STATISTICAL ANALYSIS LECTURE 3

Dr. Mahmoud Mounir mahmoud.mounir@cis.asu.edu.eg

VARIANCE AND STANDARD DEVIATION

measures of variability:

variance

standard deviation

1. take into account ALL the
values of a variable

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (UNGROUPED DATA)

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (UNGROUPED DATA)

\rightarrow Mean is the point of balance, so we have positive and negative deviations from the mean.
$>$ The sum of deviation sum to zero. That's why we don't use the original deviations, but the squared deviations.

			θ	$s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1}$
	x	$x-\bar{x}$	$(x-\bar{x})^{2}$	$\bar{x}=15$
Player 1	0	-15	225	
Playec 2	24,1	9,1	82,81	
Playee 3	5,6	-9,4	88,36	
Playec 4 Playees 5	14, 172 17,	$-0,9$ 22	0,81 4,84 er	$n-1=10$
Player 6	8.7	-6,3	39,69	
Playec 7	19,2	4,2	17,64	$S^{2}=\frac{639.74}{10}$
Playec 8	14,1	-0,9	0,81	
Playec 9 Playece 10	27,7 15	12,7 0	161,29	
Playerer 11	19,3	4,3	18,49 +	
			639,74	

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (UNGROUPED DATA)
larger variance

larger variability

the more the values are spread out around the mean

VARIANCE

- the metric of the variance is the metric of the variable under analysis SQUARED

standard deviation
the average distance of an observation from the mean

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (UNGROUPED DATA)

$$
s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}
$$

(X)	($\mathrm{X}-\bar{x}$)	$(\mathrm{X}-\bar{x})^{2}$
50	-112.5	12656.25
100	-62.5	3906.25
200	37.5	1406.25
300	137.5	18906.25
$\bar{x}=162.5$		$\begin{array}{\|l\|} \hline \end{array} \begin{gathered} \\ \hline(X-\bar{x})^{2} \\ =36875 \end{gathered}$

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (UNGROUPED DATA)

$$
s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}
$$

(X)	$\left(X^{2}\right)$
50	2500
100	10000
200	40000
300	90000
$\sum X=650$	$\sum X^{2}=$ 142500

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (GROUPED DATA)

$$
\begin{aligned}
S & =\sqrt{\frac{\sum(x-\bar{x})^{2} f}{n-1}} \\
\mathbf{x} & =\text { class midpoint }
\end{aligned}
$$

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (GROUPED DATA)

$\boldsymbol{s}=\sqrt{ }$	$\sum x^{2} f-\underline{\left(\sum\right.}$	$)^{2}$	$\mathrm{x}=\mathrm{class}$ midpoint		
	$n-1$	(X)	(${ }^{2}$)	f	$\chi^{2}{ }^{\text {f }}$
		50	2500	5	12500
		100	10000	3	30000
		200	40000	6	240000
		300	90000	2	180000
		$\sum X=650$	$\begin{aligned} & \sum X^{2}= \\ & 142500 \end{aligned}$	$\mathrm{n}=16$	$\begin{gathered} \sum X^{2} * f= \\ 462500 \end{gathered}$

VARIANCE AND STANDARD DEVIATION

\square VARIANCE (GROUPED DATA)

Age	Frrquency (f)	Midpoint (x)	X-Mean $(X$-Mean)		$(X-M e a n)^{2} f$
$30-34$	4	32	-9	81	324
$35-39$	5	37	-4	16	80
$40-44$	2	42	1	1	2
$45-49$	9	47	6	36	324
Total	20				730

$$
\begin{aligned}
& \Sigma f=n=20 \\
& \text { Mean }=820 / 20=41 \\
& \Sigma(X-\text { Mean })^{2} f=730
\end{aligned}
$$

$$
\begin{aligned}
S= & \sqrt{\frac{730}{20-1}} \\
& =\sqrt{38.42} \approx 6.20
\end{aligned}
$$

Z-SCORE

DSometimes researchers want to know if a specific observation is common or exceptional.
\square To answer that question, they express a score in terms of how many standard deviations below or above the population mean a raw score is.
\square This number is what we call a z-score.
DIf we recode original scores into z -scores, we say that we standardize a variable.

