Sec " 8 "

Central Limit Theorem

Sampling Distribution of the

- Sample Proportion.
- Difference between two sample proportions.

Sampling Distribution of Sample Proportion

- If X is a binomial distribution with parameters $\boldsymbol{n}, \boldsymbol{p}$, given a population with mean $n p$ and a standard deviation of $\sqrt{n p q}$, the sampling distribution of the sample proportion $\hat{\boldsymbol{p}}$ has a mean of p and a standard deviation $\sqrt{\frac{p q}{n}}$.
- We know that $\widehat{\boldsymbol{p}}=\frac{\boldsymbol{X}}{\boldsymbol{n}}$
- The mean of $\hat{\boldsymbol{p}}: \quad \rightarrow$ e., $E(a x)=a E(x)$
$\mu_{\hat{p}}=E(\hat{p})=E\left(\frac{X}{n}\right)=\frac{1}{n} E(X)=\frac{1}{n}(n p)=p$
$\therefore \mu_{\hat{p}}=p$
- The variance of $\hat{\boldsymbol{p}}$:

$$
\sigma_{\hat{p}}^{2}=\operatorname{Var}(\hat{p})=\operatorname{Var}\left(\frac{X}{n}\right)=\frac{1}{n^{2}} \operatorname{Var}(X)=\frac{1}{n^{2}}(n p q)=\frac{p q}{n}
$$

$$
\therefore \sigma_{\hat{p}}^{2}=\frac{p q}{n} \longrightarrow \therefore \sigma_{\hat{p}}=\sqrt{\frac{p q}{n}} \quad, \text { where } q=1-p .
$$

Central Limit Theorem

As n increase, the sampling distribution of sample proportion approaches a normal distribution with $\mu_{\hat{p}}=p$, and $\sigma=\sqrt{\frac{p q}{n}}, \hat{p} \sim N\left(p, \sqrt{\frac{p q}{n}}\right)$.
The sampling distribution of a sample proportion \hat{p} is approximately normal if $n p \geq 15$ and $n q \geq 15$.

Thus,
$\hat{p}=\mu_{\hat{p}}+z \sigma_{\hat{p}}$, and
Standard Score
$z=\frac{\hat{p}-\mu_{\hat{p}}}{\sigma_{\hat{p}}}=\frac{\hat{p}-p}{\sqrt{\frac{p q}{n}}}$

Exercise

(7) Your mail-order company advertises that it ships 90% of its orders within three working days. You select a sample random sample of 100 of the 5000 orders received in the past week for an audit.

$$
p=0.9, q=1-p=0.1, \quad n=100
$$

a. What is the mean of the sampling distribution of $\widehat{\boldsymbol{p}}$?

Solution

$$
\mu_{\hat{p}}=p=0.9
$$

b. Find the standard deviation of the sampling distribution of $\widehat{\boldsymbol{p}}$?

$$
\sigma_{\hat{p}}=\sqrt{\frac{\text { Sq }}{n}}=\sqrt{\frac{(0.9)(0.1)}{100}}=0.03
$$

c. Is the sampling distribution approximately Normal? Check that the Normal conditions are met.

Solution

- The expected number of successes must be at least 10

$$
n p=(100)(0.9)=90 \sqrt{ } \geq 15
$$

- The expected number of failure must be at least 10

$$
n q=(100)(0.1)=10 \times<15
$$

\therefore The distribution of \hat{p} is not approximately normal distribution.
d. The audit reveals that 86 of theses orders were shipped on time (that is 86%). What is the probability that the proportion of on time orders is $\mathbf{8 6 \%}$ or less?

Solution

$$
\begin{aligned}
& \mathrm{P}(\hat{p} \leq 0.86)=\mathrm{P}\left(\frac{\hat{p}-\mu_{\hat{p}}}{\sigma_{\hat{p}}} \leq \frac{0.86-0.9}{0.03}\right) \\
& \quad=\mathrm{P}(z \leq-1.3333)=\mathrm{P}(z \leq-1.33)=0.0918 \text { (from } \mathrm{z} \text {-table) }
\end{aligned}
$$

(8) According to the US Census Bureau's American Community Survey, $\mathbf{8 7 \%}$ of Americans over the age of 25 have earned a high school diploma. Suppose we are going to take a random sample of 200 Americans in this age group and calculate what proportion of the sample has a high school diploma. What is the probability that the proportion of people in the sample with a high school diploma is less than 85% ?

