STATISTICAL ANALYSIS LECTURE 10

Dr. Mahmoud Mounir

mahmoud.mounir@cis.asu.edu.eg

STATISTICAL INFERENCE

Statistical Inference

The statistical inference is the process of making judgment about a population based on the properties of a random sample from the population.

Estimators

Estimator (Sample Statistic)		Population Parameter
\overline{x}	ESTIMATES	μ
S ²	ESTIMATES	σ²
S	ESTIMATES	σ
\widehat{p}	ESTIMATES	p
$\overline{x}_1 - \overline{x}_2$	ESTIMATES	μ ₁ - μ ₂
$\widehat{p}_1 - \widehat{p}_2$	ESTIMATES	$p_1 - p_2$

Confidence Interval (CI)

Population Parameter = Estimator ± Margin of Error (d) <u>Where:</u> Margin of Error (d) = Critical Value of Z * Standard Error

Population Parameter ∈

[Estimator – Margin of Error (d), Estimator + Margin of Error (d)]

Confidence Interval (CI) for Single Mean

 $\mu = \overline{x} \pm z \left(\frac{\sigma}{\sqrt{n}}\right)$

 $\mu \in \left[\overline{x} - z\left(\frac{\sigma}{\sqrt{n}}\right), \overline{x} + z\left(\frac{\sigma}{\sqrt{n}}\right)\right]$

Confidence Interval (CI) for Single Proportion

$$p \in [\widehat{p} - z_{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}}, \widehat{p} + z_{\sqrt{\frac{\widehat{p}(1-\widehat{p})}{n}}}]$$

Standard Error for Different Sample Statistics

Estimator (Sample Statistic)	Standard Error
$\overline{\boldsymbol{x}}$	$\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$
p	$\sigma_{\hat{p}} = \sqrt{\frac{p*(1-p)}{n}}$
$\overline{x}_1 - \overline{x}_2$	$\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$\widehat{p}_1 - \widehat{p}_2$	$\sigma_{(\hat{p}_1 - \hat{p}_2)} = \sqrt{\frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}}$

Confidence Interval (CI)

α Confidence Coefficient

Critical Value for Z:

1-α	$100(1 - \alpha)\%$	a	1- $^{\alpha}/_{2}$	$z_{1-(\alpha/2)}$
0.90	90%	0.10	0.95	1.65
0.95	95%	0.05	0.975	1.96
0.98	98%	0.02	0.990	2.33
0.99	99%	0.01	0.995	2.58

Confidence Interval for Population Mean

Confidence Interval (CI) for the Difference Between Two Population Means

$$(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) = (\overline{\boldsymbol{x}}_1 - \overline{\boldsymbol{x}}_2) \pm \boldsymbol{z} \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$(\mu_1 - \mu_2) \in [(\overline{x}_1 - \overline{x}_2) - z \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}, (\overline{x}_1 - \overline{x}_2) + z \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}]$$

Confidence Interval (CI) for Difference Between Two Population Proportions

$$(p_1 - p_2) = (\hat{p}_1 - \hat{p}_2) \pm z_{\sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}}$$

$$(p_1 - p_2) \in \\ \left[(\hat{p}_1 - \hat{p}_2) - z \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}, (\hat{p}_1 - \hat{p}_2) + z \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}} \right]$$

Hypothesis Tests

Hypothesis

DEFINITION 4.4.1 (Statistical Hypothesis)

Statistical hypothesis is an argument about a specific statistical question, and this argument can be true or wrong.

- ➢ It is a claim or statement about a population parameter.
- For example, the average age of college students equals 23 years.

Null Hypothesis (H₀)

DEFINITION 4.4.2 (Null Hypothesis)

The null hypothesis is a statement under investigation or testing.

Usually, the null hypothesis represents a statement of "no effect," "no difference," or, put another way, "things haven't changed."

For example, H_o : $\mu = 23$

Alternate Hypothesis (H_a) or (H₁)

DEFINITION 4.4.3 (Alternate Hypothesis)

The alternate hypothesis is a statement we will adopt in the situation in which the evidence (data) is so strong that you reject the null hypothesis.

- This test is a statistical test is designed to assess the strength of the evidence (data) against the null hypothesis.
- $\succ For example, H_1: \mu \neq 23$

Test Statistics

DEFINITION 4.4.4 (Test Statistic)

A test statistic is a quantity calculated from the given sample and can be used to make a decision in a test of hypotheses.

Different test statistics for population mean hypotheses testing				
Case	Population	Sample size	Standard deviation	Statistic and distribution
1	normal	any sample size	known	$Z = rac{\overline{x} - \mu}{\sigma \ / \ \sqrt{n}} \sim N(0, 1)$
2	any population	$\begin{array}{c} \text{large} \\ (n \geq 30) \end{array}$	known	$Z = rac{\overline{x} - \mu}{\sigma \ / \ \sqrt{n}} \sim N(0, 1)$
3	any population	large $(n \ge 30)$	unknown, use the sample standard deviation instead of	$Z = rac{\overline{x} - \mu}{s \ / \ \sqrt{n}} \sim N(0, 1)$

The Critical Region

DEFINITION 4.4.5 (The Critical Regions)

The critical region is a region that produced by the value(s) that corresponds to the

rejection of the null hypothesis at some chosen level of significance.

