Sec "9"

Confidence Interval (CI) (Single mean, Single proportion)

Confidence Intervals (CI)

• A confidence interval, in statistics, refers to the probability that a population parameter will fall between two set values for a certain proportion of times.

$i.e., a < \mu < b$

- The estimated range being calculated from a given set of sample data.
- It is often expressed a % whereby a population means lies between an upper and lower interval.
- A confidence interval can take any number of probabilities, with the most common being a 95% or 99% confidence level " α ".

Confidence Interval of the Population Mean " μ "

• A confidence interval for a mean gives us a range of plausible values for the population mean.

How to Calculate a Confidence Interval for a Population Mean? Step 1: Find the number of observations *n*, calculate their <u>sample mean</u> $\overline{X} = \frac{\sum_{i=1}^{n} x_i}{X_i}$ and <u>sample standard deviation</u> $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}}$, if the population's standard deviation is unknown.

- Step 2: Decide what Confidence Interval we want. i.e., $(1 - \alpha)$ % confidence interval for μ "The area in which the population mean μ is located". $[(1 - \alpha)\%] \rightarrow$ given in examples $\rightarrow \alpha \rightarrow \frac{\alpha}{2}$
- Step 3:

Population Standard Deviation " σ **"**

Exercise

(1) An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. If a sample of 30 bulbs has an average life of 780 hours, find a 96% confidence interval for the population mean of all bulbs produced by this firm.

Solution:

0.07

- Step 1: n = 30, $\overline{X} = 780$, $\sigma = 40$.
- **Step 2:** $(1 \alpha)\% = 96\% \rightarrow 1 \alpha = 0.96 \rightarrow \alpha = 1 0.96$ $\alpha = 0.04$ 0.03 0.04 (0.05 0.02

Z 0.00 0.01 **Step 3:** $\sigma \rightarrow$ known, so we use z-table -2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 $z_{\frac{\alpha}{2}} = z_{\frac{0.04}{2}} = z_{0.02} = 2.05$ -2.0 0.0228 0.0222 0.0217 0.0212 0.0207(0.0202 0.0197 0.0192 CI of μ , with known σ is given by -1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 $\overline{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 780 \pm (2.05) \left(\frac{40}{\sqrt{30}}\right)$ $0.0202 - 0.02 = 0.0002 \checkmark \checkmark$ $= 780 \pm 14.9711 \rightarrow$ 0.02 - 0.0197 = 0.0003

 $780 - 14.9711 \le \mu \le 780 + 14.9711 \rightarrow 765.0289 \le \mu \le 794.971$ \therefore 765 $\leq \mu \leq$ 795

(2) Many cardiac patients wear an implanted pacemaker to control their heartbeat. A plastic connector module mounts on the top of the pacemaker. Assuming a standard deviation of 0.0015 inch and an approximately normal distribution, find a 95% confidence interval for the mean of the depths of all connector modules made by a certain manufacturing company. A random sample of 75 modules has an average depth of 0.310 inch.

Solution:

• **Step 1:**
$$n = 75$$
, $\overline{X} = 0.310$, $\sigma = 0.0015$.

• Step 2:
$$(1 - \alpha)\% = 95\% \rightarrow 1 - \alpha = 0.95 \rightarrow \alpha = 1 - 0.95$$

 $\alpha = 0.05$

• Step 3: $\sigma \rightarrow$ known, so we use z-table 0.07 0.00 0.01 0.02 0.03 0.04 0.05 $z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{0.025} = 1.96$ 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0454 0.0150 -2.1 CI of μ , with known σ is given by -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 $\overline{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} = 0.310 \pm (1.96) \left(\frac{0.0015}{\sqrt{75}}\right)$ 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 $= 0.310 \pm 0.000173 \rightarrow$ $0.310 - 0.000173 \le \mu \le 0.310 + 0.000173$ $\therefore 0.3098 \le \mu \le 0.3102$

(3) A machine produces metal pieces that are cylindrical in shape. A sample of pieces is taken, and the diameters are found to be 1.01, 0.97, 1.03, 1.04, 0.99, 0.98, 0.99, 1.01, and 1.03 centimeters. Find a 99% confidence interval for the mean diameter of pieces from this machine, assuming an approximately normal distribution.

