n* is odd **if and only if** 5n + 6 is odd.

6.

[4 Marks]

Show that these premises concludes \mathbf{t} using rules of inference and logical equivalences if needed:

 $\neg p \land q, r \rightarrow p, \neg r \rightarrow s, and s \rightarrow t.$

Good Luck
Dr. Mohamed Abdel-Aa

Rules of Inference:Modus ponens: $(p \land (p \rightarrow q)) \rightarrow q$ Modus tollens: $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ Hypothetical syllogism: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Disjunction syllogism $((p \lor q) \land \neg p) \rightarrow (p \rightarrow r)$	SOME Logical Equivalences: $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	
Disjunctive synogism $((p \lor q) \land \ p) \rightarrow q$ Addition: $p \rightarrow (p \lor q)$ Simplification : $(p \land q) \rightarrow p$ Conjunction: $((p \land q)) \rightarrow (p \land q)$ Resolution: $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$	$ \begin{array}{l} (p \land q) \equiv & p \lor q \\ \hline (p \lor q) \equiv & p \land \neg q \\ p \lor (p \land q) \equiv p, \ p \land (p \lor q) \equiv p \\ p \lor \neg p \equiv \mathbf{T}, \ p \land \neg p \equiv \mathbf{F} \\ p \to q \equiv & p \lor q \end{array} $	$P \rightarrow q \equiv \neg q \rightarrow \neg p$ $p \lor q \equiv \neg p \rightarrow q,$ $p \land q \equiv \neg (p \rightarrow \neg q)$ $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

Examiner: Dr. Mohamed Abdel-Aal Offering Dept.: Scientific Computing Academic year: 1st term 2020-2021 **Duration: 45 minutes**

The total marks: 20

[3 Marks]

[3 Marks]

