Sec "9"

Confidence Interval (CI)

(Single mean, Single proportion)

Confidence Intervals (CI)

- A confidence interval, in statistics, refers to the probability that a population parameter will fall between two set values for a certain proportion of times.

$$
\text { i.e., } a<\mu<b
$$

- The estimated range being calculated from a given set of sample data.
- It is often expressed a $\%$ whereby a population means lies between an upper and lower interval.
- A confidence interval can take any number of probabilities, with the most common being a 95% or 99% confidence level " α ".

Confidence Interval of the Population Mean " μ "

- A confidence interval for a mean gives us a range of plausible values for the population mean.

- The Lower limit of the confidence interval:
$\bar{X}-Z_{\bar{\alpha}}^{\alpha} \sigma_{\bar{X}}$
- The upper limit of the confidence interval:
$\bar{X}+Z_{\frac{\alpha}{2}} \sigma_{\bar{X}}$
\therefore The CI of μ is given by $\frac{\boldsymbol{\sigma}}{\sqrt{n}}$
$\bar{X} \pm \mathbf{z}_{\frac{\alpha}{2}} \boldsymbol{\sigma}_{\bar{X}}$
Also can be written as follows

$$
\bar{X}-z_{\frac{\alpha}{2}} \sigma_{\bar{X}} \leq \mu \leq \bar{X}+z_{\frac{\alpha}{2}} \sigma_{\bar{X}}
$$

\square How to Calculate a Confidence Interval for a Population Mean?

Step 1: Find the number of observations n, calculate their sample mean $\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}$, and sample standard deviation $\boldsymbol{s}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}}$, if the population's standard deviation is unknown.

- Step 2: Decide what Confidence Interval we want. i.e., $(1-\alpha) \%$ confidence interval for μ "The area in which the population mean μ is located". $[(1-\alpha) \%] \rightarrow$ given in examples $\rightarrow \alpha \rightarrow \frac{\alpha}{2}$
- Step 3:

Population Standard Deviation " σ "

If σ known
Use: Z- table.
CI: $\bar{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

If σ unknown $\rightarrow s$ known

If $n \geq 30$
Use: Z- table.
CI: $\bar{X} \pm Z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$

If $n<30$
Use: \mathbf{t} - table.
CI: $\bar{X} \pm \boldsymbol{t}_{\overline{2}}^{2}, v \frac{s}{\sqrt{n}}$,
$\boldsymbol{v}=\boldsymbol{n}-\mathbf{1}$

Exercise

(1) An electrical firm manufactures light bulbs that have a length of life that is approximately normally distributed with a standard deviation of 40 hours. If a sample of 30 bulbs has an average life of 780 hours, find a 96% confidence interval for the population mean of all bulbs produced by this firm.

Solution:

- Step 1: $n=30, \quad \bar{X}=780, \quad \sigma=40$.
- Step 2: $(1-\alpha) \%=96 \% \rightarrow 1-\alpha=0.96 \rightarrow \alpha=1-0.96$
- Step 3: $\sigma \rightarrow$ known, so we use z-table

$$
z_{\frac{\alpha}{2}}=z_{\frac{0.04}{2}}=z_{0.02}=2.05
$$

CI of μ, with known σ is given by

$$
\bar{X} \pm Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}=780 \pm(2.05)\left(\frac{40}{\sqrt{30}}\right)
$$

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07
2.1	0.0179	0.014		00166	0.016	0.0158	0.015	0.0150
2. 2.1	W.VCLO	V- W M	V. W LIII	Lill	W, Man	0.022	0.09	0.0192
.1.)	0.088	0.081	0.027	0.068	0.066	0.026	0.025	0.024

$$
\begin{array}{lr}
=780 \pm 14.9711 \rightarrow & 0.02-0.0197 \\
780-14.9711 \leq \mu \leq 780+14.9711 \rightarrow 765.0289 \leq \mu \leq 794.971
\end{array}
$$

$$
\therefore 765 \leq \mu \leq 795
$$

(2) Many cardiac patients wear an implanted pacemaker to control their heartbeat. A plastic connector module mounts on the top of the pacemaker. Assuming a standard deviation of 0.0015 inch and an approximately normal distribution, find a 95% confidence interval for the mean of the depths of all connector modules made by a certain manufacturing company. A random sample of 75 modules has an average depth of 0.310 inch.

