STRTISTICAL ANALYSIS LECTURE 6

Dr. Mahmoud Mounir mahmoud.mounir@cis.asu.edu.eg

The Normal Distribution

This PowerPoint is only a summary and your main source should be the book.

Introduction

\square Normal Distribution.
\square Applications of the Normal Distribution.

Iote: This PowerPoint is summary and your main source should be the book.

The Normal Distribution

(a) Normal Mean =Median=Mode

\square A normal distribution is

 a continuous, symmetric , bell shaped distribution of a variable.A normal distribution curve depend on two parameters .
$\mu \longrightarrow$ Position parameter
$\sigma \longrightarrow$ shape parameter

The mathematical equation for the normal distribution:

$$
y=\frac{e^{-(x-\mu)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}}
$$

where

$$
e \approx 2.718
$$

$$
\pi \approx 3.14
$$

$$
\mu \approx \text { population mean }
$$

$\sigma \approx$ population standard deviation
(1)

Note: This PowerPoint is Oin-
wmmary and your main source should be the book.
3

Properties of the Normal Distribution

\square The normal distribution curve is bell-shaped.
\square The mean, median, and mode are equal and located at the center of the distribution.
\square The normal distribution curve is unimodal (single mode).
\square The curve is symmetrical about the mean.
\square The curve is continuous.
The curve never touches the x-axis.
\square The total area under the normal distribution curve is

$$
\text { equal to } 1 \text { or } 100 \% \text {. }
$$

Note: This PowerPoint is ormmary and your main source should be the book.
\square The area under the normal distribution curve that lies within
$>$ one standard deviation of the mean is approximately $0.68(68 \%)$. The interval between $(\bar{x}-S, \bar{x}+s)$
$>$ two standard deviations of the mean is approximately $0.95(95 \%)$. The interval between ($\bar{x}-2 s, \bar{x}+2 s)$
$>$ three standard deviations of the mean is approximately
0.997 (99.7%). The interval between $(\bar{x}-3 s, \bar{x}+3 s)$

Empirical Rule: Normal Distribution

(Areas Under the Normal Curve)

The Standard Normal Distribution

\square The standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1 .
\square The formula for the standard normal distribution is

$$
y=\frac{e^{\frac{-z^{2}}{2}}}{\sqrt{2 \pi}} \xrightarrow[\mu=0]{\sigma=1}
$$

\square All Normal Distribution can be transformed into standard Distribution.

$$
z=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$

or

$$
z=\frac{x-\mu}{\sigma}
$$

Empirical Rule: Standard Normal Distribution

Normal Distribution Curve

Standard Normal Distribution Curve

\square The area under the standard normal distribution curve that lies within
$>$ one standard deviation of the mean is approximately 0.68 (68%). The interval between $(-1,1)$.
$>$ two standard deviations of the mean is approximately
0.95 (95%). The interval between ($-2,2$).
$>$ three standard deviations of the mean is approximately
$0.997(99.7 \%)$. The interval between $(-3,3)$.

Finding Areas Under the Standard Normal Distribution Curve:

1. To the left of any Z value
(a)

mmary and your main source should be the book.

2.To the right of any Z value

(b)

$$
\mathrm{P}(\mathrm{z}>-\mathrm{a})=\mathrm{P}(\mathrm{z}>\mathrm{a})=1-\mathrm{Q}(\mathrm{a})
$$

3.Between any two Z values

(c)

$$
\begin{aligned}
\mathrm{P}(-\mathrm{b}<\mathrm{z}<-\mathrm{a})=\mathrm{P}(\mathrm{a}<\mathrm{z}<\mathrm{b}) & =\mathrm{P}(\mathrm{z}>\mathrm{a})-\mathrm{P}(\mathrm{z}>\mathrm{b}) \\
& =\mathrm{Q}(\mathrm{a})-\mathrm{Q}(\mathrm{~b})
\end{aligned}
$$

Note: This PowerPoint is orn mmary and your main source should be the book.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
. 6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	. 9719	0.97	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.97	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.992	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.994	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.996	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.997	0.997	0.997	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.999	0.9997	0.9997	0.999	0.999	0.999	0.9997	0.9997	0.99

