STATISTICAL ANALYSIS LECTURE 07

Dr. Mahmoud Mounir

mahmoud.mounir@cis.asu.edu.eg

Sampling Distributions

Population and Sample

Population: It is the complete set of items of interest.

Sample: It is a part or subset of the population used to represent the population.

Parameter: A numerical value that describes some aspects of the population.

Statistic: A numerical value that describes some aspects of the sample.

Statistics: It is used to make inferences about population parameters.

Population and Sample

	Parameter	Statistic
Size	N	n
Mean	μ	\overline{x}
Variance	σ^2	<i>S</i> ²
Standard Deviation	σ	5

Parameter: It is always fixed for the same population.

Statistic: It is varying depending on the type of samples taken from the population.

Sampling Distributions

- Suppose we have a population of size (N) with Mean (μ) and Standard Deviation (σ).
- If we choose random samples from this population.
- \Box If the size of a specific sample is (n), so the mean of this sample is $\overline{x} = \frac{\sum x}{n}$

Samples

- **We have to study how the**
- Sampling Means and
- **Proportion vary.**

Population of Size (N)

The Central Limit Theorem

Distribution of Sample Means

A sampling distribution of sample means: is a distribution using the means computed from all possible random samples of a specific size taken from a population.

Sampling error: is the difference between the sample measure and corresponding population measure due to the fact that the sample is not a perfect representation of the population.

Properties of the distribution of sample means:

1- The mean of the sample means will be <u>the same</u> as the population mean.

$$\mu_{\overline{X}} = \mu$$

2- The standard deviation of <u>the sample means</u> will be **smaller than** the standard deviation of the population, and it will be equal to the population standard deviation divided by the square root of the sample size.

Example (1) :

If the sample size is 40 and the standard deviation of the sample mean is 3.95,Then the standard deviation of the population is ????

Solution:

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \longrightarrow \sigma = \sqrt{n} \times \sigma_{\overline{x}}$$
$$\sigma = \sqrt{40} \times 3.95 = 24.9 \approx 25$$

Example (2) :

The variance of a variable is 16 .If a sample of 80 individuals is selected, Compute the standard error of the mean ?????

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} \longrightarrow \sigma_{\overline{X}} = \frac{\sqrt{\sigma^2}}{\sqrt{n}} = \frac{\sqrt{16}}{\sqrt{80}} = \frac{4}{8.94} = 0.447 \approx 0.45$$

The Central Limit Theorem:

As the sample size *n* increase without limit, the shape of the distribution of the sample means taken with replacement from a population with mean μ and standard deviation σ will approach a normal distribution. This distribution will have a mean μ and a standard deviation σ/\sqrt{n}

The formula for z values is:

Two important things when we use Central limit theorem

1- when the original variable is normally distributed, the distribution of the <u>sample means will be normally distributed</u>, for any sample size n.

2- when the original variable might not be normally distributed, a sample size must be <u>30 or more</u> to approximate the distribution of <u>sample means</u> to normal distribution.

To solve the question about sample means we must use three steps.

First Step: find the z, using the formula. **Second Step:** draw the figure and Shading the area. **Third Step :** find the areas under ,using table E.

Example (3): Hours That Children Watch Television

A. C. Neilsen reported that children between the ages of 2 and 5 watch an average of 25 hours of television per week. Assume the variable is normally distributed and the standard deviation is 3 hours. If 20 children between the ages 2 and 5 are randomly selected, find the probability that **the mean** of the number of hours they watch television will be greater than 26.3 hours?

Solution:

$$\mu = 25, \sigma = 3, n = 20, \overline{X} = 26.3$$

Step 1: Find the z value.

$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{26.3 - 25}{\frac{3}{\sqrt{20}}} = \frac{1.3}{0.671} = 1.94$$

Step 2 :Draw the figure

Step 3: Find the area , using table E.

P(z > 1.94) = 1.000 - 0.9738 = 0.0262. That is, the probability of obtaining a sample mean greater than 26.3 is 0.0262 = 2.62%.

Example (4):

The average age of a vehicle registered in the United States is 8 years, or 96 months. Assume the standard deviation is 16 months. If a random sample of 36 vehicles is selected, find the probability that the mean of their age is between 90 and 100 months. Solution:

$$\mu = 96, \sigma = 16, n = 36, \overline{X}_1 = 90, \overline{X}_2 = 100$$

Step 1: Find the two z values.

$$z_{1} = \frac{\overline{x_{1}} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{90 - 96}{\frac{16}{\sqrt{36}}} = -2.25$$
$$z_{2} = \frac{\overline{x_{2}} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{100 - 96}{\frac{16}{\sqrt{36}}} = 1.50$$

Step 2 :Draw the figure

Step 3 :Find the area ,using table E. P(-2.25<Z<1.50)=P(Z<1.50)-P(Z<-2.25) =0.9332-0.0122 =0.9210 or 92.1 %

The probability of obtaining a sample mean between 90 and 100 months is 92.1%; that is P(90 < X < 100) = 92.1%

Example (5): Meat Consumption

- The average number of pounds of meat that a person consumes per year is 218.4 pounds. Assume that the standard deviation is 25 pounds and the distribution is approximately normal.
- Find the probability that a person selected at random consumes less than a) 224 pounds per year.
- If a sample of 40 individuals is selected, find the probability that <u>the</u> **b**) mean of the sample will be less than 224 pounds per year.

Solution(a):

$$\mu = 218.4, \sigma = 25$$

Step 1 : Find the z value .

$$z = \frac{x - \mu}{\sigma} = \frac{224 - 218.4}{25} = 0.22$$

Step 2 :Draw the figure

Step 3: Find the area , using table E.