Solution:

- Step 1: $n=75, \quad \bar{X}=0.310, \quad \sigma=0.0015$.
- Step 2: $(1-\alpha) \%=95 \% \rightarrow 1-\alpha=0.95 \rightarrow \alpha=1-0.95$

$$
\alpha=0.05
$$

- Step 3: $\sigma \rightarrow$ known, so we use z-table $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=z_{0.025}=1.96$
CI of μ, with known σ is given by
$\bar{X} \pm Z \frac{\alpha}{2} \frac{\sigma}{\sqrt{n}}=0.310 \pm(1.96)\left(\frac{0.0015}{\sqrt{75}}\right)$
$=0.310 \pm 0.000173 \rightarrow$
$0.310-0.000173 \leq \mu \leq 0.310+0.000173$
$\therefore 0.3098 \leq \mu \leq 0.3102$
(3) A machine produces metal pieces that are cylindrical in shape. A sample of pieces is taken, and the diameters are found to be $1.01,0.97,1.03,1.04,0.99,0.98,0.99,1.01$, and 1.03 centimeters. Find a 99% confidence interval for the mean diameter of pieces from this machine, assuming an approximately normal distribution.

Solution:

- Step 1: $n=9, \bar{X}=\frac{1.01+\cdots+1.03}{9}=1.0056$,

$$
s=\sqrt{\frac{(1.01-1.0056)^{2}+\cdots+(1.03-1.0056)^{2}}{9-1}}=0.02455
$$

$$
\alpha=0.01
$$

Step 3: $\sigma \rightarrow$ unknown, $n<30$, so we use t-table $t_{\frac{\alpha}{2}, v}=t_{\frac{\alpha}{2}, n-1}=t_{\frac{0.01}{2}, 8}=t_{0.005,8}=3.355$
CI of μ, with unknown $\sigma, n<30$ is given by
$\bar{X} \pm t_{\frac{\alpha}{2}, v} \frac{s}{\sqrt{n}}=1.0056 \pm(3.355)\left(\frac{0.02455}{\sqrt{9}}\right)$
$=1.0056 \pm 0.0275 \rightarrow$
$1.0056-0.0275 \leq \mu \leq 1.0056+0.0275$
$\therefore 0.9781 \leq \mu \leq 1.0331$

v	$\alpha \times$						
	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	15.894	21.205	31.821	42.433	63. 66	127.321	635658
2	4.849	5.643	6.965	8.073	9.25	14.689	31.600
3	3.182	3.896	4.541	5.44	5. 11	7.453	12924
4	2.999	3.288	3.74	4.088	4.104	5.598	8.610
5	2.757	3.003	3.365	3.634	4. 32	4.773	6.889
6	2.612	2882	3.143	3.372	3: 7	4.317	5.959
7	2.517	2.715	2.988	3.203		4.02	5.108
8	2.400	2001	2006		$(3.350$	3.833	5.041
1	2.398	2.574	2882	2.998	3.200	3.600	4.781
10	2.359	2.527	2.764	2.932	3.169	3.581	4.557
11	2.338	2.49	2.718	2.879	3.106	3.997	4. 437

(4) A random sample of 12 graduates of a certain secretarial school typed an average of 79.3 words per minute with a standard deviation of 7.8 words per minute. Assuming a normal distribution for the number of words typed per minute, find a 95% confidence interval for the average number of words typed by all graduates of this school.

Solution:

- Step 1: $n=12, \bar{X}=79.3, s=7.8$.
- Step 2: $(1-\alpha) \%=95 \% \rightarrow 1-\alpha=0.95 \rightarrow \alpha=1-0.95$
- Step 3: $\sigma \rightarrow$ unknown, $n<30$, so we use t -table

$$
\alpha=0.05
$$

$$
t_{\frac{\alpha}{2}, v}=t_{\frac{\alpha}{2}, n-1}=t_{\frac{0.05}{2}, 11}=t_{0.025,11}=2.201
$$