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Examples

a. Area to the left of $z=1.36: P(z<1.36)$

$=0.9131$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	$0-0000$	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Examples

b. Area to the left of $z=-0.60: P(z<-0.60)$

$=0.2743$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	$0-2120$	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.0005	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Examples

c. Area to the right of $z=1.47: P(z>1.47)$

$$
\begin{gathered}
=1-P(z<1.47) \\
=1-0.9292 \\
=0.0708
\end{gathered}
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0 0-67	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Examples

d. Area to the right of $z=-0.33: P(z>-0.33)$

$$
\begin{gathered}
=1-P(z<-0.33) \\
=1-0.3707 \\
=0.6293
\end{gathered}
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.2236	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4000	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Examples

e. Area between $z=-2.16$ and $z=0.45: P(-2.16<z<0.45)$

$$
\begin{gathered}
=P(z<0.45)-P(z<-2.16) \\
=0.6736-0.0154 \\
=0.6582
\end{gathered}
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	00119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.07	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.2236	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.7000	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Examples

f. Area between $\mathrm{z}=1.13$ and $\mathrm{z}=3.10: \mathrm{P}(1.13<\mathrm{z}<3.10)$

$$
\begin{gathered}
=P(z<3.1)-P(z<1.13) \\
=0.9990-0.8708 \\
=0.1282
\end{gathered}
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.0501	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.0007	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9003	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Example (1):

Find the area to the left of $\mathrm{z}=1.99$

$\mathrm{P}(\mathrm{Z}<1.99)=0.9767$

Vote: This PowerPoint in summary and your main source should be the book.

Column 1.99 row

Table E
 (continued)

Cumulative Standard Normal Distribution

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9720	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	9793	.9798	.9803	9808	0812	0817

Example (2):

Find the area to the right of $\mathrm{z}=-1.16$

$$
\begin{aligned}
\mathrm{P}(\mathrm{Z}>-1.16) & =1-\mathrm{P}(\mathrm{Z}<-1.16) \\
& =1-0.1230 \\
& =0.8770
\end{aligned}
$$

Note: This PowerPoint inammary and your main source should be the book.

Example (3):

Find the area between $\mathrm{z}=1.68$ and $\mathrm{z}=-1.37$

$$
\begin{aligned}
\mathrm{P}(-1.37<\mathrm{Z}<1.68) & =\mathrm{P}(\mathrm{Z}<1.68)-\mathrm{P}(\mathrm{Z}<-1.37) \\
& =0.9535-0.0853 \\
& =0.8682
\end{aligned}
$$

Note: This PowerPoint in summary and your main source should be the book.

A Normal Distribution Curve as a Probability Distribution Curve:

\square The area under the standard normal distribution curve can also be thought of as a probability .

Example (4):

Find probability for each
a) $\mathrm{P}(0<\mathrm{z}<2.23)$
b) $\mathrm{P}(\mathrm{z}<1.65)$
c) $\mathrm{P}(\mathrm{z}>1.91)$

$$
\text { a) } \begin{aligned}
\mathrm{P}(0<\mathrm{Z}<2.23) & =\mathrm{P}(\mathrm{Z}<2.23)-\mathrm{P}(\mathrm{Z}<0) \\
& =0.9898-0.5000 \\
& =0.4898
\end{aligned}
$$

b) $\mathrm{P}(\mathrm{Z}<1.65)=0.9505$

$$
\text { c) } \begin{aligned}
\mathrm{P}(\mathrm{Z}>1.91) & =1-\mathrm{P}(\mathrm{Z}<1.91) \\
& =1-0.9719 \\
& =0.0281
\end{aligned}
$$

Find the Z value that corresponds to given area

we cannot find the area in the table we cannot find the area in the table

Look up the area in table E to find the z value

Look up the area in table E to find the z value

For exmples 5 to 12:

$1-0.0239=0.9761$
$\mathbf{z}=1.98$
8

$1-0.8962=0.1038$
$\mathbf{z}=-1.26$

мmmary and your main source should be the book.