Solution:

• Step 1:
$$n = 9$$
, $\overline{X} = \frac{1.01 + \dots + 1.03}{9} = 1.0056$,
 $s = \sqrt{\frac{(1.01 - 1.0056)^2 + \dots + (1.03 - 1.0056)^2}{9 - 1}} = 0.02455$.
• Step 2: $(1 - \alpha)^{9/6} = 99^{9/6} \Rightarrow 1 - \alpha = 0.99 \Rightarrow \alpha = 1 - 0.99$ $\alpha = 0.01$

• Step 2: $(1 - \alpha)\% = 99\% \rightarrow 1 - \alpha = 0.99 \rightarrow \alpha = 1 - 0.99$

Step 3: $\sigma \rightarrow$ unknown, n < 30, so we use t-table $t_{\frac{\alpha}{2},v} = t_{\frac{\alpha}{2},n-1} = t_{\frac{0.01}{2},8} = t_{0.005,8} = 3.355$ CI of μ , with unknown σ , n < 30 is given by $\overline{X} \pm t_{\frac{\alpha}{2},v} \frac{s}{\sqrt{n}} = 1.0056 \pm (3.355) \left(\frac{0.02455}{\sqrt{9}}\right)$ $= 1.0056 \pm 0.0275 \rightarrow$ $1.0056 - 0.0275 \le \mu \le 1.0056 + 0.0275$ $\therefore 0.9781 \le \mu \le 1.0331$

	-			α	-		
<u> </u>	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63. 56	127.321	636 578
2	4.849	5.643	6.965	8.073	9.5 25	14.089	31,600
3	3.482	3.896	4.541	5.047	5.8 41	7.453	12.924
4	2.999	3.298	3.747	4.088	4.(04	5.598	8.610
5	2.757	3.003	3.365	3.634	4.(32	4.773	6.869
6	2.612	2.829	3.143	3.372	3. 77	4.317	5.959
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	2.440	0.001	0.000	0.000	(3.355)	3.833	5.041
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	2.328	2.491	2.718	2.879	3.106	3,497	4 437

(4) A random sample of 12 graduates of a certain secretarial school typed an average of 79.3 words per minute with a standard deviation of 7.8 words per minute. Assuming a normal distribution for the number of words typed per minute, <u>find a 95% confidence interval for the average number of words typed by all graduates of this school</u>.

Solution:

• **Step 1:**
$$n = 12$$
, $\overline{X} = 79.3$, $s = 7.8$.

• **Step 2:**
$$(1 - \alpha)\% = 95\% \rightarrow 1 - \alpha = 0.95 \rightarrow \alpha = 1 - 0.95$$

• **Step 3:**
$$\sigma \rightarrow$$
 unknown, $n < 30$, so we use t-table

 $\alpha = 0.05$

 $t_{\frac{\alpha}{2},\nu} = t_{\frac{\alpha}{2},n-1} = t_{\frac{0.05}{2},11} = t_{0.025,11} = 2.201$ CI of μ , with unknown σ , n < 30 is given by $\overline{X} \pm t_{\frac{\alpha}{2},\nu} \frac{s}{\sqrt{n}} = 79.3 \pm (2.201) \left(\frac{7.8}{\sqrt{12}}\right)$ $= 79.3 \pm 4.95592 \rightarrow$ $79.3 - 4.95592 \le \mu \le 79.3 + 4.95592$ $\therefore 74.34408 \le \mu \le 84.25592$