Solution

$$
p=0.87, \quad q=1-p=0.13, \quad n=200
$$

Note that: The sampling distribution of a sample proportion \hat{p} is approximately normal as long as the expected number of successes and failures are both at least 15 . thus, $n p=(\mathbf{2 0 0})(0.87)=174$ and $n q=(200)(0.13)=26$. So, the distribution of $\hat{\boldsymbol{p}}$ is approximately normal with $\mu_{\hat{p}}=p$ $=0.87, \sigma_{\hat{p}}=\sqrt{\frac{p q}{n}}=\sqrt{\frac{(0.87)(0.13)}{200}}=0.0238$

$$
\begin{aligned}
\mathrm{P}(\hat{p}<0.85) & =\mathrm{P}\left(\frac{\hat{p}-\mu_{\hat{p}}}{\sigma_{\hat{p}}}<\frac{0.85-0.87}{0.0238}\right) \\
& =\mathrm{P}(z<-0.8403) \\
& =\mathrm{P}(z<-0.84)=0.2005 \text { (from z-table) }
\end{aligned}
$$

(9) A USA Today Poll asked a random sample of 1012 U.S. adults what they do with the milk in the bowl after they have eaten the cereal. Of the respondents, 70% said that they drink it. Let $\widehat{\boldsymbol{p}}$ be the proportion of people in the sample who drink the cereal milk.
a. What is the mean of the sampling distribution of $\hat{\boldsymbol{p}}$?
b. Find the standard deviation of the sampling distribution of $\widehat{\boldsymbol{p}}$?
c. Is the sampling distribution approximately Normal? Check that the Normal conditions are met.
d. Find the probability of obtaining a sample of 1012 adults in which 67% or fewer say they drink the cereal milk.

Sampling Distribution of Difference Between Two Proportions

- Suppose we have two populations with proportions equal to \boldsymbol{p}_{1} and $\boldsymbol{p}_{\mathbf{2}}$. Suppose further that we take all possible samples of size \underline{n}_{1} and n_{2}, then the sampling distribution of difference between proportions follows a normal distribution with mean $\mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2}$ and standard deviate $\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}$.
- $\mu_{\hat{p}_{1}-\hat{p}_{2}}=E\left(\hat{p}_{1}-\hat{p}_{2}\right)=E\left(\hat{p}_{1}\right)-E\left(\hat{p}_{2}\right)=\mu_{\hat{p}_{1}}-\mu_{\hat{p}_{2}}$

We know that $\mu_{\hat{p}}=p$, therefore $\mu_{\hat{p}_{1}}=p_{1}$ and $\mu_{\hat{p}_{2}}=p_{2}$.

$$
\therefore \mu_{\hat{p}_{1}-\widehat{p}_{2}}=p_{1}-p_{2}
$$

$-\sigma_{\hat{p}_{1}-\widehat{p}_{2}}^{2}=\operatorname{Var}\left(\widehat{p}_{1}-\widehat{\boldsymbol{p}}_{2}\right)=\operatorname{Var}\left(\widehat{\boldsymbol{p}}_{1}\right)+\operatorname{Var}\left(-\widehat{\boldsymbol{p}}_{2}\right)$

$$
=\operatorname{Var}\left(\widehat{\boldsymbol{p}}_{1}\right)+\operatorname{Var}\left(\widehat{\boldsymbol{p}}_{2}\right)=\sigma_{\widehat{\boldsymbol{p}}_{1}}^{2}+\sigma_{\widehat{\boldsymbol{p}}_{2}}^{2}
$$

We know that $\sigma_{\widehat{\hat{p}}}^{2}=\frac{p q}{n}$, therefore $\sigma_{\widehat{p}_{1}}^{2}=\frac{p_{1} q_{1}}{n_{1}}$ and $\sigma_{\widehat{p}_{2}}^{2}=\frac{p_{2} q_{2}}{n_{2}}$.

$$
\therefore \sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}} \quad \therefore \sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}
$$

- The sampling distribution of the difference between two proportions $\hat{p}_{1}-\hat{p}_{2}$ is approximately normal if :

$$
n_{1} p_{1} \geq 15 \text { and } n_{1} q_{1} \geq 15
$$

also

$$
n_{2} p_{2} \geq 15 \text { and } n_{2} q_{2} \geq 15
$$

Expected successes and failures in both samples at least 15 .