Example (13):

Find the z value such that the area under the standard normal distribution curve between 0 and the z value is 0.2123

$0.2123+0.5000=0.7123$

$$
\mathrm{Z}=0.56
$$

Table E

(continued)
Cumulative Standard Normal Distribution

z	.00	.01	.02	.03	.04	.05	.06	.07
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	8577

Questions ???

1) Find the z value to the left of the mean so that 98.87% of the area under the distribution curve lies to the right of it.
2) Find two z values so that 48% of the middle area is bounded by them.
3) Find two z values, one positive and one negative, that are equidistant from the mean so that the area in the two tails total the following values (5\%).

Example (1):

A survey by the National Retail Federation found that women spend on average $\$ 146.21$ for the Christmas holidays. Assume the standard deviation is \$29.44. Find the percentage of women who spend less than $\$ 160$. Assume the variable is normally distributed.

Solution:

$$
\text { FIND P }(X<160)
$$

$$
\begin{aligned}
Z=\frac{X-\mu}{\sigma} & =\frac{160-146.21}{29.44} \\
& =0.47
\end{aligned}
$$

Step 2: Draw the figure

Step 3: Find the area using Z-table

$$
P(Z<0.47)=\underline{\mathbf{0 . 6 8 0 8}}
$$

68.08\% of the women spend less than 160\$ at Christmas time.

Example (2):

Each month, an American household generates an average of 28 pounds of newspaper for garbage or recycling. Assume the standard deviation is 2 pounds. If a household is selected at random, Find the probability of its generating.
a) Between 27 and 31 pounds per month
b) More than 30.2 pounds per month

Assume the variable is approximately normally distributed.

Solution (a) :

FIND P (27 < $X<31$)

Step 1: Find the two z values

$$
\begin{aligned}
& Z_{1}=\frac{X-\mu}{\sigma}=\frac{27-28}{2}=-0.5 \\
& Z_{2}=\frac{X-\mu}{\sigma}=\frac{31-28}{2}=1.5
\end{aligned}
$$

Step 2: Draw the figure

Note: This PowerPoint in summary and your main source should be the book.

Step 3: Find the area using Z-table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776

$$
\begin{aligned}
P(-0.5<Z<1.5) & =P(Z<1.5)-P(Z<-0.5) \\
& =0.9332-0.3085=\underline{\mathbf{0 . 6 2 4 7}}
\end{aligned}
$$

The probability that household generates between 27 and 31 pounds of newspapers per month is 62.47%
ote: This PowerPoint is summary and your main source should be the book.

Solution (b) :

FIND P (X > 30.2)

Step 1: Find the z value
$Z=\frac{\boldsymbol{X}-\boldsymbol{\mu}}{\sigma}=\frac{30.2-28}{2}=1.1$
Step 2: Draw the figure

Vote: This PowerPoint is summary and your main source should be the book.

Step 3: Find the area using Z-table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.1	0.86443	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830

$$
P(Z>1.1)=1-P(Z<1.1)=1-0.8643=\underline{\mathbf{0 . 1 3 7 5}}
$$

The probability that household generates more than 30.2 pounds of newspapers is 0.1375 or $\mathbf{1 3 . 7 5 \%}$

Example (3):

The American Automobile Association reports that the average time it takes to respond to an emergency call is 25 minutes. Assume the variable is approximately normally distributed and the standard deviation is 4.5 minutes. If 80 calls are randomly selected, approximately how many will be responded to in less than 15 minutes?

Solution:

FIND P ($X<15$)
Step 1: Find the z value
$Z=\frac{X-\mu}{\sigma}=\frac{15-25}{4.5}=-2.22$

Step 2: Draw the figure

Step 3: Find the area using Z-table

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110

$$
P(Z<-2.22)=\mathbf{0 . 0 1 3 2}
$$

Step 4: to find how many calls

$$
0.0132 \times 80=1.056 \approx 1
$$

Finding Data Values Given Specific Probabilities

$$
Z=\frac{X-\mu}{\sigma} \longmapsto Z \sigma=X-\mu
$$

Formula for Finding X:

$$
X=z \cdot \sigma+\mu
$$

we must use that three steps.