CI of μ, with unknown $\sigma, n<30$ is given by

$$
\begin{aligned}
& \bar{X} \pm t_{\frac{\alpha}{2}}, v \frac{s}{\sqrt{n}}=79.3 \pm(2.201)\left(\frac{7.8}{\sqrt{12}}\right) \\
& =79.3 \pm 4.95592 \rightarrow \\
& 79.3-4.95592 \leq \mu \leq 79.3+4.95592 \\
& \therefore 74.34408 \leq \mu \leq 84.25592
\end{aligned}
$$

v	α						
	0.40	0.30	0.20	0.15	0.10	0.05	0.025
1	0.325	0.727	1.376	1.963 .	3.078	6.314	12.706
2	0.289	0.617	1.061	1.386	1.886	2.920	4. 03
3	0.277	0.584	0.978	1.250	1.638	2.353	3. 82
4	0.271	0.569	0.941	1.190	1.533	2.132	2. 76
5	0.267	0.559	0.920°	1.156	1.476	2.015	2. 71
6	0.265	0.553	0.906	1.134	1.440	1.943	2. 47
7	0.263	0.549	0.896	1.119	1.415	1.895	2. 65
8	0.262	0.546	0.889	1.108	1.397	1.860	2. 06
9	0.261	0.543	0.883	1.100	1.383	1.833	2.652
9 10	0.260	0.542	0.879	1.093	1.372	1.812	2.28
10	0.260		0876	1088	1363	1706	2.201
11		0.539	0.873	1.083	1.356	1.782	2.179
12	0.259	0.530	$\bigcirc 870$	1.079	1.350	1.771	2.160

Confidence Interval of the Population Proportion " p "

- A confidence interval for a proportion gives us a range of plausible values for the population proportion.

- The Lower limit of the confidence interval:
$\widehat{\boldsymbol{p}}-z_{\frac{\alpha}{2}} \sigma_{\hat{p}}=\widehat{p}-z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \widehat{q}}{n}}$
- The upper limit of the confidence interval:
$\widehat{\boldsymbol{p}}+Z_{\overline{2}} \sigma_{\widehat{\boldsymbol{p}}}=\widehat{\boldsymbol{p}}+Z_{\overline{2}} \sqrt{\frac{\widehat{\boldsymbol{p}} \widehat{\boldsymbol{q}}}{\boldsymbol{n}}}$
\therefore The CI of p is given by

$$
\widehat{\boldsymbol{p}} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p} \widehat{q}}{n}}
$$

Also can be written as follows

$$
\widehat{p}-Z_{\overline{2}} \sqrt{\frac{\widehat{p} \widehat{q}}{n}} \leq p \leq \widehat{p}+Z_{\frac{\alpha}{2}} \sqrt{\frac{\widehat{p} \widehat{q}}{n}}
$$

\square How to Calculate a Confidence Interval for a Population Proportion?
Step 1: Find the number of observations \boldsymbol{n}, calculate their sample proportion $\hat{\boldsymbol{p}}=\frac{X}{\boldsymbol{n}}$, where X : denote the number of success, and calculate $\widehat{\boldsymbol{q}}=\mathbf{1}-\widehat{\boldsymbol{p}}$.

Step 2: Decide what Confidence Interval we want. i.e., $(1-\alpha) \%$ confidence interval for p "The area in which the population proportion p is located". $[(1-\alpha) \%] \rightarrow$ given in examples $\alpha \rightarrow \frac{\alpha}{2}$. Compute $Z_{\frac{\alpha}{2}}$

Step 3: The confidence interval for a population proportion p is given by:

$$
\hat{p}-Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \hat{q}}{n}} \leq p \leq \hat{p}+Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

Exercise

(1) Compute 95% confidence intervals for the proportion of defective items in a process when it is found that a sample of size 100 yields 8 defectives.

Solution:

- Step 1: $n_{X}=100, \quad X$: number of defective items $=8$,

$$
\hat{p}=\frac{\Lambda}{n}=\frac{\delta}{100}=0.08, \quad \hat{q}=1-\hat{p}=1-0.08=0.92
$$

- Step 2: $(1-\alpha) \%=95 \% \rightarrow 1-\alpha=0.95 \rightarrow \alpha=1-0.95$
- Step 3:

$$
\alpha=0.05
$$

$$
z_{\frac{\alpha}{2}}=\frac{z_{0.05}^{2}}{2}=z_{0.025}=1.96
$$

CI of p, is given by
$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \hat{q}}{n}}=0.08 \pm(1.96) \sqrt{\frac{(0.08)(0.92)}{100}}=0.08 \pm 0.0532$
$\rightarrow 0.080-0.0532 \leq p \leq 0.080+0.0532$
$\therefore 0.0268 \leq p \leq 0.1332$
(2) In a random sample of 1000 homes in a certain city, it is found that 228 are heated by oil. find 99% confidence intervals for the proportion of homes in this city that are heated by oil.