				·			
		-	2	α			
	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4. 03
3	0.277	0.584	0.978	1.250	1.638	2.353	3. <mark>8</mark> 2
4	0.271	0.569	0.941	1.190	1.533	2.132	2. <mark>'</mark> 76
5	0.267	0.559	0.920	1.156	1.476	2.015	2. <mark> </mark> 71
6	0.265	0.553	0.906	1.134	1.440	1.943	2. <mark>-</mark> 47
7	0.263	0.549	0.896	1.119	1.415	1.895	2. <mark>:</mark> 65
8	0.262	0.546	0.889	1.108	1.397	1.860	2.; 06
9	0.261	0.543	0.883	1.100	1.383	1.833	2.1 62
10	0.260	0.542	0.879	1.093	1.372	1.812	2.2.28
	0.000	0.540	0.876	1.088	1.363	1 706	2.201
(11)	0.200	0.539	0.873	1.083	1.356	1.782	2.179
12	0.259	0.000	0.970	1 079	1.350	1.771	2.160

Confidence Interval of the Population Proportion "p"

• A confidence interval for a proportion gives us a range of plausible values for the population proportion.

• The Lower limit of the confidence interval:

$$\widehat{p} - z_{\frac{lpha}{2}}\sigma_{\widehat{p}} = \widehat{p} - z_{\frac{lpha}{2}}\sqrt{\frac{\widehat{p}\widehat{q}}{n}}$$

• The upper limit of the confidence interval:

$$\widehat{p} + z_{\frac{lpha}{2}}\sigma_{\widehat{p}} = \widehat{p} + z_{\frac{lpha}{2}}\sqrt{\frac{\widehat{p}\widehat{q}}{n}}$$

 \therefore The CI of *p* is given by

$$\widehat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p}\widehat{q}}{n}}$$

Also can be written as follows

$$\widehat{p} - z_{rac{lpha}{2}\sqrt{rac{\widehat{p}\widehat{q}}{n}} \le p \le \widehat{p} + z_{rac{lpha}{2}\sqrt{rac{\widehat{p}\widehat{q}}{n}}$$

□ How to Calculate a Confidence Interval for a Population Proportion?

Step 1: Find the number of observations n, calculate their <u>sample</u> proportion $\hat{p} = \frac{X}{n}$, where X: denote the number of success, and calculate $\hat{q} = 1 - \hat{p}$.

Step 2: Decide what Confidence Interval we want. i.e., $(1 - \alpha)\%$ confidence interval for *p* "The area in which the population proportion *p* is located". $[(1 - \alpha)\%] \rightarrow$ given in examples $\alpha \rightarrow \frac{\alpha}{2}$. Compute $z_{\frac{\alpha}{2}}$

Step 3: The confidence interval for a population proportion *p* is given by:

$$\hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} \le p \le \hat{p} + z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Exercise

(1) <u>Compute 95% confidence intervals for the proportion of defective items in a</u> process when it is found that a sample of size 100 yields 8 defectives.

Solution:

- Step 1: n = 100, X : number of defective items = $\hat{p} = \frac{X}{n} = \frac{8}{100} = 0.08$, $\hat{q} = 1 \hat{p} = 1 0.08 = 0.92$ Step 2: $(1 \alpha)\% = 95\% \rightarrow 1 \alpha = 0.95 \rightarrow \alpha = 1 0.95$ 8.

$$\alpha = 0.05$$

C4

 $z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{0.025} = 1.96$ CI of p, is given by

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} = 0.08 \pm (1.96) \sqrt{\frac{(0.08)(0.92)}{100}} = 0.08 \pm 0.0532$$
$$\rightarrow 0.080 - 0.0532 \le p \le 0.080 + 0.0532$$

 $\therefore 0.0268 \le p \le 0.1332$

(2) In a random sample of 1000 homes in a certain city, it is found that 228 are heated by oil. find 99% confidence intervals for the proportion of homes in this city that are heated by oil.