First Step: draw the figure and Shading the area. Second Step: find the z , using Z-table. Third Step : find the X , using the formula .

Vote: This PowerPoint in summary and your main source should be the book.

Example (4):

To qualify for a police academy, candidates must score in the top 10% on a general abilities test. The test has a mean of 200 and standard deviation of 20. Find the lowest possible score to qualify. Assume the test scores is normally distributed.

Solution:

Step 1: Draw the figure

Step 2: Find the z value

$$
\begin{aligned}
& P(Z>z)=\mathbf{0 . 1} \\
& P(Z>z)=1-0.1=\mathbf{0 . 9}
\end{aligned}
$$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07		0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6344	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7323	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.841	0.843	0.8	0.	0.8508	0.8	0.	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.310	0.8830
1.2										015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147		177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.934	0.9	0.9370	0.9382	0.9	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.955	0.956	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.971	0.97	0.972	0.973	0.9738	0.9	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Step 3: Find the value of x

$Z=1.28$

$$
X=(1.28)(20)+200=226
$$

Any body scoring 226 or higher will qualify
This PowerPoint is
summany and your main source should be the book.

Example (5):

For a medical study, a researcher wishes to select people in the middle 60% of the population based on blood pressure. If the mean systolic blood pressure is 120 and the standard deviation is 8 , find the upper and lower readings that would qualify people to participate in the study. Assume that blood pressure readings is normally distributed.

Solution:

Step 1: Draw the figure

Step 2 : Find the two z values . $X=z \cdot \sigma+\mu$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z}>\mathrm{Z} 1)=0.2 \\
& \mathrm{P}(\mathrm{Z}<\mathrm{Z} 1)=1-0.2=0.8 \\
& Z_{1}=0.84
\end{aligned}
$$

$$
P(Z<Z 2)=0.2
$$

$$
Z_{2}=-0.84
$$

Step 3 :Find the two values of x.

$$
\begin{aligned}
& X_{1}=Z_{1} \cdot \sigma+\mu \\
& X_{1}=(0.84)(8)+120=126.72
\end{aligned}
$$

$$
\begin{aligned}
& X_{2}=Z_{2} \cdot \sigma+\mu \\
& X_{2}=(-0.84)(8)+120=113.28
\end{aligned}
$$

The middle 60% will have blood pressure reading of $113.28<X<126.72$

Vote: This PowerPoint is summary and your main source should be the book.

Example (6):

Given a normal distribution with a mean of 25 , what is the standard deviation if 18% of the values are above 29 ?

Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}>29)=0.18 \\
& \mathrm{P}(\mathrm{X}<29)=1-0.18=0.82 \\
& \mathrm{P}\left(\mathrm{Z}<\frac{x-\mu}{\sigma}\right)=0.82 \\
& \mathrm{P}\left(\mathrm{Z}<\frac{29-25}{\sigma}\right)=0.82 \\
& \mathrm{P}\left(\mathrm{Z}<\frac{4}{\sigma}\right)=0.82
\end{aligned}
$$

