Statistical Analysis CIS240

Dr. Mahmoud Mounir
 Conditional Probability and Bayes Rule Solved Problems

(1) On a randomly chosen day the probability that Bill travels to school by car, by bicycle or on foot is $1 / 2,1 / 6$ and $1 / 3$ respectively. The probability of being late when using these methods of travel is $1 / 5,2 / 5$ and $1 / 10$ respectively.
a) Find the probability that on a randomly chosen day

i. Bill travels by foot and is late,
$\boldsymbol{P}($ On Foot and Late $)=(1 / 10)(1 / 3)=\frac{1}{30}=\underline{\mathbf{0 . 0 3 3 3}}$
ii. Bill is not late.
$\boldsymbol{P}($ Not Late $)=P($ Not Late and By Car $)+P($ Not Late and By Bicycle $)+P($ Not Late and On Foot)
$\boldsymbol{P}($ Not Late $)=P($ Not Late \backslash By Car $) P($ By Car $)+P($ Not Late \backslash By Bicycle $) P($ By Bicycle $)+$ $P($ Not Late \backslash On Foot) $P($ On Foot $)$
$\boldsymbol{P}($ Not Late $)=(4 / 5)(1 / 2)+(3 / 5)(1 / 6)+(1 / 3)(9 / 10)=\frac{4}{5}=\underline{\mathbf{0 . 8}}$
b) Given that Bill is late, find the probability that he did not travel on foot.

$$
\boldsymbol{P}(\text { Late })=1-\boldsymbol{P}(\text { Not Late })=1-0.8=\underline{\mathbf{0 . 2}}
$$

$$
P(\text { On Foot } \mid \text { Late })=\frac{P(\text { Late On Foot }) P(\text { On Foot })}{P(\text { Late })}=
$$

$$
\frac{\left(\frac{1}{10}\right)\left(\frac{1}{3}\right)}{0.2}=\frac{\frac{1}{30}}{0.2}=\frac{1}{6}=\underline{\mathbf{0 . 1 6 7}}
$$

$P($ Not On Foot \mid Late $)=1-P($ On Foot \mid Late $)=$

$$
=1-0.167=\frac{1}{6}=\underline{0.833}
$$

Statistical Analysis CIS240

Dr. Mahmoud Mounir

Conditional Probability and Bayes Rule Solved Problems

(2) A disease is known to be present in 2% of a population. A test is developed to help determine whether or not someone has the disease. Given that a person has the disease, the test is positive with probability 0.95 . Given that a person does not have the disease, the test is positive with probability 0.03 .
i. A person is selected at random from the population and tested for this disease. Find the probability that the test is positive.

ii. A doctor randomly selects a person from the population and tests him for the disease. Given that the test is positive, find the probability that he does not have the disease.
$P(-$ Disease $\backslash+$ Test $)=\frac{P(+ \text { Test } \backslash-\text { Disease }) P(- \text { Disease })}{P(+ \text { Test })}=\frac{(0.03)(0.98)}{0.0484}=\underline{0.607}$
(a) In a factory, machines A, B and C are all producing metal rods of the same length. Machine A produces 35% of the rods, machine B produces 25% and the rest are produced by machine C . Of their production of rods, machines A, B and C produce $3 \%, 6 \%$ and 5% defective rods respectively.
i. Find the probability that a randomly selected rod will be defective.

$\mathbf{P}($ Defective $)=P($ Defective $\cap A)+P($ Defective $\cap \mathrm{B})+\mathrm{P}($ Defective $\cap \mathrm{C})$
\mathbf{P} (Defective) $=\mathrm{P}$ (Defective $\backslash \mathrm{A}) \mathrm{P}(\mathrm{A})$
$+\mathrm{P}($ Defective $\backslash \mathrm{B}) \mathrm{P}(\mathrm{B})+\mathrm{P}($ Defective $\backslash \mathrm{C}) \mathrm{P}(\mathrm{C})$
$\mathbf{P}($ Defective $)=(0.03)(0.35)+(0.06)(0.25)+$ (0.05) $(0.4)=\underline{\mathbf{0 . 0 4 5 5}}$
ii. Given that a randomly selected rod, find the probability that it is produced by machine A.
$\mathbf{P}(\mathrm{A} \backslash$ Defective $)=\frac{\boldsymbol{P}(\text { Defective } \backslash A) P(A)}{P(\text { Defective })}=\frac{(0.03)(0.35)}{0.0455}=\underline{0.231}$

