Sec "8" Central Limit Theorem

Sampling Distribution of the

- Sample Proportion.
- Difference between two sample proportions.

Sampling Distribution of Sample Proportion

■ If X is a **binomial distribution** with parameters *n*, *p*, given a population with mean *np* and a standard deviation of \sqrt{npq} , the sampling distribution of the sample proportion \hat{p} has a mean of *p* and a standard deviation $\sqrt{\frac{pq}{n}}$.

 $\therefore \mu_{\widehat{p}}$ -

• We know that
$$\hat{p} = \frac{X}{n}$$

• The mean of \hat{p} :
 $\mu_{\hat{p}} = E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{1}{n}E(X) = \frac{1}{n}(np) = p$
 np

The variance of \hat{p} :

Central Limit Theorem

As *n* increase, the sampling distribution of sample proportion approaches a normal distribution with na

$$\mu_{\hat{p}} = p$$
, and $\sigma = \sqrt{\frac{pq}{n}}, \hat{p} \sim N\left(p, \sqrt{\frac{pq}{n}}\right)$

The sampling distribution of a sample proportion \hat{p} is approximately normal <u>if $np \ge 15$ and $nq \ge 15$.</u>

Exercise

(7) Your mail-order company advertises that it ships 90% of its orders within three working days. You select a sample random sample of 100 of the 5000 orders received in the past week for an audit.

$$p = 0.9, q = 1 - p = 0.1, n = 100$$

a. What is the mean of the sampling distribution of \widehat{p} ?

 $\frac{\text{Solution}}{\mu_{\hat{p}} = p = 0.9}$

b. Find the standard deviation of the sampling distribution of \widehat{p} ?

$$\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}} = \sqrt{\frac{(0.9)(0.1)}{100}} = 0.03$$

c. Is the sampling distribution approximately Normal? Check that the Normal conditions are met.

Solution

The expected number of successes must be at least 10

 $np = (100)(0.9) = 90 \sqrt{\ge 15}$

The expected number of failure must be at least 10

 $nq = (100)(0.1) = 10 \times < 15$

 \therefore The distribution of \hat{p} is not approximately normal distribution.

d. The audit reveals that 86 of theses orders were shipped on time (that is 86%). What is the probability that the proportion of on time orders is 86% or less?

Solution

$$P(\hat{p} \le 0.86) = P\left(\frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} \le \frac{0.86 - 0.9}{0.03}\right)$$
$$= P(z \le -1.3333) = P(z \le -1.33) = 0.0918 \text{ (from z-table)}$$

(8) According to the US Census Bureau's American Community Survey, 87% of Americans over the age of 25 have earned a high school diploma. Suppose we are going to take a random sample of 200 Americans in this age group and calculate what proportion of the sample has a high school diploma. What is the probability that the proportion of people in the sample with a high school diploma is less than 85%?

$\frac{\text{Solution}}{p = 0.87, \qquad q = 1 - p = 0.13, \qquad n = 200}$

Note that: The sampling distribution of a sample proportion \hat{p} is approximately normal as long as <u>the</u> expected number of successes and failures are both at least 15. thus, np = (200)(0.87) = 174and nq = (200)(0.13) = 26. So, the distribution of \hat{p} is approximately normal with $\mu_{\hat{p}} = p$

= 0.87,
$$\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}} = \sqrt{\frac{(0.87)(0.13)}{200}} = 0.0238$$

$$P(\hat{p} < 0.85) = P\left(\frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} < \frac{0.85 - 0.87}{0.0238}\right)$$
$$= P(z < -0.8403)$$
$$= P(z < -0.84) = 0.2005 \text{ (from z-table)}$$

(9) A USA Today Poll asked a random sample of 1012 U.S. adults what they do with the milk in the bowl after they have eaten the cereal. Of the respondents, 70% said that they drink it. Let \hat{p} be the proportion of people in the sample who drink the cereal milk.

- a. What is the mean of the sampling distribution of \hat{p} ?
- **b.** Find the standard deviation of the sampling distribution of \widehat{p} ?
- **c.** Is the sampling distribution approximately Normal? Check that the Normal conditions are met.
- d. Find the probability of obtaining a sample of 1012 adults in which 67% or fewer say they drink the cereal milk.