From the Z- Table $\frac{4}{\sigma}=0.92$

 $0.92 \sigma=4$ $\sigma=4.35$| | 0.00 | 0.0 | 0.02 | 0.0 | 0.0 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0 | 0.5000 | 0.5040 | 0.4080 | 0.5120 | 0.5160 | 0.5199 | 0.5239 | 0.5279 | 0.5319 | 0.5359 |
| 0.1 | 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.57 |
| 0.2 | 0.579 | 0.583 | | 0.5 | 0.5 | 0.5 | 0.6 | 0.6064 | 0.6103 | 0.6141 |
| 0.3 | 0.6 | 0.6217 | 0.6255 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6443 | 0.6480 | 0.6517 |
| 0.4 | 0.65 | 0.659 | 0.6628 | 0.6 | 0.6700 | 0.6 | 0.6772 | 0.6808 | 0.6844 | 0.6879 |
| 0.5 | 0.69 | 0.6950 | 0.6985 | 0.7 | 0.70 | 0.708 | 0.7 | 0.7 | 0.7 | 0.7 |
| 0.6 | 0.72 | 0.7 | 0.7324 | | 0.7 | | | | 0.7 | 0.7 |
| 0.7 | 0.7580 | 0.7 | | 0.7 | | 0.7 | 0. | 0.7794 | 0.78 | 0.7852 |
| 0.8 | 0.788 | 0.7 | $0 \quad 339$ | 0.7 | 0.7 | 0.8 | 0. | 0.8078 | 0.8106 | 0.8133 |
| 0.9 | 0.07 | | 0.8212 | 0.82 | 0.82 | 0.8289 | 0.8315 | 0.8 | 0.836 | 0.8 |
| 1.0 | 0.8413 | 0.8438 | 0.8461 | 0.8 | 0.85 | 0.85 | 0.85 | 0.85 | 0.8599 | 0.86 |
| 1.1 | 0.86 | 0.86 | 0.868 | | 0.87 | 0.8 | | 0.8 | 0.8 | |
| 1.2 | 0.88 | 0.8 | 0.8 | 0.8907 | 0.8925 | 0.8 | 0. | | 0.8997 | |
| 1.3 | 0.90 | 0.9 | 0.9 | 0.9 | 0.90 | 0.91 | 0.9 | 0.9 | 0.91 | 0.9 |
| 1.4 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.92 | 0.9279 | 0.9 | 0.9 | 0.9319 |
| 1.5 | 0.93 | 0.9 | 0.9 | 0.93 | . 93 | 0.9 | | 0.9 | | |
| 1.6 | 0.9 | 0.9463 | | | | 0.9 | | | | |
| 1.7 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9599 | 0.9 | 0.9616 | 0.9 | 0.9 |
| 1.8 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.96 | 0.9 | 0.9 | 0.9 | 0.9706 |
| 1.9 | 0.97 | 0.9 | 0.9 | 0.97 | 0.9 | 0. | 0. | 0.97 | 0.9 | |
| 2.0 | 0.97 | 0.9 | 0.9 | | 0.9 | 0.9 | | . | 0.9 | |
| 2.1 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.98 | 0.98 |
| 2.2 | 0.9 | 0.9 | | 0.9 | 0.9 | 0.9878 | 0.9 | 0.9 | 0.9 | |
| 2.3 | 0.9 | 0.9 | 0. | 0.99 | 0.9904 | 0.9 | 0. | 0.9911 | 0.9913 | 0.9 |
| 2.4 | 0.99 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9931 | 0.9932 | 0.9 | |
| 2.5 | 0.9 | 0. | 0. | | 0.9 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952 |
| 2.6 | 0.995 | 0.9 | | | 0.9 | 0.9960 | 0.9 | 0.9 | 0.99 | 0.9 |
| 2.7 | 0.9 | 0.9 | | 0.9 | 0.99 | 0.9 | | 0.9 | 0.9 | 0.9 |
| 2.8 | 0.9 | 0. | | 0.9 | 0.9 | 0. | 0.9979 | 0.9979 | 0.9 | |
| 2.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9984 | 0. | 0.9985 | 0.9986 | 0.9986 |
| 3.0 | 0.998 | 0.9 | 0.9 | 0.99 | 0.99 | 0.998 | 0.998 | 0.998 | 0.9990 | 0.9 |
| 3.1 | 0.9990 | 0.999 | 0.9 | 0.99 | 0.99 | 0.9992 | 0.999 | 0.99 | 0.9993 | 0.9 |
| 3.2 | 0.99 | 0.9 | 0.9 | 0.9 | 0.9 | 0.9994 | | 0.9 | 0.9995 | |
| 3.3 | 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.999 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997 |
| 3.4 | 0.9997 | 0.9997 | 0.9997 | 0.999 | 0.999 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9 |

Example (7):

Given a normal distribution with a standard deviation of 10 , what is the mean if 21% of the values are below $50 ?$

Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}<50)=0.21 \\
& \mathrm{P}\left(\mathrm{Z}<\frac{x-\mu}{\sigma}\right)=0.21 \\
& \mathrm{P}\left(\mathrm{Z}<\frac{50-\mu}{10}\right)=0.21
\end{aligned}
$$

From the Z- Table

 $\frac{50-\mu}{10}=-0.81$$50-\mu=-8.1$
$\mu=58.1$

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline z & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\ \hline-3.4 & 0.0003 & 0.0 & 03 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0003\end{array}\right) 0.0002 \mid$

Example (8):

Given a normal distribution with 80% of the values are above 125 and 90% of the values are above 110, what are the mean and standard deviation of this distribution?

