STRTISTICAL ANALYSIS LECTURE 07

Dr. Mahmoud Mounir mahmoud.mounir@cis.asu.edu.eg

Sampling Distributions

This PowerPoint is only a summary and your main source should be the book.

Population and Sample

\square Population: It is the complete set of items of interest.
\square Sample: It is a part or subset of the population used to represent the population.
\square Parameter: A numerical value that describes some aspects of the population.
\square Statistic: A numerical value that describes some aspects of the sample.
\square Statistics: It is used to make inferences about population parameters.

Iote: This PowerPoint is summary and your main source should be the book.

Population and Sample

	Parameter	Statistic
Size	N	n
Mean	μ	\bar{x}
Variance	σ^{2}	S^{2}
Standard Deviation	σ	S

\square Parameter: It is always fixed for the same population.
\square Statistic: It is varying depending on the type of samples taken from the population.

Vote: This PowerPoint ins summary and your main source should be the book.

Sampling Distributions

\square Suppose we have a population of size (N) with Mean (μ) and Standard Deviation (σ).
\square If we choose random samples from this population.
\square If the size of a specific sample is (n), so the mean of this sample is $\bar{x}=\frac{\Sigma X}{n}$

Population of Size (N)
\square We have to study how the Sampling Means and Proportion vary.

This PowerPoint is summary and your main source should be the book.

The Central Limit Theorem

This PowerPoint is only a summary and your main source should be the book.

Distribution of Sample Means

\square A sampling distribution of sample means: is a distribution using the means computed from all possible random samples of a specific size taken from a population.
\square Sampling error: is the difference between the sample measure and corresponding population measure due to the fact that the sample is not a perfect representation of the population.

Note: This PowerPoint iso summary and your main source should be the book.

Properties of the distribution of sample means:

1- The mean of the sample means will be the same as the population mean.

$$
\mu_{\bar{X}}=\mu
$$

2- The standard deviation of the sample means will be smaller than the standard deviation of the population, and it will be equal to the population standard deviation divided by the square root of the sample size.

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

$$
\begin{aligned}
& =- \text { = } \\
& \text { Standard error } \\
& \text { of the mean }
\end{aligned}
$$

ote: This PowerPoint is Oin
mmary and your main source should be the book.

Example (1) :

If the sample size is 40 and the standard deviation of the sample mean is 3.95 , Then the standard deviation of the population is ????
Solution:

$$
\begin{aligned}
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \longrightarrow & \sigma=\sqrt{n} \times \sigma_{\bar{x}} \\
& \sigma=\sqrt{40} \times 3.95=24.9 \approx 25
\end{aligned}
$$

Example (2) :

The variance of a variable is 16 .If a sample of 80 individuals is selected, Compute the standard error of the mean ?????

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \longrightarrow \sigma_{\bar{x}}=\frac{\sqrt{\sigma^{2}}}{\sqrt{n}}=\frac{\sqrt{16}}{\sqrt{80}}=\frac{4}{8.94}=0.447 \approx 0.45
$$

As the sample size n increase without limit, the shape of the distribution of the sample means taken with replacement from a population with mean μ and standard deviation σ will approach a normal distribution. This distribution will have a mean μ and a standard deviation σ / \sqrt{n}
\square The formula for z values is:

$$
Z=\frac{\bar{X}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}
$$

$$
z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

This PowerPoint is summary and your main source should be the book. the sample means will be normally distributed, for any sample size n.

2- when the original variable might not be normally distributed, a sample size must be 30 or more to approximate the distribution of sample means to normal distribution.
\square To solve the question about sample means we must use three steps.
First Step: find the z , using the formula.
Second Step: draw the figure and Shading the area.
Third Step : find the areas under , using table E.

This PowerPoint 150 summary and your main source should be the book.

Example (3): Hours That Children Watch Television
A. C. Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of television per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 20 children between the ages 2 and 5 are randomly selected, find the probability that the mean of the number of hours they watch television will be greater than 26.3 hours?
Solution:

$$
\mu=25, \sigma=3, n=20, \bar{X}=26.3
$$

Step 1 : Find the z value .

$$
\mathrm{z}=\frac{\overline{\mathrm{x}}-\mu}{\frac{\sigma}{\sqrt{\mathrm{n}}}}=\frac{26.3-25}{\frac{3}{\sqrt{20}}}=\frac{1.3}{0.671}=1.94
$$

Note: This PowerPoint is summary and your main source should be the book.