- The standard normal distribution of the difference between two proportions comes by the expression:

$$
z=\frac{\left(\widehat{p}_{1}-\widehat{p}_{2}\right)-\mu_{\hat{p}_{1}-\widehat{p}_{2}}}{\sigma_{\widehat{p}_{1}-\widehat{p}_{2}}}=\frac{\left(\widehat{p}_{1}-\widehat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}}
$$

Exercise:

(10) In one state, $\mathbf{5 2 \%}$ of the voters are Republicans, and $\mathbf{4 8 \%}$ are Democrats. In a second state, 47% of the voters are Republicans, and 53% are Democrats. Suppose 100 voters are surveyed from each state. Assume the survey uses simple random sampling. What is the probability that the survey will show a greater percentage of Republican voters in the first state than in the second state?

$$
\begin{gathered}
\mathbf{1}^{\text {st }} \text { state } \\
p_{1}=0.52 \\
q_{1}=0.48 \\
n_{1}=100
\end{gathered}
$$

Solution

$$
\begin{aligned}
& \frac{\mathbf{2}^{\boldsymbol{n d}} \text { state }}{p_{2}=0.47} \\
& q_{2}=0.53 \\
& n_{2}=100
\end{aligned}
$$

- Make sure the samples from each population are big enough to model differences with a normal distribution:

$$
\begin{array}{ll}
n_{1} p_{1}=(100)(0.52)=52 & \sqrt{ } \geq 15 \\
n_{1} q_{1}=(100)(0.48)=48 & \sqrt{ } \geq 15
\end{array}
$$

and

$$
\begin{array}{ll}
n_{2} p_{2}=(100)(0.47)=47 & \sqrt{ } \geq 15 \\
n_{2} q_{2}=(100)(0.53)=53 & \sqrt{ } \geq 15
\end{array}
$$

- This problem requires us to find the probability that \hat{p}_{1} is less than \hat{p}_{2}. Thus, $\mathrm{P}\left(\hat{p}_{1}>\hat{p}_{2}\right)=\mathrm{P}\left(\hat{p}_{1}-\hat{p}_{2}>0\right)$

$$
\begin{aligned}
& =\mathrm{P}\left(\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}}>\frac{0-(0.52-0.47)}{\sqrt{\frac{(0.52)(0.48)}{100}+\frac{(0.47)(0.53)}{100}}}\right) \\
& =\mathrm{P}\left(z>\frac{-0.05}{0.07062}\right)=\mathrm{p}(z>-0.7080) \\
& =\mathrm{p}(z>-0.71)=1-P(z<-0.71) \\
& =1-0.2389=0.7611
\end{aligned}
$$

		Sampling distribution		
Parameter	statistic	Center(mean)	Spread(standard deviation"error")	Z-Score
- $\mathrm{P}=$ population proportion.	$\widehat{\boldsymbol{p}}=$ sample proportion	$\mu_{\hat{p}}=p$	$\sigma_{\widehat{p}}=\sqrt{\frac{p q}{n}}$	$Z=\frac{\widehat{p}-p}{\sqrt{\frac{p q}{n}}}$ If $n p \geq 15$ and $n q \geq 15$
- $p_{1}, p_{2}=$ the proportion of population1,2	$\widehat{\boldsymbol{p}}_{1}-\widehat{\boldsymbol{p}}_{2}$	$\begin{aligned} & \mu_{\hat{p}_{1}-\widehat{p}_{2}} \\ & =p_{1}-p_{2} \end{aligned}$	$\begin{aligned} & \sigma_{\widehat{p}_{1}-\widehat{p}_{2}}=\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}} \end{aligned}$	$Z=\frac{\left(\widehat{p}_{1}-\widehat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1} q_{1}}{n_{1}}+\frac{p_{2} q_{2}}{n_{2}}}}$ If $n_{1} p_{1} \geq 15$ and $n_{1} q_{1} \geq 15$ $n_{2} p_{2} \geq 15$ and $n_{2} q_{2} \geq 15$