Solution:

- Step 1: n = 1000, X : number of homes heated by oil = 228, $\hat{p} = \frac{X}{n} = \frac{228}{1000} = 0.228$, $\hat{q} = 1 - \hat{p} = 1 - 0.228 = 0.772$ • Step 2: $(1 - \alpha)\% = 99\% \rightarrow 1 - \alpha = 0.99 \rightarrow \alpha = 1 - 0.99$ $\alpha = 0.01$
- Step 3:
- $z_{\frac{\alpha}{2}} = z_{0.01} = z_{0.005}$ = $\frac{2.57 + 2.58}{2} = 2.575$ CI of *p*, is given by $\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}}$ (0.228)
- 0.00 0.02 0.04 0.05 0.01 0.03 0.06 0.07 0.08 0.09 z -2.7 0.0035 0.0033 0.0034 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026 0.0045 0.0043 0.0041 0.0040 0.0039 -2.6 0.0047 0.0044 0.0038 0.0037 0.0036 -2.5 0.0002 0.0000 0.0053 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 0.0075 -2.4 0.0080 0.0078 0.0073 0.0071 0.0069 0.0068 0.0066 0.0082 0.0064 -2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
 - $0.0051 0.005 = 0.0001 \checkmark \checkmark$ $0.005 - 0.0049 = 0.0001 \checkmark \checkmark$

 $= 0.228 \pm (2.575) \sqrt{\frac{(0.228)(0.772)}{1000}} = 0.228 \pm 0.0342 \rightarrow 0.228 - 0.0342 \le p \le 0.228 + 0.0342$ $\therefore 0.1938 \le p \le 0.2622$

(3) A random sample of 200 voters in a town is selected, and 114 are found to support an annexation suit. Find the 96% confidence interval for the fraction of the voting population favoring the suit.

Solution:

- Step 1: n = 200, X: number of voters supported = 114, $\hat{p} = \frac{x}{n}$ = $\frac{114}{200} = 0.57$, $\hat{q} = 1 - \hat{p} = 1 - 0.57 = 0.43$
- Step 2: $(1 \alpha)\% = 96\% \rightarrow 1 \alpha = 0.96 \rightarrow \alpha = 1 0.96$

$$\alpha = 0.04$$

• Step 3:
$$z_{\frac{\alpha}{2}} = z_{\frac{0.04}{2}} = z_{0.02} = 2.05$$

CI of *p*, is given by

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}\hat{q}}{n}} = 0.57 \pm (2.05) \sqrt{\frac{(0.57)(0.43)}{200}} = 0.57 \pm 0.0718 \rightarrow 0.57 - 0.0718 \le p \le 0.57 + 0.0718$$
$$\therefore 0.4982 \le p \le 0.6418$$

Problems:

1. The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint:

3.42.54.82.93.62.83.35.63.72.84.44.05.23.04.8

Assuming that the measurements represent a random sample from a normal population, find a 95% prediction interval for the drying time for the next trial of the paint.

2. A random sample of 10 chocolate energy bars of a certain brand has, on average, 230 calories per bar, with a standard deviation of 15 calories. <u>Construct a 99% confidence interval for the true mean calorie content of this brand of energy bar.</u> Assume that the distribution of the calorie content is approximately normal.

3. A random sample of 12 shearing pins is taken in a study of the Rockwell hardness of the pin head. Measurements on the Rockwell hardness are made for each of the 12, yielding an average value of 48.50 with a sample standard deviation of 1.5. Assuming the measurements to be normally distributed, <u>construct a 90% confidence interval</u> for the mean Rockwell hardness. 4. A manufacturer of MP3 players conducts a set of comprehensive tests on the electrical functions of its product. All MP3 players must pass all tests prior to being sold. Of a random sample of 500 MP3 players, 15 failed one or more tests. Find a 90% confidence interval for the proportion of MP3 players from the population that pass all tests.

5. A geneticist is interested in the proportion of African males who have a certain minor blood disorder. In a random sample of 100 African males, 24 are found to be afflicted. Compute a 99% confidence interval for the proportion of African males who have this blood disorder.