SEC " 5 "

SIMPLE LINEAR REGRESSION BAYES' THEOREM

Simple Linear Regression

- Linear regression models are used to describe or predict the relationship between two variables " x and y ". The simple linear regression model is represented by:

$$
y=\beta_{0}+\beta_{1} x+e
$$

y : The factor that is being predicted (the factor that the equation solves for) is called the dependent variable.
x : The factors that are used to predict the value of the dependent variable are called the independent variables.
$e:$ Is the error of the estimate. The error term is used to account for the variability in y that cannot be explained by the linear relationship between x and y.

X
β_{0} : Is the y-intercept of the regression line.
β_{1} : Is the slope.

The Estimated Linear Regression Equation

- In practice, the parameter of the population values generally are not known so they must be estimated by using data from a sample of the population. The population parameters are estimated by using sample statistics. The sample statistics are represented by b_{0} and b_{1}. When the sample statistics are substituted for the population parameters, the estimated regression equation is formed as follow:

Sheet (3)

12. Last year, five randomly selected students took a math aptitude test before they began their statistics course. The Statistics Department has three questions.

- Draw the scatter plot representing the data

Student	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{y}_{\boldsymbol{i}}$
$\mathbf{1}$	95	85
2	85	95
3	80	70
4	70	65
5	60	$\mathbf{7 0}$

- What linear regression equation best predicts statistics performance, based on math aptitude scores?
$\square n=5$
$\bar{X}=\frac{\sum_{i=1}^{5} x_{i}}{n}=\frac{95+\cdots+60}{5}=78$
$s_{x}=\sqrt{\frac{\sum_{i=1}^{5}(x-\bar{x})^{2}}{n-1}}=\sqrt{\frac{(95-78)^{2}+\cdots+(95-78)^{2}}{4}}=13.5093$
$\bar{y}=\frac{\sum_{i=1}^{5} y_{i}}{n}=\frac{85+\cdots+70}{5}=77$
$s_{y}=\sqrt{\frac{\sum_{i=1}^{5}(y-\bar{y})^{2}}{n-1}}=\sqrt{\frac{(85-77)^{2}+\cdots+(70-77)^{2}}{4}}=12.5499$

$$
\square \hat{y}=b_{0}+b_{1} x
$$

$$
>b_{1}=r\left(\frac{s_{y}}{s_{x}}\right)
$$

$$
=0.6931\left(\frac{12.5499}{13.5093}\right)
$$

$$
=0.644
$$

$>b_{0}=\bar{y}-b_{1} \bar{x}=77-0.644 * 78$

\boldsymbol{x}	$z_{\boldsymbol{x}}=\frac{\boldsymbol{x}-\mathbf{7 8}}{\mathbf{1 3 . 5 0 9 3}}$	\boldsymbol{y}	$z_{y}=\frac{\boldsymbol{y}-\mathbf{7 7}}{\mathbf{1 2 . 5 4 9 9}}$	$z_{x} \boldsymbol{z}_{\boldsymbol{y}}$
95	1.2584	85	0.6375	0.8022
85	0.5182	95	1.4343	0.7433
80	0.1480	70	-0.5578	-0.0826
70	-0.5922	65	-0.9562	0.5663
60	-1.3324	70	-0.5578	0.7432
		Total $=$	2.7724	

$$
=26.768
$$

$$
\hat{y}=26.768+0.644 x
$$

$$
r=\frac{\sum z_{x} z_{y}}{n-1}=\frac{2.7724}{4}=0.6931
$$

- If a student made an 80 on the aptitude test, what grade would we expect her to make in statistics?

$$
\begin{gathered}
\text { At } x=80 \quad \hat{y}_{80}=26.768+0.644 * 80=78.288 \\
\text { Error }=|\hat{y}-y|=|78.288-70|=8.288
\end{gathered}
$$

- How well does the regression equation fit the data? (hint: use the coefficient of determination to answer this question).
$r^{2}=(0.6931)^{2}=0.4804 \times 100=48.04 \%$ of the variation in y can be described by \boldsymbol{x}.

Bayes' Rule

- Bayes' theorem, is a mathematical formula for determining conditional probability. Conditional probability is the likelihood of an outcome occurring, based on a previous outcome occurring. Bayes' theorem provides a way to revise existing predictions or theories (update probabilities) given new or additional evidence

$$
\begin{array}{rl}
>P & P(B)=P\left(A_{1} \cap B\right)+P\left(A_{2} \cap B\right)+\cdots+P\left(A_{k} \cap B\right) \\
\quad=P\left(B \mid A_{1}\right) P\left(A_{1}\right)+P\left(B \mid A_{2}\right) P\left(A_{2}\right)+\cdots+P\left(B \mid A_{k}\right) P\left(A_{k}\right) \\
\quad=\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right) \quad \text { " Total Probability". }
\end{array}
$$

$$
P P\left(A_{i} \mid B\right)=\frac{P\left(A_{i} \cap B\right)}{P(B)}=\frac{P\left(B \mid A_{i}\right) P\left(A_{i}\right)}{\sum_{j=1}^{k} P\left(B \mid A_{j}\right) P\left(A_{j}\right)}, i=1,2, \ldots, k
$$

Sheet (3) [Revision on Probability]

4. All tractors made by a company are produced on one of three assembly lines, named Red, White, and Blue. The chances that a tractor will not start when it rolls off of a line are 6%, 11%, and $\mathbf{8 \%}$ for lines Red, White, and Blue, respectively. 48% of the company's tractors are made on the Red line and 31% are made on the Blue line.
(a) What fraction of the company's tractors do not start when they roll off of an assembly line?

Let:

Red Line: R, Blue Line: B, White Line: W Not Start " Defective ": D

$$
\begin{aligned}
& P(D) \\
& =P(R \cap D)+P(B \cap D)+P(W \cap D) \\
& =0.0288+0.0248+0.0231 \\
& =0.0767 \times 100 \\
& =7.67 \approx 8 \%
\end{aligned}
$$

(b) What is the probability that a tractor came from the red company given that it was defective?

$$
\begin{aligned}
& P(R \mid D)=\frac{P(R \cap D)}{P(D)} \\
& =\frac{0.0288}{\mathbf{0 . 0 7 6 7}}=0.3755
\end{aligned}
$$

$$
P(D)=0.0767
$$

Sheet (3) [Revision on Probability]

2. A test for a rare disease claims that it will report a positive result for $\mathbf{9 9 . 5 \%}$ of people with the disease, and will report a negative result for $\mathbf{9 9 . 9 \%}$ of those without the disease. We know that the disease is present in the population at 1 in 100,000 . Knowing this information, what is the likelihood that an individual who tests positive will actually have the disease?
Let:
The person with the disease: D.
The person without the disease: D^{\prime}.

$P(A \mid E)+P(B \mid E)+\cdots+P(Z \mid E)$
$=1$

what is the likelihood that an individual who tests positive will actually have the disease?

$$
\begin{aligned}
& P(D \mid+v e)=\frac{P(D \cap+\boldsymbol{v e})}{P(+v e)}=\frac{P(D \cap+\boldsymbol{e})}{P(D \cap v e)+P\left(D^{\prime} \cap+\boldsymbol{v e}\right)} \\
& =\frac{9.95 \times 10^{-6}}{9.95 \times 10^{-6}+9.9999 \times 10^{-4}}=9.8521 \times 10^{-3}=0.0098521
\end{aligned}
$$