Z-SCORE

Z-SCORE

Z-SCORE

Z-SCORE

\square EMPIRICAL RULE NORMAL DISTRIBUION (BELL SHAPED)

BELL-SHAPED DISTRIBVTION

Z-SCORE

\square EMPIRICAL RULE "APPROXIMATION" NORMAL DISTRIBUION (BELL SHAPED)

- Approximately 68\%
of the data lie within one standard deviation of the mean, that is, in the interval with endpoints $\bar{x} \pm$ s for samples and with endpoints $\mu \pm \sigma$ for populations.
- Approximately 95\%
of the data lie within two standard deviations of the mean, that is, in the interval with endpoints $\bar{x} \pm 2$ s for samples and with endpoints $\mu \pm 2 \sigma$ for populations.
- Approximately 99.7\%
of the data lies within three standard deviations of the mean, that is, in the interval with endpoints $\bar{x} \pm 3$ s for samples and with endpoints $\mu \pm 3 \sigma$ for populations.

Z-SCORE

\square EMPIRICAL RULE
NORMAL DISTRIBUION (BELL SHAPED)

BELL-SHAPED DISTRIBUTION

Z-SCORE

\square CHEBYSHEV'S RULE

ANY DISTRIBUION

ANY DISTRIBUTION, REGARDLESS SHAPE

Z-SCORE

\square CHEBYSHEV'S RULE

ANY DISTRIBUION

ANY DISTRIBUTION, REGARDLESS SHADE

Z-SCORE

\square CHEBYSHEV'S RULE
ANY DISTRIBUION

Z-SCORE

\square CHEBYSHEV'S RULE "FACT"

ANY DISTRIBUION

- At Least 75\%
of the data lie within two standard deviations of the mean, that is, in the interval with endpoints $\bar{x} \pm 2 s$ for samples and with endpoints $\mu \pm 2 \sigma$ for populations.
- At Least 89\%
of the data lies within three standard deviations of the mean, that is, in the interval with endpoints $\bar{x} \pm 3$ s for samples and with endpoints $\mu \pm 3 \sigma$ for populations.

Z-SCORE
common
exceptional observation observation

compare different distributions

EXERCISE (1)

- What does the distribution of the variable look like?
- What is the center of the distribution?
- Study the variability of the distribution.
- Construct a box plot.
- What is the z-score of school
 \#3?

EXERCISE (2)

- The following table shows the heights in inches of 100 randomly selected adult men measured in inches.

68.7	72.3	71.3	72.5	70.6	68.2	70.1	68.4	68.6	70.6
73.7	70.5	71.0	70.9	69.3	69.4	69.7	69.1	71.5	68.6
70.9	70.0	70.4	68.9	69.4	69.4	69.2	70.7	70.5	69.9
69.8	69.8	68.6	69.5	71.6	66.2	72.4	70.7	67.7	69.1
68.8	69.3	68.9	74.8	68.0	71.2	68.3	70.2	71.9	70.4
71.9	72.2	70.0	68.7	67.9	71.1	69.0	70.8	67.3	71.8
70.3	68.8	67.2	73.0	70.4	67.8	70.0	69.5	70.1	72.0
72.2	67.6	67.0	70.3	71.2	65.6	68.1	70.8	71.4	70.2
70.1	67.5	71.3	71.5	71.0	69.1	69.5	71.1	66.8	71.8
69.6	72.7	72.8	69.6	65.9	68.0	69.7	68.7	69.8	69.7

Mean $\bar{x}=69.92$ inches
Standard Deviation $S=1.70$ inches

$$
\begin{aligned}
& \text { MIN }=65.6 \text { inches } \\
& \text { MAX }=74.8 \text { inches }
\end{aligned}
$$

EXERCISE (2)

- A relative frequency histogram for the data

EXERCISE (2)

\square The number of observations that are within ONE standard deviation of the mean
$\bar{x}-S$
$\bar{x}+S$
$69.92-1.70=68.22$ inches
and $\quad 69.92+1.70=71.62$ inches
69

The number of observations that are within TWO standard deviation of the mean
$\bar{x}-2 S$
$\bar{x}+2 S$
$69.92-2(1.70)=66.52$ inches
and
$69.92+2(1.70)=73.32$ inches

95

The number of observations that are within THREE standard deviation of the mean

$$
\bar{x}-3 S
$$

$\bar{x}+3 S$
$69.92-3(1.70)=64.822$ inches
and
$69.92+3(1.70)=75.02$ inches
ALL

EXERCISE (3)

Heights of 18 -year-old males have a bell-shaped distribution with mean 69.6 inches and standard deviation 1.4 inches.