Step 2 :Draw the figure

Step 3 :Find the area ,using table E.
$P(z>1.94)=1.000-0.9738=0.0262$. That is, the probability of obtaining a sample mean greater than 26.3 is $0.0262=2.62 \%$.

Vote: This PowerPoint ins summary and your main source should be the book.

Example (4):

The average age of a vehicle registered in the United States is 8 years, or 96 months. Assume the standard deviation is 16 months. If a random sample of 36 vehicles is selected, find the probability that the mean of their age is between 90 and 100 months.
Solution:
$\mu=96, \sigma=16, n=36, \bar{X}_{1}=90, \bar{X}_{2}=100$
Step 1 : Find the two z values.
$z_{1}=\frac{\bar{x}_{1}-\mu}{\frac{\sigma}{\sqrt{n}}}=\frac{90-96}{\frac{16}{\sqrt{36}}}=-2.25$
$\mathrm{z}_{2}=\frac{\overline{\mathrm{x}_{2}}-\mu}{\frac{\sigma}{\sqrt{\mathrm{n}}}}=\frac{100-96}{\frac{16}{\sqrt{36}}}=1.50$

This PowerPoint is summary and your main source should be the book.

Step 2 :Draw the figure

Step 3 :Find the area ,using table E.
$\mathrm{P}(-2.25<\mathrm{Z}<1.50)=\mathrm{P}(\mathrm{Z}<1.50)-\mathrm{P}(\mathrm{Z}<-2.25)=0.9332-0.0122$ $=0.9210$ or 92.1%

The probability of obtaining a sample mean between 90 and 100 months is 92.1%; that is, $\mathrm{P}(90<\mathrm{X}<100)=92.1 \%$

Note: This PowerPoint is: summary and your main source should be the book.

Example (5): Meat Consumption

The average number of pounds of meat that a person consumes per year is 218.4 pounds. Assume that the standard deviation is 25 pounds and the distribution is approximately normal.
a) Find the probability that a person selected at random consumes less than 224 pounds per year.
b) If a sample of 40 individuals is selected, find the probability that the mean of the sample will be less than 224 pounds per year.

Solution(a):

$$
\mu=218.4, \sigma=25
$$

Step 1 : Find the z value .
$z=\frac{x-\mu}{\sigma}=\frac{224-218.4}{25}=0.22$
ote: This PowerPoint is summary and your main source should be the book.

Step 2 :Draw the figure

Step 3 :Find the area , using table E.
$\mathrm{P}(\mathrm{Z}<0.22)=0.5871$

Note: This PowerPoint is summary and your main source should be the book.

Solution(b):

Step 1 : Find the z value .

$\mathrm{z}=\frac{\overline{\mathrm{x}}-\mu}{\frac{\sigma}{\sqrt{\mathrm{n}}}}=\frac{224-218.4}{\frac{25}{\sqrt{40}}}=1.42$

Step 2 :Draw the figure

Note: This PowerPoint Is
summary and your main source should be the book.

Step 3 :Find the area ,using table E.

$P(z<1.42)=0.9222$.
The probability that mean of a sample of 40 individuals is less than 224 pounds per year is 0.9222 or 92.22%.

Example (6):

Suppose it is known that in a certain large human population cranial الجمجمة length is approximately normally distributed with a mean of 185.6 mm and a standard deviation of 12.7 mm . What is the probability that a random sample of size 10 from this population will have a mean greater than 190 ?

Solution:

$\mu=185.6$	$\sigma=12.7$	$n=10$	$\bar{x}=190$
$\mu_{\bar{x}}=\mu$	$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$	$z_{\bar{x}}=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}}$	
$=185.6$	$=\frac{12.7}{\sqrt{10}}$	$=\frac{190-185.6}{4.0161}$	
	$=4.0161$	$=1.1$	
	$P(\bar{x}>190)=P\left(z_{\bar{x}}>1.1\right)$		
$=1-P\left(z_{\bar{x}} \leq 1.1\right)$			

ote: This PowerPoint iso summary and your main source should be the book.

Example (7):

If the mean and standard deviation of a serum iron الحديد في الام values for healthy men are 120 and 15 micrograms per 100 ml , respectively,
what is the probability that a random sample of 50 normal men will yield a mean between 115 and 125 micrograms per 100 ml ?

