SEC " 4 "
Z - SCORE CORRELATION

Z-SCORE

- Simply put, a z-score (also called a standard score) gives you an idea of how far from the mean a data point is. but more technically it's a measure of how many standard deviations below or above the population mean a raw score is.

Why are Z-Scores important :

Enables us to compare two scores that are from different samples (which may have different means and standard deviations).

$$
\begin{gathered}
\underline{\text { Group A }} \\
\downarrow \\
\underline{\text { Mona }} \\
x_{M}=25 \\
\bar{x}_{A}=10 \\
s_{A}=3.5 \\
Z_{M}=\frac{x_{M}-\bar{x}_{A}}{s_{A}}=\frac{25-10}{3.5}=4.29 \\
Z_{S}=\frac{x_{M}-\bar{x}_{A}}{s_{A}}=\frac{30-15}{5.6}=2.68
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { Group B }}{\downarrow} \\
\text { Sara } \\
x_{S}=30 \\
\bar{x}_{B}=15 \\
s_{B}=5.6
\end{gathered}
$$

$$
Z_{M}>Z_{S}
$$

Mona is better than Sarah

Empirical Rule :

Is a statistical rule which states that for a normal distribution, almost all observed data will fall within three standard deviations of the mean or average.
\square In particular, the empirical rule predicts that $\mathbf{6 8 \%}$ of observations falls within the first standard deviation ($\overline{\boldsymbol{X}} \pm \mathbf{1 S}$), $\mathbf{9 5 \%}$ within the first two standard deviations ($\overline{\boldsymbol{X}} \pm \mathbf{2 S}$), and 99.7% within the first three standard deviations ($\overline{\boldsymbol{X}} \pm 3 \mathbf{S}$).

Sheet (2)

14. Student grades on a chemistry exam were:

$$
\{77,78,76,81,86,51,79,82,84,99\}
$$

I. Are there any outliers? If so, which scores are they?
II. What would be the score that exceeds the mean by 1.5 standard deviations?

Solution:

I. $n=10$

- Median $=Q_{2}=\frac{x_{5}+x_{6}}{2}=\frac{79+81}{2}=80, \quad Q_{1}=77, \quad Q_{3}=84$.
- $\mathrm{IQR}=Q_{3}-Q_{1}=84-77=7$.
- $1.5 * \mathrm{IQR}=1.5 * 7=10.5$.
- Any value $>Q_{3}+1.5 * I Q R=84+10.5=94.5$.
- Any value $<Q_{1}-1.5 * I Q R=77-10.5=66.5 . \longrightarrow 51$
II. What would be the score that exceeds the mean by 1.5 standard deviations?

Solution:

- $x=\bar{X}+1.5 * S$
- $\bar{X}=\frac{\sum_{i=1}^{10} x_{i}}{10}=\frac{77+78+\cdots+99}{10}=79.3$
- $S^{2}=\frac{\sum_{i=1}^{10}\left(x_{i}-\bar{x}\right)^{2}}{9}=\frac{(77-79.3)^{2}+\cdots+(99-79.3)^{2}}{9}=142.68$
- $S=\sqrt{142.68}=11.94478$

$$
x=79.3+1.5 * 11.94478=97.22
$$

79.3

Sheet (2)

15. Consider the opposite boxplot. Suppose 95% of the data falls between 15 and 35 . What is the standard deviation of this sample of data?

Solution:

- $Q_{1}=20, \quad Q_{2}=25, \quad Q_{3}=30$
- $Q_{2}-Q_{1}=25-20=5, Q_{3}-Q_{2}=30-25=5$
- $Q_{2}-Q_{1}=Q_{3}-Q_{2}$, the data is symmetric "normal distribution".
- 95% falls between 15 and 35 , so this range constitutes $(\bar{X}-2 S, \bar{X}+2 S)$
- The mean \bar{X} is equal to the median (Q2) as the distribution is symmetric. So, $\bar{X}=25$
- $\bar{X}+2 S=35 \longrightarrow 25+2 S=35$
$\longrightarrow S=\frac{35-25}{2}=5$.

Sheet (2)

16. Mensa, the largest high-IQ society, accepts SAT scores as indicating intelligence. Assume that the mean combined SAT score is 1500 , with standard deviation 300. Jacinto scored a combined 2070. Maria took a traditional IQ test and scored 129. On that test, the mean is 100 and the standard deviation is $\mathbf{1 5}$. From the test scores, who is more intelligent? Explain.

$$
\begin{aligned}
& \text { Solution: } \\
& \text { Jacinto } \\
& \begin{array}{l}
x=2070 \\
\bar{x}=1500
\end{array} \square z_{J}=\frac{2070-1500}{300}=1.9 \\
& s=300 \\
& \text { Maria } \\
& x=129 \\
& \bar{x}=100 \\
& \square z_{M}=\frac{129-100}{15}=1.933 \\
& s=15
\end{aligned}
$$

Sheet (2)

18. The average for the statistics exam was 75 and the standard deviation was 8 . Andrey was told by the instructor that he scored 1.5 standard deviations below the mean. What was Andrey's exam score?

Solution:

$$
\begin{aligned}
\bar{X}=75, & s=8, \quad z=-1.5 \\
x & =\bar{X}+z * S \\
& =75-1.5 * 8 \\
& =63
\end{aligned}
$$

Sheet (2)

20. A highly selective university will only admit students who place at least 2 z-scores above the mean on the ACT test that has a mean of 18 and a standard deviation of 6 . What is the minimum score that the applicant must obtain to be admitted to the university?

CORRELATION

- Correlation shows the strength and the direction of a relationship between two variables and is expressed numerically by the correlation coefficient " \boldsymbol{r} ".
- A correlation is assumed to be linear (following a line)

\mathbf{x}	\mathbf{y}
-	-
-	-

- $\mathbf{- 1} \leq r \leq 1$.
- $r=\mathbf{0}$, is no correlation (the values don't seem linked at all)

when the values increase or when one value decreases
decrease together. as the other increases
$0.6898 \approx 0.7$

$$
z_{x}=\frac{x-\bar{x}}{s_{x}}
$$

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}, s_{x}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}, \\
& \bar{y}=\frac{\sum_{i=1}^{n} y_{i}}{n}, s_{y}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}
\end{aligned}
$$

Scatter diagram for positive and negative correlation :

Sheet (3)

3. Calculate the correlation coefficient for the following data:

Solution:

$$
\begin{aligned}
& n=6 \\
& \bar{x}=\frac{12+\cdots+0}{6}=5 \\
& S_{x}=\sqrt{\frac{(12-5)^{2}+\cdots+(0-5)^{2}}{5}}=4.3818 \\
& \bar{y}=\frac{1+\cdots+2}{6}=4 \\
& S_{x}=\sqrt{\frac{(1-4)^{2}+\cdots+(2-4)^{2}}{5}}=2.2804
\end{aligned}
$$

\mathbf{x}	\mathbf{Y}
12	1
$\mathbf{8}$	7
$\mathbf{5}$	4
$\mathbf{3}$	$\mathbf{6}$
2	4
$\mathbf{0}$	2

$$
r=\frac{\sum z_{x} z_{y}}{n-1}=\frac{-0.6005}{5}=-0.1201 \approx-0.1
$$

-ve weak correlation.