Solution:

- Step 1: $n \underset{\bar{X}}{1000} \underset{228}{ }$, $X:$ number of homes heated by oil $=228$,

$$
\hat{p}=\frac{X}{n}=\frac{228}{1000}=0.228, \quad \hat{q}=1-\hat{p}=1-0.228=0.772
$$

- Step 2: $(1-\alpha) \%=99 \% \rightarrow 1-\alpha=0.99 \rightarrow \alpha=1-0.99 \quad \alpha=0.01$
- Step 3:

$$
\begin{aligned}
& Z_{\frac{\alpha}{2}}=z_{\frac{0.01}{}}^{2}=z_{0.005} \\
& =\frac{2.57+2.58}{2}=2.575
\end{aligned}
$$

CI of p, is given by

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.922	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0637	0.0036
-2.5	E.00022									
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084

$\begin{array}{lr}\hat{p} \pm Z \frac{\alpha}{2} \sqrt{\frac{\hat{p} \hat{q}}{n}} & \begin{array}{l}0.0051-0 \\ 0.005-0.0\end{array} \\ =0.228 \pm(2.575) \sqrt{\frac{(0.228)(0.772)}{1000}}=0.228 \pm 0.0342 \rightarrow\end{array}$
$0.228-0.0342 \leq p \leq 0.228+0.0342$
$\therefore 0.1938 \leq p \leq 0.2622$
(3) A random sample of 200 voters in a town is selected, and 114 are found to support an annexation suit. Find the $\mathbf{9 6 \%}$ confidence interval for the fraction of the voting population favoring the suit.

Solution:

- Step 1: $n=200, X$: number of voters supported $=114, \hat{p}=\frac{X}{n}$

$$
=\frac{114}{200}=0.57, \hat{q}=1-\hat{p}=1-0.57=0.43
$$

- Step 2: $(1-\alpha) \%=96 \% \rightarrow 1-\alpha=0.96 \rightarrow \alpha=1-0.96$
- Step 3: $Z_{\frac{\alpha}{2}}=\frac{z_{0.04}^{2}}{}=z_{0.02}=2.05$

$$
\alpha=0.04
$$

CI of p, is given by
$\hat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p} \hat{q}}{n}}=0.57 \pm(2.05) \sqrt{\frac{(0.57)(0.43)}{200}}=0.57 \pm 0.0718 \rightarrow$
$0.57-0.0718 \leq p \leq 0.57+0.0718$
$\therefore 0.4982 \leq p \leq 0.6418$

Problems:

1. The following measurements were recorded for the drying time, in hours, of a certain brand of latex paint:

$$
\begin{array}{lllll}
3.4 & 2.5 & 4.8 & 2.9 & 3.6 \\
2.8 & 3.3 & 5.6 & 3.7 & 2.8 \\
4.4 & 4.0 & 5.2 & 3.0 & 4.8
\end{array}
$$

Assuming that the measurements represent a random sample from a normal population, find a 95% prediction interval for the drying time for the next trial of the paint.
2. A random sample of 10 chocolate energy bars of a certain brand has, on average, 230 calories per bar, with a standard deviation of 15 calories. Construct a 99% confidence interval for the true mean calorie content of this brand of energy bar. Assume that the distribution of the calorie content is approximately normal.
3. A random sample of 12 shearing pins is taken in a study of the Rockwell hardness of the pin head. Measurements on the Rockwell hardness are made for each of the 12, yielding an average value of 48.50 with a sample standard deviation of 1.5 . Assuming the measurements to be normally distributed, construct a 90% confidence interval for the mean Rockwell hardness.
4. A manufacturer of MP3 players conducts a set of comprehensive tests on the electrical functions of its product. All MP3 players must pass all tests prior to being sold. Of a random sample of 500 MP 3 players, 15 failed one or more tests. Find a 90% confidence interval for the proportion of MP3 players from the population that pass all tests.
5. A geneticist is interested in the proportion of African males who have a certain minor blood disorder. In a random sample of 100 African males, 24 are found to be afflicted. Compute a 99% confidence interval for the proportion of African males who have this blood disorder.