1. About what proportion of all such men are between 68.2 and 71 inches tall?
2. What interval centered on the mean should contain about 95% of all such men?

EXERCISE (3) SOLUTION

The observations that are within ONE standard deviation of the mean
$\bar{x}-S$
$69.6-1.40=68.2$ inches

$$
\bar{x}+S
$$

and $\quad 69.6+1.40=71.71$ inches
68 \%
\square The observations that are within TWO standard deviation of the mean

$\bar{x}-2 S$	
$69.6-2(1.40)=66.80$ inches	and $\quad \bar{x}+2 S$
	95%

\square The observations that are within THREE standard deviation of the mean
$\bar{x}-3 S$
and
$\bar{x}+3 S$
69.6-3(1.40) $=65.40$ inches
$69.6+3(1.40)=73.80$ inches ALL

EXERCISE (4)

\square Scores on IQ tests have a bell-shaped distribution with mean $\mu=100$ and standard deviation $\sigma=10$. Discuss what the Empirical Rule implies concerning individuals with IQ scores of 110, 120, and 130.

- Approximately 68\% of the IQ scores in the population lie between 90 and 110,
- Approximately 95% of the IQ scores in the population lie between 80 and 120, and
- Approximately 99.7\% of the IQ scores in the population lie between 70 and 130.

EXERCISE (4)

(a) Whole Spectrum

(b) Higher End

EXERCISE (5)

\square A sample of size $\mathrm{n}=50$ has mean $\bar{x}=28$ and standard deviation $s=3$. Without knowing anything else about the sample,

- what can be said about the number of observations that lie in the interval $(22,34)$?
- What can be said about the number of observations that lie outside that interval?

EXERCISE (5) SOLUTION

By Chebyshev's Theorem:

The observations that are within TWO standard deviation of the mean
$\bar{x}-2 S$

$$
\bar{x}+2 S
$$

$28-2(3)=22$
and
75 \%

The observations that are within THREE standard deviation of the mean
$\bar{x}-3 S$

$$
\bar{x}+3 S
$$

$28-3(3)=19$
and
$28+3(3)=37$

89 \%

EXERCISE (5) SOLUTION

- The interval $(22,34)$ is the one that is formed by adding and subtracting two standard deviations from the mean.

By Chebyshev's Theorem,

- At least 75% of the data are within this interval.
- Since $\mathbf{7 5} \%$ of 50 is $\mathbf{3 7 . 5}$, this means that at least 37.5 observations are in this interval or at least 38 observations.
- If at least 75% of the observations are in the interval, then at most 25 \% of them are outside it.
- Since $1 / 4$ of 50 is $\mathbf{1 2 . 5}$, at most 12.5 observations are outside the interval or 38 observations.

EXERCISE (5) SOLUTION

(a) Within $\bar{x} \pm 2 s$

(b) Outside $\bar{x} \pm 2$

EXERCISE (6)

1. (26 points total) Suppose that in 2004, the verbal portion of the Scholastic Aptitude Test (SAT) had a mean score of $\mu=500$ and a standard deviation of $\sigma=100$, while in the same year, the verbal exam from the American College Testing Program (known as ACT) had a mean of μ $=21.0$ and a standard deviation of $\sigma=4.7$. Assume that the scores from both exams are approximately normally distributed in any given year.
a. (9 points) Two friends applying for college took the tests, the first of the two scoing 650 on the SAT and the second scoring 30 on the ACT. Which of these students scored higher among the population of students taking the relevanit test? Exhibit clearly all the calculations that justify your answer.