P(Z < 0.22) = 0.5871

Solution(b): **Step 1** : Find the z value .

$$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{224 - 218.4}{\frac{25}{\sqrt{40}}} = 1.42$$

Step 2 :Draw the figure

Step 3: Find the area , using table E.

P(z < 1.42) = 0.9222.

The probability that mean of a sample of 40 individuals is less than 224 pounds per year is 0.9222 or 92.22%.

Example (6):

Suppose it is known that in a certain large human population cranial الجمجمة length is approximately normally distributed with a mean of 185.6 mm and a standard deviation of 12.7 mm.

What is the probability that a random sample of size 10 from this population will have a mean greater than 190?

Solution:

$\mu = 185.6$	$\sigma = 12.7$	n = 10	$\bar{x} = 190$
$\mu_{\bar{x}} = \mu$ = 185.6	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{12.7}{\sqrt{10}}$ $= 4.0161$	$z_{\bar{x}} = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} \\ = \frac{190 - 185.6}{4.0161} \\ = 1.1$	
$P(\bar{x} > 190) = P(z_{\bar{x}} > 1.1)$			
$= 1 - P(z_{\bar{x}} \le 1.1)$			
= 1 - 0.8643 = 0.1357			

Example (7):

الحديد في الدم If the mean and standard deviation of a serum iron الحديد في values for healthy men are 120 and 15 micrograms per 100 ml, respectively,

what is the probability that a random sample of 50 normal men will yield a mean between 115 and 125 micrograms per 100 ml? Solution:

$\mu = 120$	$\sigma = 15$	n = 50	$\bar{x}_1 = 115$
			$\bar{x}_2 = 125$
$\mu_{\bar{x}} = \mu$ $= 120$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{15}{\sqrt{50}}$ $= 2.12$	$z_{\bar{x}_1} = \frac{\bar{x}_1 - \mu}{\sigma_{\bar{x}}}$ $= \frac{115 - 120}{2.12}$ $= -2.36$	$z_{\bar{x}_1} = \frac{\bar{x}_2 - \mu}{\sigma_{\bar{x}}} \\ = \frac{125 - 120}{2.12} \\ = 2.36$
$P(115 \le \bar{x} \le 125) = P(-2.36 \le z_{\bar{x}} \le 2.36)$			
$= P(z_{\bar{x}} \le 2.36) - P(z_{\bar{x}} \le -2.36)$			
= 0.9909 - 0.0091 = 0.9818			

Example (7):

Researchers found the mean sodium intake إمتصاص in men and women 60 years or older to be 2940 mg with a standard deviation of 1476 mg. Use these values for the mean and standard deviation of the U.S. population.

Find the probability that a random sample of 75 people from the population will have a mean

- a) less than 2450 mg
- b) over 3100 mg
- c) Between 2500 and 3300 mg
- d) Between 2500 and 2900 mg

Solution (a):

$\mu = 2940$	$\sigma = 1476$	<i>n</i> = 75	$\bar{x} = 2450$
$\mu_{\bar{x}} = \mu$ $= 2940$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{1476}{\sqrt{75}}$ $= 170.43$	$z_{\bar{x}} = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} \\ = \frac{2450 - 2940}{170.43} \\ = -2.88$	
$P(\bar{x} < 2450) = P(z_{\bar{x}} < -2.88)$			
= 0.0020			

Solution (b):

$\mu = 2940$	$\sigma = 1476$	<i>n</i> = 75	$\bar{x} = 3100$
$\mu_{\bar{x}} = \mu$ $= 2940$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{1476}{\sqrt{75}}$ $= 170.43$	$z_{\bar{x}} = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} \\ = \frac{3100 - 2940}{170.43} \\ = 0.94$	
$P(\bar{x} > 3100) = P(z_{\bar{x}} > 0.94)$			
$= 1 - P(z_{\bar{x}} \le 0.94)$			
= 1 - 0.8264 = 0.1736			

Solution (c):

$\mu = 2940$	$\sigma = 1476$	<i>n</i> = 75	$\bar{x}_1 = 2500$ $\bar{x}_2 = 3300$
$\mu_{ar{x}}=\mu=120$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{1476}{\sqrt{75}}$ $= 170.43$	$z_{\bar{x}_1} = \frac{\bar{x}_1 - \mu}{\sigma_{\bar{x}}}$ $= \frac{2500 - 2940}{170.43}$ $= -2.58$	$z_{\bar{x}_1} = \frac{\bar{x}_2 - \mu}{\sigma_{\bar{x}}}$ $= \frac{3300 - 2940}{170.43}$ $= 2.11$
$P(2500 \le \bar{x} \le 3300) = P(-2.58 \le z_{\bar{x}} \le 2.11)$			
$= P(z_{\bar{x}} \le 2.11) - P(z_{\bar{x}} \ge -2.58)$			
= 0.9826 - 0.0049 = 0.9777			

Solution (d):

$\mu = 2940$	$\sigma = 1476$	n = 75	$\bar{x}_1 = 2500$
			$\bar{x}_2 = 2900$
$\mu_{ar{x}}=\mu=120$	$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{1476}{\sqrt{75}} = 170.43$	$z_{\bar{x}_1} = \frac{\bar{x}_1 - \mu}{\sigma_{\bar{x}}}$ $= \frac{2500 - 2940}{170.43}$ $= -2.58$	$z_{\bar{x}_1} = \frac{\bar{x}_2 - \mu}{\sigma_{\bar{x}}}$ $= \frac{2900 - 2940}{170.43}$ $= -0.23$
$P(2500 \le \bar{x} \le 2900) = P(-2.58 \le z_{\bar{x}} \le -0.23)$			
$= P(z_{\bar{x}} \le -0.23) - P(z_{\bar{x}} \ge -2.58)$			
= 0.4090 - 0.0049 = 0.4041			