The Critical Region

Steps for Hypothesis Test

- Step 1: State the null and alternative hypothesis (H_o and H_1).
- > <u>Step 2:</u> Specify the suitable test statistic.
- > <u>Step 3:</u> Compute the critical value for the statistic.
- > <u>Step 4:</u> Make a decision.

Reject H_o or Fail to reject H_o

Step 5: Make a conclusion

Accept H_1 or we don't have enough evidence to support H_1

Example (1)

In recent years, the mean age of all college students in a city has been 23. A random sample of 42 students revealed a mean age of 23.8 suppose their ages are normally distributed with a population standard deviation of σ =2.4 can we infer at α =0.05 that the population mean has changed?

$\mu = 23$ n = 42 $\sigma = 2.4$ $\bar{x} = 23.8$

Step 1: State the null and alternative hypothesis $(H_o \text{ and } H_1)$

Null hypothesis (H _o)	$\mu = 23$
alternative hypothesis (H ₁)	<i>μ</i> ≠ 23

Step 2: Specify the suitable test statistic

Since $n \ge 30$ and σ is known, we will use Z-statistic

$\mu = 23$	$\sigma = 2.4$	n = 42	$\bar{x} = 23.8$
$\mu_{\bar{x}}=\mu=23$	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{2.4}{\sqrt{42}} = 0.37$	$z_{\bar{x}} = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{23.8 - 23}{0.37} = 2.16$	

Step 3: Compute the critical value for the statistic

$(1 - \alpha) = 0.95$	$\alpha = 0.05$	$\frac{\alpha}{2} = .025$
$1-\frac{\alpha}{2}=0.975$	$\pm z_{1-\alpha/2} = \pm 1.96$	

1- α	100(1-lpha)%	α	1- $^{\alpha}/_{2}$	$z_{1-(\alpha/2)}$
0.90	90%	0.10	0.95	1.65
0.95	95%	0.05	0.975	1.96
0.98	98%	0.02	0.990	2.33
0.99	99%	0.01	0.995	2.58

Step 4: Make a decision

 $z_{\bar{x}} = 2.16$ which is greater than 1.96 => $z_{\bar{x}} = 2.16 > 1.96$, so we reject H_0

Two – tailed critical region

Step 5: Make a conclusion

We accept H_1 , there is enough evidence that mean age has changed at $\alpha = 0.05$

In the previous example, if the confidence level (α) = 0.02, what can we infer about the population mean ?

$\mu = 23$ n = 42 $\sigma = 2.4$ $\bar{x} = 23.8$

Step 1: State the null and alternative hypothesis $(H_o \text{ and } H_1)$

Null hypothesis (H _o)	$\mu = 23$
alternative hypothesis (H ₁)	<i>μ</i> ≠ 23

Step 2: Specify the suitable test statistic

Since $n \ge 30$ and σ is known, we will use Z-statistic

$\mu = 23$	$\sigma = 2.4$	n = 42	$\bar{x} = 23.8$
$\mu_{\bar{x}}=\mu=23$	$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ $= \frac{2.4}{\sqrt{42}} = 0.37$	$z_{\overline{x}} = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}}$ $= \frac{23.8 - 23}{0.37}$ $= 2.16$	

Step 3: Compute the critical value for the statistic

$(1 - \alpha) = 0.98$	lpha=0.02	$\frac{\alpha}{2} = .01$
$1-\frac{\alpha}{2}=0.99$	$\pm z_{1-\alpha/2} = \pm 2.33$	

1- α	$100(1-\alpha)\%$	α	1- $^{\alpha}/_{2}$	$z_{1-(\alpha/2)}$
0.90	90%	0.10	0.95	1.65
0.95	95%	0.05	0.975	1.96
0.98	98%	0.02	0.990	2.33
0.99	99%	0.01	0.995	2.58

Solution

Step 4: Make a decision

 $z_{\bar{x}} = 2.16$ which is greater than 1.96 $=> z_{\bar{x}} = 2.16 < 1.96$, so we fail to reject H_0 Two – tailed critical region $\alpha/2$ $\alpha/2$ R.R. of H_0 R.R. of H_0

Step 5: Make a conclusion

We don't have enough evidence to accept H_1 , or we don't have enough evidence that mean age has changed at $\alpha = 0.02$

Example (3)

A random sample of 27 observations from a large population has a mean of 22 and a standard deviation of 4.8. can we conclude at $\alpha = 0.01$ that a population mean is significantly below 24?

$\mu = 24$ n = 27 s = 4.8 $\bar{x} = 22$

Step 1: State the null and alternative hypothesis (H_o and H_1)

Null hypothesis (H _o)	$\mu \ge 23$
alternative hypothesis (H ₁)	$\mu < 23$

Step 2: Specify the suitable test statistic

Since n < 30 and σ is unknown, we will use t-statistic

$\mu = 24$	<i>n</i> = 27	s = 4.8	$\overline{x} = 22$
$\mu_{\overline{x}}=\mu=24$	$\sigma_{\overline{x}} = \frac{s}{\sqrt{n}}$ $= \frac{4.8}{\sqrt{27}} = 0.924$	$t = \frac{\overline{x} - \mu}{\sigma_{\overline{x}}}$ $= \frac{22 - 24}{0.924}$ $= -2.165$	

Step 3: Compute the critical value for the statistic

$(1 - \alpha) = 0.98$	lpha=0.01			
	$-t_{\alpha}(27-1) = -t_{0.01}(26) = -2.479$			

	α						
ν	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707

We don't have enough evidence to accept H_1 , or we fail to support H_1