Solution:

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}>125)=0.8 \\
& \mathrm{P}(\mathrm{X}<125)=1-0.8=0.2
\end{aligned}
$$

$$
\mathrm{P}\left(\mathrm{Z}<\frac{x-\mu}{\sigma}\right)=0.2
$$

$$
\mathrm{P}\left(\mathrm{Z}<\frac{125-\mu}{\sigma}\right)=0.2
$$

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline z & 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\ \hline-3.4 & 0.0003 & 0.0003 & 0.0003 & 0.0003 & 0.0 & 03 & 0.0003 & 0.0003 & 0.0003 & 0.0003\end{array}\right) 0.0002 \mid$

$\frac{125-\mu}{\sigma}=-0.84 \rightarrow(1)$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X}>110)=0.9 \\
& \mathrm{P}(\mathrm{X}<110)=1-0.9=0.1
\end{aligned}
$$

$$
\mathrm{P}\left(\mathrm{Z}<\frac{x-\mu}{\sigma}\right)=0.1
$$

$$
\mathrm{P}\left(\mathrm{Z}<\frac{110-\mu}{\sigma}\right)=0.1
$$

	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.0	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0013	0.0002
-3	0.0005	0.000	0.0005	0.0004	0.000	0.000	0.000	0.00		0.000
-3.2	0.000	0.00	0.0	0.00	0.00	0.0	0.0	0.0005		0.0005
-3.1	0.001	0.0	0.0009	0.0	0.000	0.0008	0.0008	0.0008	0.0007	0.0007
-3.	0.001	0.0	0.0	0.00	0.00	0.0011	0.0	0.00	010	0.0010
-2.9	0.001	0.0	. 00	0.00	0.001	0.00	0.00	0.0		0.00
-2.8	0.002	0.00	0.00	0.00	0.002	0.00	0.0			0.0019
-2.	0.003	0.	0.0033	0.0032	0.0	0.0030	0.0029	0.0028		0.0026
-2.	0.0047	0.	0.004	0.	0.	0.0040	0.0039	0.00	0.0037	0.0036
-2.5	0.006	0.0	0.00	0.00	0.005	0.0	0.0	0.0	0,49	0.0
-2.4	0.008	0.00	0.00	0.00	0.0073	0.00	0.00	0.0		0.0064
-2.	0.0107			0.00	0.00					
-2	0.0				0.0				0.0113	
-2.1	0.0	0.	0.017	0.0	0.0	0.0158	0.0	0.0	6	0.01
-2.	0.02	0.	0.02	0.02	0.02	0.0	0.0	0.0		0.0183
-1.9	0.02	0.0	0.02	0.02	0.02		0.0		0.0239	0.0233
-1	0.03			0.03	0.0				0.0301	
-1.7	0.0		0.0427	0.0	0.0	0.0401	0.039	0.03	0.0375	0.03
-1.	0.0	0.	0.0526	0.0	0.0	0.0495	0.048	0.0		0.0455
-1.	0.06	0.0	0.06	0.06	0.06	0.06	D. 0	0.0		. 05
-1.4	0.080			0.07	0.0			0.0708		0.0681
-1.3	0.09	0.0	0.0	0.0	0.09	0.0885	0.0	0.0	,	
-1.2										. 0985
-1.1	0.1				0.1271		0.1230	0.1210	0.1190	
-1.0	0.15		0.15	0.15	0.1		0.14	0.142	0.14	
-0.9	0.18				0.		0.1685	0.1660	0.1635	0.1611
-0.8	0.211			0.20	0.			0.1922	0.1	
-0.7					0.2296				0.21	
-0,	0.2743				0.26				0.2	
-0.5	0.3				0.2946				0.2810	
-0.	0.3	0.	0.33	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.382	0.3	0.37	0.37	0.3	0.	0.35	0.35	0.3520	0.348
-0.2	0.4207	0.4	0.4129	0.4	0.4		0.3	0.39	0.38	0.3859
-0.1	0.4602		0.4				4	5	0.4286	0.4247
0.0	0.5000	0.4	0.49	0.48	0.4840	0.4801	0.4761	0.4721	0.4681	0.4