Sampling Distribution of Difference Between Two Proportions

Suppose we have two <u>populations</u> with proportions equal to $\underline{p_1}$ and $\underline{p_2}$. Suppose further that we take all possible <u>samples</u> of size $\underline{n_1}$ and $\underline{n_2}$, then the sampling distribution of difference between proportions follows a normal distribution with

mean
$$\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2$$
 and standard deviate $\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$.

$$\mu_{\hat{p}_1 - \hat{p}_2} = E(\hat{p}_1 - \hat{p}_2) = E(\hat{p}_1) - E(\hat{p}_2) = \mu_{\hat{p}_1} - \mu_{\hat{p}_2}$$

We know that $\mu_{\hat{p}} = p$, therefore $\mu_{\hat{p}_1} = p_1$ and $\mu_{\hat{p}_2} = p_2$.

$$\therefore \mu_{\widehat{p}_1 - \widehat{p}_2} = p_1 - p_2$$

•
$$\sigma_{\hat{p}_1-\hat{p}_2}^2 = Var(\hat{p}_1 - \hat{p}_2) = Var(\hat{p}_1) + Var(-\hat{p}_2)$$

 $= Var(\hat{p}_1) + Var(\hat{p}_2) = \sigma_{\hat{p}_1}^2 + \sigma_{\hat{p}_2}^2$
We know that $\sigma_{\hat{p}}^2 = \frac{pq}{n}$, therefore $\sigma_{\hat{p}_1}^2 = \frac{p_1q_1}{n_1}$ and $\sigma_{\hat{p}_2}^2 = \frac{p_2q_2}{n_2}$.
 $\therefore \sigma_{\hat{p}_1-\hat{p}_2}^2 = \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2} \longrightarrow \qquad \therefore \sigma_{\hat{p}_1-\hat{p}_2}^2 = \sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$

• The sampling distribution of the difference between two proportions $\hat{p}_1 - \hat{p}_2$ is approximately normal if :

$$n_1 p_1 \ge 15 \text{ and } n_1 q_1 \ge 15,$$

also

 $n_2 p_2 \ge 15$ and $n_2 q_2 \ge 15$,

Expected successes and failures in both samples at least 15.

The standard normal distribution of the difference between two proportions comes by the expression:

$$\mathbf{z} = \frac{(\hat{p}_1 - \hat{p}_2) - \mu_{\hat{p}_1 - \hat{p}_2}}{\sigma_{\hat{p}_1 - \hat{p}_2}} = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}}$$

Exercise:

(10) In one state, 52% of the voters are Republicans, and 48% are Democrats. In a second state, 47% of the voters are Republicans, and 53% are Democrats. Suppose 100 voters are surveyed from each state. Assume the survey uses simple random sampling. What is the probability that the survey will show a greater percentage of Republican voters in the first state than in the second state?

<u>1st state</u>	Solution	<u>2nd state</u>
$p_1 = 0.52$		$p_2 = 0.47$
$q_1 = 0.48$		$q_2 = 0.53$
$n_1 = 100$		$n_2 = 100$
e the complex from each r	nonulation are hig enough to mo	del differences with a n

• Make sure the samples from each population are big enough to model differences with a normal distribution:

$$n_1 p_1 = (100)(0.52) = 52$$
 $\sqrt{2} \ge 15$
 $n_1 q_1 = (100)(0.48) = 48$ $\sqrt{2} \ge 15$

and

$$n_2 p_2 = (100)(0.47) = 47$$
 $\sqrt{2} \ge 15$
 $n_2 q_2 = (100)(0.53) = 53$ $\sqrt{2} \ge 15$

This problem requires us to find the probability that \hat{p}_1 is less than \hat{p}_2 . Thus, P($\hat{p}_1 > \hat{p}_2$) = P($\hat{p}_1 - \hat{p}_2 > 0$)

$$= P\left(\frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}} > \frac{0 - (0.52 - 0.47)}{\sqrt{\frac{(0.52)(0.48)}{100} + \frac{(0.47)(0.53)}{100}}}\right)$$
$$= P\left(z > \frac{-0.05}{0.07062}\right) = p(z > -0.7080)$$
$$= p(z > -0.71) = 1 - P(z < -0.71)$$
$$= 1 - 0.2389 = 0.7611$$

		Sampling distribution		
Parameter	statistic	Center(mean)	Spread(standard deviation"error")	Z-Score
• P= population proportion.	$\widehat{p} =$ sample proportion	$\mu_{\widehat{p}} = p$	$\sigma_{\widehat{p}} = \sqrt{\frac{pq}{n}}$	$Z = \frac{\widehat{p} - p}{\sqrt{\frac{pq}{n}}}$ If $np \ge 15$ and $nq \ge 15$
• $p_1, p_2 = \text{the}$ proportion of population1,2	$\widehat{p}_1 - \widehat{p}_2$	$\mu_{\widehat{p}_1-\widehat{p}_2} = p_1 - p_2$	$\sigma_{\widehat{p}_1 - \widehat{p}_2}$ $= \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$	$Z = \frac{(\hat{p}_1 - \hat{p}_2) - (p_1 - p_2)}{\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}}$ If $n_1 p_1 \ge 15$ and $n_1 q_1 \ge 15$, $n_2 p_2 \ge 15$ and $n_2 q_2 \ge 15$