EXERCISE (6)

$Z_{S A T}=(650.500) / 100=1.5(93.32$ Percentile $)$
$Z_{\mathrm{ACT}}=(30-21) / 4.7=1.91$ (97.19 Percentile)

The student taking the ACT test performed better because hisher test score has a higher Z-score (or equivalently, higher percentile).

EXERCISE (7)

(2 Marks) Here are some summary statistics for the numbers of acres of soybeans فول الصويا and peanuts الفول السوداني harvested per county in Alabama in 2009, for counties that planted those crops.
In one southern county, there were 9 thousand acres of soybeans harvested and 3 thousand acres of peanuts harvested. Relative to its crop, which plant had a better harvest?

Crop	Mean harvest (thousands of acres)	Standard deviation (thousands of acres)
Soybeans	$\mu=12$	$\sigma=14$
Peanuts	$\mu=10$	$\sigma=8$

CORRELATION AND REGRESSION

CORRELATION: CROSSTABS AND SCATTER PLOTS

CORRELATION: CROSSTABS AND SCATTER PLOTS

CORRELATION:
CROSSTABS AND SCATTER PLOTS
Body weight Oless than 50 kg$50-69 \mathrm{~kg}$$70-89 \mathrm{~kg}$90 kg or more

Chaco consumption (per week) O less than 50 g 0 50-150 g Omore than 1509

CROSSTABS (CONTINGENCY TABLES)

RESULTS

contingency table 2 variables

	chocolate consumption			total
	< 50	50-150	> 150	
$\pm<50$	27	5	1	33
\% 50-69	24	35	2	61
तo. $70-89$	6	43	19	68
¢ $>=90$	3	7	28	38
total	60	90	50	200

CROSSTABS (CONTINGENCY TABLES)

CROSSTABS (CONTINGENCY TABLES)

	chocolate consumption in grams per week			
	<50	50-150	> 150	
\pm < 50	(45\%)	5\%	(2\%)	
Hos 50-69	40\%	39\%	4%	
त ${ }_{\text {c }}$ S $70-89$	10\%	48\%	38\%	
- $>=90$	5\%	8\%	56\%	
total	100\%	100\%	100\%	

CROSSTABS (CONTINGENCY TABLES)

more likely

correlation

SCATTER PLOTS

SCATTER PLOTS

SCATTER PLOTS

TYPE OF RELATIONSHIP "DIRECTION" POSITIVE, NEGATIVE, OR NO RELATIONSHIP

B. Negative Relationship

SCATTER PLOTS

STRENGTH OF RELATIONSHIP STRONG OR WEAK RELAIONSHIP

B. Parents and Children

C. Identical

Twins

SCATTER PLOTS

CORRELATION

How strong is this correlation?

CORRELATION

PEARSON'S R

direction and strength of linear correlation with one number

CORRELATION

CORRELATION

SCATTERPLOT

strong or weak correlation? HOW
PEARSON'S R strong or weak correlation?

CORRELATION

PEARSON'S R

direction
$t=$ positive

- = negative

HOW

strong or weak correlation?

$$
\begin{gathered}
\text { strength } \\
-1=\text { perfect negative } \\
+1=\text { perfect positive }
\end{gathered}
$$

CORRELATION

		COMDUTE PEARSON'SR				
		$r=\frac{\sum Z_{X} Z_{y}}{n-1}$				
				Mean SD	162.5 110.9	71.3 18.4
		$2 x$		z_{y}	$2 \times *$	
	$\begin{aligned} & 50 \\ & 100 \\ & 200 \\ & 300 \end{aligned}$	-1.01	50	-1.15	1.17	
		-0.56	70	-0.07	0.04	
		0.34	70	-0.07	-0.02	
		1.24	95	1.29	1.60	

CORRELATION

CORRELATION
important note

check scatterplot before you calculate Pearson's r

Parsons's r
= weak LINEAR correlation

CORRELATION

The coefficient of determination r^{2}

$$
0 \leq r^{2} \leq+1
$$

Example :

$$
\text { If } r^{2}=0.86
$$

This means that 86% of the variation in y can
be described by x.

LINEAR REGRESSION

REGRESSION ANALYSIS

- Deals with finding the best relationship between Y and X, quantifying the strength of that relationship, and using methods that allow for prediction of the response values given values of the X.