$$
\frac{110-\mu}{\sigma}=-1.28 \rightarrow(2)
$$

From Equations (1) and (2)

$$
\begin{aligned}
& \frac{125-\mu}{\sigma}=-0.84 \\
& 125-\mu=-0.84 \sigma \rightarrow(1) \\
& \frac{110-\mu}{\sigma}=-1.28 \\
& 110-\mu=-1.28 \sigma \rightarrow(2)
\end{aligned}
$$

Subtract (2) from (1)

$$
\begin{aligned}
-15= & -0.442 \sigma \\
& \sigma=33.9
\end{aligned}
$$

Substitute in (2)

$$
110-\mu=-1.28(33.9)
$$

$$
\mu=153.5
$$

Vote: This PowerPoint ins summary and your main source should be the book.

Questions ???

1-If X is normally distributed random variable with $\mu=5$,
 $\sigma=4$, find the $\mathrm{P}(\mathrm{x}>-1.4) ? ?$

Discrete Probability Distributions

 Note: This PowerPoint is only a summary and your main source should be the book.
The Binomial Distribution

Mean, Variance and Standard deviation for The Binomial Distribution

\square Many types of probability problems have only two possible outcomes or they can be reduced to two outcomes.
\square Examples include: when a coin is tossed it can land on heads or tails, when a baby is born it is either a boy or girl, etc.

Note: This PowerPoint is only a summary and your main source should be the book.

The binomial experiment is a probability experiment that satisfies these requirements:

1. Each trial can have only two possible outcomes-success or failure.
2. There must be a fixed number of trials.
3. The outcomes of each trial must be independent of each other.
4. The probability of success must remain the same for each trial.

Note: This PowerPoint is only a summary and your main source should be the book.

Notation for the Binomial Distribution

$P(S)$:The symbol for the probability of success
$P(F)$:The symbol for the probability of failure
$p \quad$:The numerical probability of success
q :The numerical probability of failure $P(S)=p$ and $P(F)=1-p=q$
$n \quad$:The number of trials
$X \quad$:The number of successes
Note that $X=0,1,2,3, \ldots, n$

In a binomial experiment, the probability of exactly X successes in n trials is

$$
\begin{aligned}
& P(X)={ }_{\substack{\text { number of possible } \\
\text { desired outcomes }}}^{C_{x}} \cdot \underbrace{p^{X} \cdot q^{n-X}}_{\begin{array}{c}
\text { probability of a } \\
\text { desired outcome }
\end{array}} \\
& P(X)=\frac{n!}{(n-X)!X!} \cdot p^{X} \cdot q^{n-X}
\end{aligned}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Example (1): Tossing Coins

A coin is tossed 3 times. Find the probability of getting exactly 2 heads.

Solution :

$$
p(2 \text { heads })=\frac{n!}{(n-x)!x!} \cdot p^{x} \cdot q^{n-x}
$$

$$
\begin{aligned}
& \mathrm{n}=3 \\
& \mathrm{p}=\frac{1}{2} \\
& q=1-\frac{1}{2}=\frac{1}{2}
\end{aligned}
$$

$$
p(2 \text { heads })=\frac{3!}{(3-2)!2!} \cdot\left(\frac{1}{2}\right)^{2} \cdot\left(\frac{1}{2}\right)^{2}=\frac{3}{8}=0.375
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Example (2): Survey on Doctor Visits

A survey found that one out of five Americans say he or she has visited a doctor in any given month. If 10 people are selected at random, find the probability that exactly 3 will have visited a doctor last month.

