Continuous Random Variables and Probability distribution

Tossing Coins: Discrete Random Variable

Represent graphically the probability distribution for the sample space for tossing three coins .

X	0	1	2	3
$\mathrm{P}(\mathrm{X})$	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

Comparing Probability Distribution Function (for discrete r.v) and Probability density function (for continuous r.v)

Comparing Probability Distribution Function (Discrete r.v) and Probability density function

Binimial probability Distribution function with success prob 0.5 and total \# trial 50

Probability distribution function for a discrete random variable shows the probability for each outcome.

Comparing Probability Distribution Function (Discrete r.v) and Probability density function (Continuous r.v)

Probability Density Function shows the probability that the random variable falls in a particular range.

Continuous Random Variables

A random variable is continuous if it can take any value in an interval.

Probability Distribution of Continuous Random Variables

\square For continuous random variable, we use the following two concepts to describe the probability distribution

1. Probability Density Function
2. Cumulative Distribution Function

Probability Density Function

\square Probability Density Function is a similar concept as the probability distribution function for a discrete random variable.
\square You can consider the probability density function as a "smoothed" probability distribution function.

Probability density function

\square Let X be a continuous random variable. Let x denotes the value that the random variable X takes. We use $f(x)$ to denote the probability density function.
\square You client told you that he will visit you between noon and 2 pm . Between noon and 2 pm , the time he will arrive at your company is totally random. Let X be the random variable for the time he arrives ($\mathrm{X}=1.5$ means he visit your office at 1:30pm)
\square Let x be the possible value for the random variable X. Then, the probability density function $\mathrm{f}(\mathrm{x})$ has the following shape.

Probability Density Function Example (Uniform Probability Distribution)

Probability Density Function Example

The probability that your client

Probability Density Function Example

Note that area between 0 and 2 should be equal to 1 since the probability that your
 clients arrives between noon and 2 pm is 1 (assuming that he will keep his promise that he will visit between noon and 2 pm)
0.5

Some Properties of probability density function

1. $f(x) \geq 0$ for any x
2. Total area under $f(x)$ is 1

Cumulative Distribution FUnction

The cumulative distribution function, $\mathrm{F}(\mathrm{x})$, for a continuous random variable X expresses the probability that X does not exceed the value of x, as a function of x

$$
F(x)=P(X \leq x)
$$

In other words, the cumulative distribution function $F(x)$ is given by the shaded area,

Cumulative Distribution Function -Example-

A property of cumulative distribution functions
$P(a<X<b)=P(X<b)-P(X<a)$

$$
=F(b)-F(a)
$$

Relationship Between Probability Density Function and Cumulative Distribution Function

\square Let X be a continuous random variable. Then, there is a following relationship between probability density function and cumulative distribution function.

$$
\begin{aligned}
P(a<X<b) & =F(b)-F(a) \\
& =\int_{a}^{b} f(\boldsymbol{u}) d \boldsymbol{u}
\end{aligned}
$$

$f(x) \geq 0$ for any x
Total area under $\mathrm{f}(\mathrm{x})$ is 1

$$
\int_{-\infty}^{\infty} f(x) d x=1
$$

$$
F(x)=P(X \leq x)
$$

$$
P(a<X<b)=P(X<b)-P(X<a)
$$

$$
=F(b)-F(a)=\int_{a}^{b} f(x) d x
$$

Example (1)

$f(x)=\left\{\begin{array}{c}\frac{x^{2}}{2},-1 \leq x \leq 2 \\ 0, \text { otherwise }\end{array}\right.$
a) Verify that $f(x)$ is a Probability density function.
b) Find $P(0 \leq x \leq 1)$

Solution

a) Verify that $f(x)$ is a Probability density function.