Solution:

$\mu=120$	$\sigma=15$	$n=50$	$\bar{x}_{1}=115$ $\bar{x}_{2}=125$
$\mu_{\bar{x}}=\mu$ $=120$	$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$	$z_{\bar{x}_{1}}=\frac{\bar{x}_{1}-\mu}{\sigma_{\bar{x}}}$	$z_{\bar{x}_{1}}=\frac{\bar{x}_{2}-\mu}{\sigma_{\bar{x}}}$
$=\frac{15}{\sqrt{50}}$	$=\frac{115-120}{2.12}$	$=\frac{125-120}{2.12}$	
$=2.12$	$=-2.36$	$=2.36$	

Iote: This PowerPoint is summary and your main source should be the book.

Example (7):
Researchers found the mean sodium intake إمتصاص in men and women 60 years or older to be 2940 mg with a standard deviation of 1476 mg . Use these values for the mean and standard deviation of the U.S. population.
Find the probability that a random sample of 75 people from the population will have a mean
a) less than 2450 mg
b) over 3100 mg
c) Between 2500 and 3300 mg
d) Between 2500 and 2900 mg

Solution (a):

$\mu=2940$	$\sigma=1476$	$n=75$	$\bar{x}=2450$
$\begin{aligned} & \mu_{\bar{x}}=\mu \\ & =2940 \end{aligned}$	$\begin{aligned} & \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \\ & =\frac{1476}{\sqrt{75}} \\ & =170.43 \end{aligned}$	$\begin{aligned} & z_{\bar{x}}=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \\ & =\frac{2450-2940}{170.43} \\ & =-2.88 \end{aligned}$	
$P(\bar{x}<2450)=P\left(z_{\bar{x}}<-2.88\right)$			
= 0.0020			

Solution (b):

$\mu=2940$	$\sigma=1476$	$n=75$	$\bar{x}=3100$
$\begin{aligned} & \mu_{\bar{x}}=\mu \\ & =2940 \end{aligned}$	$\begin{aligned} & \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \\ & =\frac{1476}{\sqrt{75}} \\ & =170.43 \end{aligned}$	$\begin{aligned} & z_{\bar{x}}=\frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \\ & =\frac{3100-2940}{170.43} \\ & =0.94 \end{aligned}$	
$P(\bar{x}>3100)=P\left(z_{\bar{x}}>0.94\right)$			
$=1-P\left(z_{\bar{x}} \leq 0.94\right)$			
$=1-0.8264=0.1736$			

Solution (c):

$\mu=2940$	$\sigma=1476$	$n=75$	$\begin{aligned} & \bar{x}_{1}=2500 \\ & \bar{x}_{2}=3300 \end{aligned}$
$\mu_{\bar{x}}=\mu=120$	$\begin{aligned} & \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}} \\ & =\frac{1476}{\sqrt{75}} \\ & =170.43 \end{aligned}$	$\begin{aligned} & z_{\bar{x}_{1}}=\frac{\bar{x}_{1}-\mu}{\sigma_{\bar{x}}} \\ & =\frac{2500-2940}{170.43} \\ & =-2.58 \end{aligned}$	$\begin{aligned} & z_{\bar{x}_{1}}=\frac{\bar{x}_{2}-\mu}{\sigma_{\bar{x}}} \\ & =\frac{3300-2940}{170.43} \\ & =2.11 \end{aligned}$
$P(2500 \leq \bar{x} \leq 3300)=P\left(-2.58 \leq z_{\bar{x}} \leq 2.11\right)$			
$=P\left(z_{\bar{x}} \leq 2.11\right)-P\left(z_{\bar{x}} \geq-2.58\right)$			
$=0.9826-0.0049=0.9777$			

Solution (d):

$\mu=2940$	$\sigma=1476$	$n=75$	$\bar{x}_{1}=2500$
$\mu_{\bar{x}}=\mu=120$	$\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{n}}$	$z_{\bar{x}_{1}}=\frac{\bar{x}_{1}-\mu}{\sigma_{\bar{x}}}$	$z_{\bar{x}_{1}}=\frac{\bar{x}_{2}-\mu}{\sigma_{\bar{x}}}$
$=\frac{1476}{\sqrt{75}}=170.43$	$=\frac{2500-2940}{170.43}$ $=-2.58$	$=\frac{2900-2940}{170.43}$ $=-0.23$	
$P(2500 \leq \bar{x} \leq 2900)=P\left(-2.58 \leq z_{\bar{x}} \leq-0.23\right)$			
$=P\left(z_{\bar{x}} \leq-0.23\right)-P\left(z_{\bar{x}} \geq-2.58\right)$			
$=0.4090-0.0049=0.4 .041$			