Solution :

$$
\begin{aligned}
& P(X)=\frac{n!}{(n-X)!X!} \cdot p^{X} \cdot q^{n-X} \\
& P(3)=\frac{10!}{7!3!} \cdot\left(\frac{1}{5}\right)^{3} \cdot\left(\frac{4}{5}\right)^{7}=0.201
\end{aligned}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Example (3): Survey on Employment
A survey from Teenage Research Unlimited (Northbrook, Illinois) found that 30% of teenage consumers receive their spending money from parttime jobs. If 5 teenagers are selected at random, find the probability that at least 3 of them will have part-time jobs.

$P(X \geq 3)=0.132$ $+0.028$ $+0.002$ $=0.162$

Note: This PowerPoint is only a summary and your main source should be the book.

Mean, Variance and Standard deviation

 for the binomialThe mean, variance and SD of a variable that the binomial distribution can be found by using the following formulas:

$$
\text { Mean: } \mu=n p
$$

$$
\text { Variance: } \quad \sigma^{2}=n p q
$$

Standard Deviation: $\sigma=\sqrt{n p q}$

Note: This PowerPoint is only a summary and your main source should be the book.

Example (4): Tossing A Coin

A coin is tossed 4 times. Find the mean, variance and standard deviation of number of heads that will be obtained.

Solution :

$$
\begin{aligned}
\mu & =n \cdot p=4 \cdot \frac{1}{2}=2 \\
\sigma^{2} & =n \cdot p \cdot q=4 \cdot \frac{1}{2} \cdot \frac{1}{2}=1 \\
\sigma & =\sqrt{\sigma^{2}}=\sqrt{n \cdot p \cdot q}=\sqrt{1}=1
\end{aligned}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Example (5): Rolling a die

A die is rolled 360 times, find the mean, variance and slandered deviation of the number of 4 s that will be rolled .

Solution :

$$
\begin{aligned}
\mu & =n \cdot p=360 \cdot \frac{1}{6}=60 \\
\sigma^{2} & =n \cdot p \cdot q=360 \cdot \frac{1}{6} \cdot \frac{1}{6}=50
\end{aligned}
$$

$\sigma=\sqrt{\sigma^{2}}=\sqrt{n \cdot p \cdot q}=\sqrt{50}=7.07$

Note: This PowerPoint is only a summary and your main source should be the book.

Example (6):

The probability that a driver must stop at any one traffic light coming to Lincoln University is 0.2 . There are 15 sets of traffic lights on the journey.
a) What is the probability that a student must stop at exactly 2 of the 15 sets of traffic lights?
b) What is the probability that a student will be stopped at 1 or more of the 15 sets of traffic lights?

Note: This PowerPoint is only a summary and your main source should be the book.

Solution (6.a) :

$$
\begin{gathered}
P(X)=\frac{n!}{(n-X)!X!} \cdot p^{X} \cdot q^{n-X} \\
P(x=2)=\frac{15!}{(15-2)!2!}(0.2)^{2}(0.8)^{(15-2)} \\
P(x=2)=\frac{15!}{(13!)(2!)}(0.2)^{2}(0.8)^{13}=0.2309 \quad \mathrm{p}=15=0.2=0.8 \\
=\mathbf{2 3 . 0 9} \%
\end{gathered}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

Solution (6.b) :

$$
\begin{gathered}
P(X)=\frac{n!}{(n-X)!X!} \cdot p^{X} \cdot q^{n-X} \\
P(X \geq 1)=1-P(X<1)=1-P(X=0) \\
P(x=0)=\frac{15!}{(15-0)!0!}(0.2)^{0}(0.8)^{(15-0)} \\
P(x=0)=\frac{15!}{(15!)(0!)}(0.2)^{0}(0.8)^{15}=0.0352 \\
P(X \geq 1)=1-P(X=0)=1-0.0352=0.9648=\mathbf{9 6 . 4 8 \%}
\end{gathered}
$$

Note: This PowerPoint is only a summary and your main source should be the book.

A coin is tossed 72 times. The standard deviation for the number of heads that will be tossed is
A) 18
B) 4.24
C) 6
D) 36

A student takes a 6 question multiple choice quiz with 4 choices for each question. If the student guesses at random on each question, what is the probability that the student gets exactly 3 questions correct?
A) 0.088
B) 0.0512
C) 0.132
D) 0.022