1. We have to prove that $f(x) \geq 0$ for every value in the interval.
2. $\int_{-\infty}^{\infty} f(x) d x=1$

In our example we have to prove that

$$
\int_{-1}^{2} f(x) d x \text { must equal to } 1
$$

Or $\int_{-1}^{3} \frac{x^{2}}{3} d x=1$
$\int_{-1}^{2} \frac{x^{2}}{3} d x=\left\{\left.\frac{x^{3}}{9}\right|_{-1} ^{2}=\frac{2^{3}}{9}-\frac{(-1)^{3}}{9}=\frac{8}{9}+\frac{1}{9}=\frac{9}{9}=\mathbf{1}\right.$ So, $f(x)$ is a probability density function

Solution

b) Find $P(0 \leq x \leq 1)$
$P(0 \leq x \leq 1)=\int_{0}^{1} \frac{x^{2}}{3} d x$
$=\left\lceil\left.\frac{x^{3}}{9}\right|_{0} ^{1}=\frac{1^{3}}{9}-\frac{(0)^{3}}{9}=\frac{1}{9}-0=\frac{1}{9}\right.$

Example (2)

$f(x)=\left\{\begin{array}{c}\frac{2 x+1}{24}, 2 \leq x \leq 5 \\ 0, \text { otherwise }\end{array}\right.$
a) Verify that $f(x)$ is a Probability density function.
b) Find $P(2.5 \leq x \leq 4.5)$
a) Verify that $f(x)$ is a Probability density function.

We have to prove that $f(x) \geq 0$ for every value in the interval.

x	2	3	4	5
$f(x)$	0.208333	0.291667	0.375	0.458333

2. $\int_{-\infty}^{\infty} f(x) d x=1$, in our example we have to prove that

$$
\begin{aligned}
& \int_{2}^{5} f(x) d x \text { must equal to } 1 \\
& \text { Or } \int_{2}^{5} \frac{2 x+1}{24} d x=1 \\
& \int_{2}^{5} \frac{2 x+1}{24} d x=\left[\frac{x^{2}+x}{24}\right]_{2}^{5}=\frac{5^{2}+5}{24}-\frac{2^{2}+2}{24}=\frac{30}{24}-\frac{6}{24}=\frac{24}{24}=\mathbf{1} \\
& \text { So, } f(x) \text { is a probability density function }
\end{aligned}
$$

Solution

b) Find $P(2.5 \leq x \leq 4.5)$
$P(2.5 \leq x \leq 4.5)=\int_{2.5}^{4.5} \frac{2 x+1}{24} d x$
$=\int_{2.5}^{4.5} \frac{2 x+1}{24} d x=\left\lceil\frac{x^{2}+x}{24}\right]_{2.5}^{4.5}=\frac{(4.5)^{2}+4.5}{24}-\frac{(2.5)^{2}+2.5}{24}=$
$\frac{33}{32}-\frac{35}{96}=\frac{2}{3}$

Example (3)

$f(x)=\left\{\begin{array}{c}\frac{x+3}{18},-3 \leq x \leq 3 \\ 0, \text { otherwise }\end{array}\right.$
a) Verify that $f(x)$ is a Probability density function.
b) Find $\mathrm{P}(\mathrm{x} \leq 0)$
c) Find $P(-1 \leq x \leq 4)$

Solution

a) Verify that $f(x)$ is a Probability density function.

1. We have to prove that $f(x) \geq 0$ for every value in the interval.

x	-3	-2	-1	0	1	2	3
$f(x)$	0	0.055556	0.111111	0.166667	0.222222	0.277778	0.333333

2. $\int_{-\infty}^{\infty} f(x) d x=1$, in our example we have to prove that

$$
\begin{gathered}
\int_{-3}^{3} f(x) d x \text { must equal to } 1 \\
\text { Or } \quad \int_{-3}^{3} \frac{x+3}{18} d x=1
\end{gathered}
$$

So, $f(x)$ is a probability density function

Solution

b) Find $P(x \leq 0)$
$f(x)=\left\{\begin{array}{c}\frac{x+3}{18},-3 \leq x \leq 3 \\ 0, \text { otherwise }\end{array}\right.$ $P(x \leq 0)=P(-3 \leq x \leq 0)+P(x<-3)$

$$
\int_{-3}^{0} \frac{x+3}{18} d x+0=\left[\frac{\frac{1}{2} x^{2}+3 x}{18}\right]_{-3}^{0}+0=\frac{1}{4}+0=\frac{1}{4}
$$