LINEAR REGRESSION

SIMPLE REGRESSION

$$
Y=\beta_{0}+\beta_{1} x
$$

LINEAR REGRESSION

Figure 11.1: A linear relationship; β_{0} : intercept; β_{1} : slope.

LINEAR REGRESSION

LINEAR REGRESSION

$$
\begin{gathered}
\text { LINEAR REGRESSION } \\
\text { LINEAR REGRESSION EQUATION } \\
\hat{\boldsymbol{y}}=\boldsymbol{b}_{\mathbf{1}} \boldsymbol{x}+\boldsymbol{b}_{\mathbf{0}} \\
\boldsymbol{b}_{1}=r\left(\frac{\boldsymbol{s}_{y}}{s_{x}}\right) \text { (} \boldsymbol{b}_{1}=\frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\overline{\boldsymbol{x}})^{2}} \boldsymbol{b}_{1} \\
\boldsymbol{b}_{\mathbf{0}}=\overline{\boldsymbol{y}}-\boldsymbol{b}_{\mathbf{1}}(\overline{\boldsymbol{x}}) \\
\boldsymbol{b}_{\mathbf{0}}=\frac{\sum y-b_{1} \sum x}{n}
\end{gathered}
$$

EXAMPLE (1) ON CORRELATION

EXAMPLE (1) ON CORRELATION

(X)	50	100	200	300	Mean	$\frac{\mathrm{X}}{162.5}$	Y 71.3
Z	-1.01	-0.56	0.34	1.24	SD	110.9	18.4
(Y)	50	70	70	95			
Z_{Y}	-.1.15	-0.07	-0.07	1.29			
$Z_{X}{ }^{*} Z_{Y}$	1.17	0.04	-0.02	1.60			$\frac{Y-Y}{S_{Y}}$

$$
r=\frac{\sum Z X * Z Y}{n-1}=\frac{2.78}{3}=\underline{0.93}
$$

Strong Positive or Direct Relationship

EXAMPLE (1) ON CORRELATION

ii. What would be the values of Y at $X=400$ and 500?

$$
\begin{gathered}
\hat{y}=b o+b_{1} X \\
\mathrm{~b}_{1}=\mathrm{r} \frac{S y}{S x}=0.93 \frac{18.4}{110.9}=\underline{\mathbf{0 . 1 5 4}} \\
\mathrm{b}_{\mathrm{o}}=\bar{y}-\mathrm{b}_{1} \bar{x}=71.3-(0.154)(162.5)=\underline{46.275} \\
\hat{y}=b o+b_{1} X=\widehat{\boldsymbol{y}}=\mathbf{0 . 1 5 4} \boldsymbol{X}+\mathbf{4 6 . 2 7 5}
\end{gathered}
$$

$$
\begin{array}{cc}
\text { At } X=400 & \hat{y}=0.154(400)+46.275=107.875 \\
\text { At } X=500 & \hat{y}=0.154(500)+46.275=123.275
\end{array}
$$

EXAMPLE (1) ON CORRELATION

iii. What is the error in the predicted value of Y at $X=200$ and 300 ?

$$
\begin{array}{cc}
& \hat{\boldsymbol{y}}=\mathbf{0 . 1 5 4 X} \boldsymbol{X} \mathbf{4 6 . 2 7 5} \\
\text { At } \mathrm{X}=200 & \hat{\boldsymbol{y}}=\mathbf{0 . 1 5 4 (\mathbf { 2 0 0 }) + \mathbf { 4 6 . 2 7 5 } = \mathbf { 7 7 . 0 7 5 }} \\
& \underline{\text { Error }}=\left|\hat{\boldsymbol{y}^{\wedge}}-\mathrm{y}\right|=|77.075-70|=7.075 \\
\text { At } X=300 & \hat{\boldsymbol{y}}=\mathbf{0 . 1 5 4 (\mathbf { 3 0 0 }) + \mathbf { 4 6 . 2 7 5 } = \mathbf { 9 2 . 4 7 5 }} \\
& \text { Error }=|\hat{\boldsymbol{y}}-\mathrm{y}|=|92.475-95|=2.525
\end{array}
$$