Solution

c) Find $\mathrm{P}(-1 \leq x \leq 4)$
$f(x)=\left\{\begin{array}{c}\frac{x+3}{18},-3 \leq x \leq 3 \\ 0, \text { otherwise }\end{array}\right.$ $P(-1 \leq x \leq 4)=P(-1 \leq x \leq 3)+P(3<x \leq 4)$

$$
\int_{-1}^{3} \frac{x+3}{18} d x+0=\left[\frac{\frac{1}{2} x^{2}+3 x}{18}\right]_{-1}^{3}+0=\frac{8}{9}+0=\frac{8}{9}
$$

Example (4)

Given that $f(x)$ is a probability density function
$f(x)= \begin{cases}\frac{2 x+2}{a}, 2 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}$
a) Find the value of a
b) Find $P(-1 \leq x \leq 3)$

Solution

a) Find the value of a

$$
\begin{aligned}
& P(2 \leq x \leq 5)=\int_{2}^{5} \frac{2 x+2}{a} d x=1 \\
& {\left[\frac{x^{2}+2 x}{a}\right]_{2}^{5}=\frac{5^{2}+2(5)}{a}-\frac{2^{2}+2(2)}{a}=\frac{35}{a}-\frac{8}{a}=\frac{27}{a}=1} \\
& a=27
\end{aligned}
$$

So the probability density function will be
$f(x)= \begin{cases}\frac{2 x+2}{27}, 2 \leq x \leq 5 \\ 0, & \text { otherwise }\end{cases}$

Solution

b) Find $\mathrm{P}(-1 \leq \mathrm{x} \leq 3)$
$f(x)=\left\{\begin{array}{c}\frac{2 x+2}{a}, 2 \leq x \leq 5 \\ 0, \\ \text { otherwise }\end{array}\right.$ $P(x \leq 0)=P(-1 \leq x<2)+P(2 \leq x \leq 3)$

$$
0+\int_{-1}^{3} \frac{2 x+2}{27} d x=0+\left[\frac{x^{2}+2 x}{27}\right]_{-1}^{3}=\frac{7}{27}
$$

Example (5)

Given that $f(x)$ is a probability density function

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{4}, & 0 \leq x<3 \\
\frac{1}{8}(5-x), & 3 \leq x \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
$$

a) Proof that $f(x)$ is a Probability density function.
b) Find $P(1 \leq x \leq 4)$

Solution

a) Proof that $f(x)$ is a Probability density function.

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{4}, & 0 \leq x<3 \\
\frac{1}{8}(5-x), & 3 \leq x \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
$$

$\int_{-\infty}^{\infty} f(x) d x=1$, we have to prove that

$$
\int_{0}^{5} f(x) d x \text { must equal to } 1
$$

$\int_{0}^{5} f(x) d x=\int_{0}^{3} \frac{1}{4} d x+\int_{3}^{5} \frac{1}{8}(5-x)=1$
$\left[\frac{x}{4}\right]_{0}^{3}+\left[\frac{1}{8}\left(5 x-\frac{1}{2} x^{2}\right)\right]_{3}^{5}=\frac{3}{4}+\frac{1}{8}\left[\left(5(5)-\frac{1}{2}(25)\right)-\left(5(3)-\frac{1}{2}(9)\right)\right]$
$=\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1$
So, $f(x)$ is a probability density function

b) Find $P(1 \leq x \leq 4)$

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{4}, & 0 \leq x<3 \\
\frac{1}{8}(5-x), & 3 \leq x \leq 5 \\
0, & \text { otherwise }
\end{array}\right.
$$

$P(1 \leq x \leq 4)=P(1 \leq x<3)+P(3 \leq x \leq 4)$

$$
\int_{1}^{3} \frac{1}{4} d x+\int_{3}^{4} \frac{1}{8}(5-x)=
$$

$$
\left[\frac{x}{4}\right]_{1}^{3}+\left[\frac{1}{8}\left(5 x-\frac{1}{2} x^{2}\right)\right]_{3}^{4}=\left(\frac{3}{4}-\frac{1}{4}\right)+\frac{1}{8}\left[\left(5(4)-\frac{1}{2}(16)\right)-\left(5(3)-\frac{1}{2}(9)\right)\right]
$$

$$
\frac{2}{4}+\frac{3}{16}=\frac{11}{16}
$$

