
OBJECT ORIENTED

PROGRAMMING USING JAVA

Lab 21

CONTENT

� Arrays in Java

� Loops in Java

� Decision Making in Java: if – else, switch, break

and continue.

� Introduction to OOP

⚫ Classes and objects

⚫ Principles of OOP

⚫ Class constructor

⚫ Access modifiers and field modifiers

� public, protected, default, private

� Static (field and method), final field

� UML diagrams.
2

ARRAYS IN JAVA

� In Java, all arrays are dynamically allocated, means

you can read the size as an input from the user and

then allocate the array.

� Obtaining an array is a two-step process:

1. Variable declaration:

int myArr[]; or int[] myArr;

int multiArr[][]; or int [][] multiArr;

1. Memory allocation (Instantiating an Array):

myArr = new int[3];

multiArr = new int[2][3]; 3

ARRAYS IN JAVA

� Can make them in one step:

int myArr[] = new int[3];

int myArr[] = {10,11,12};

int[][] multiArr = new int[2][3];

int[][] multiArr = {{1,2}, {3,4}};

� For non-uniform 2D array:

int[][] multD = new int[3][];

multD[0] = new int[3];

multD[1] = new int[2];

int[][] arr2 = {{1,2}, {4},{1,1,1}};
4

0 1 2

0 - - -

1 - - -

Col
Row

0 1

0 1 2

1 3 4

Col
Row

0 1 2

0 - - -

1

2

Col
Row

0 1 2

0 1 2

1 4

2 1 1 1

Col
Row

LOOPS IN JAVA

1. While:

while (x_IsTrue)

{ // do these stetments }

2. Do while:

do

{ // do these statements

} while (x_IsTrue);

3. For:

for(int i=0; i<N; i++)

{ //do these statements} 5

IF - ELSE

if (condition1) //Boolean expression

{ statement1;

statement2;

}

else if (condition2)

{ statement3;

statement4;

}

else

statement5;
6

SWITCH CASE

switch (Expression)

{

case value1: // Duplicate case values are not allowed

statment1;

break; //optional, if omitted, then execution will
//continue on into the next case and execute

it //regardless of the expression value..

case value2:

statment2;

break;

default: //optional

statment3;

} 7

INTRODUCTION TO OOP

� Object oriented programming is an approach that

provides a way of modularizing programs by

creating partitioned memory area of both data

and functions that can be used as templates for

creating copies of such modules on demand.

� Think about everything as objects of classes!

8

CLASSES AND OBJECTS

9

CLASSES AND OBJECTS

� A class is a kind of data type that you can define

yourself.

� The class defines the characteristics of the object

and the operations that are performed on/by the

object.

� Objects are variable of type class.

� Every object belongs to (is an instance of) a class.

� A program is a set of objects telling each other

what to do, by sending messages.
10

PRINCIPLES OF OOP

11

CREATING FIRST CLASS

12

Access

modifier

Class

name

Constructor

(special

method)

Attributes

Method

MAKING OBJECT FROM CLASS

13

UML – CLASS DIAGRAM

� In OOP, a class can contains member functions and member

data(attributes).

� We can represent the class by graphical design called UML (Unified

Modeling Language).

� Each class is represented by a rectangle subdivided into three

compartments

1. Class name in top box.

Unique Name, No spaces, Short

Use italics for an abstract class name.

2. Attributes (optional) in middle box.

Should include all fields of the object.

3. Operations / Methods (optional) in bottom box.

May omit trivial (get/set) methods.

Should not include inherited methods.
14

UML – CLASS DIAGRAM

� Represent the rectangle class in UML

� There is a plugin for NetBeans that can be used to

generate a class diagram for your code and vice versa.
15

Rectangle

- Len : Int

- Width : Int

- Color: String

+ setColor(string c)

class name

Attributes/ fields

methods/ functions

- for private access

+ for public access

for protected access

CONSTRUCTOR

� Is a member function with the same name as the class, can
take arguments but has no return type (not even void).

� A special method that is used to initialize a newly
created object and is called automatically just after the
memory is allocated for the object.

� It can be used to initialize the objects to required or
default values at the time of object creation.

� A class can have any number of constructors that differ
in parameter lists (Constructor overloading).

� Public constructors enable any other class to create object
from it. While Private constructors prevent other classes
from making object using this constructor.

16

EXAMPLE ON CONSTRUCTORS

� public Rectangle() {

len = 0;

width = 0;

color = null;

}

� public Rectangle(int l, int w) {

len = l;

width = w;

color = null;

}

� public Rectangle(Rectangle r) {

len = r.len;

width = r.width;

color = r.color;

}

17

Default constructor, takes no parameters.

Public means other classes will be able to

create object from the class.

Parametrized constructor. Takes any

number of parameters.

Copy constructor. Takes only one parameter

which is of the same time of the class and set

all the values of data members to make copy

of the object.

Unlike C++, java doesn’t create a copy

constructor if you don’t write your own.

NOTES ON CONSTRUCTORS

� If you do not define ANY constructor, then the compiler will provide a
default constructor and initializes the member variables with their default
values.

� If you defined any other type of constructors (parameterized or copy); then
the compiler will NOT provide any default constructors.

public class Rectangle {

int len, width;

public Rectangle(int l, int w){ %parametrized constructor

len = l;

width = w;

}

public static void main(String[] args) {

Rectangle rec = new Rectangle(); %Error

}

}

18

ACCESS MODIFIERS

� Java provides several access modifiers to set

access levels for classes, variables, methods,

and constructors. The four access levels are:

1. No modifiers are needed to be Visible to the

package, this is default.

2. Private: Visible to the class only.

3. Public: Visible to the world, anywhere.

4. Protected: Visible to the package and all

subclasses.

19

EXAMPLE USING PRIVATE MODIFIER

Package myPack {
class A{ //No constructors are written then a default one will be

//generated automatically with public access

private int data = 40;
private void msg(){

System.out.println("Hello java");

}

}

public class Simple{

public static void main(String args[]){
A obj=new A(); //will call the default constructor that

//was generated automatically

System.out.println(obj.data); //Compile Time Error as “data”
//attribute is private

obj.msg(); //Compile Time Error as msg() function is private

}

}

}

20

FIELD MODIFIERS: STATIC

� A static member has only one copy of instance variables

that is shared among all the objects of the class whereas

a non-static member has its own copy of instance

variable at each object.

� Static fields are be accessed by the class name but also

can be accessed with object name.

� One of the most common use for static fields is to count

number of instantiated objects created from the class.

21

FIELD MODIFIERS: STATIC

public class Item {

static int numOfItems= 0;

public Item() {

numOfItems ++;

}

public static void main(String[] args) {

Item item1=new Item();

Item item2=new Item();

Item.numOfItems++;

}}

// numOfItems=1

// numOfItems=2

// numOfItems=3

22

FILED MODIFIERS: FINAL

� Final modifier is used to declare a constant

attribute that takes its value once at the

constructor or while declaring this variable, and

then can not be changed after that at all.

Ex. Math.PI and Math.E (These fields are

declared in class Math with the modifiers

public, final and static.)

23

FILED MODIFIERS: FINAL

package oop_lab2;

class Rectangle {

int len, width;

final String msg;

public Rectangle(){

len = 0;

width = 0;

msg = "This is constant string"; //value assigned
and will //never
change after that

}

}

public class OOP_lab2 {

public static void main(String[] args) {

Rectangle rec = new Rectangle();

rec.msg = "try to change!"; //Error: cannot assign
//value to final variable

}

}

24

GETTERS AND SETTERS

� The class’s private members can not be accessed
by other classes (but we can access them using
their getters and setters).

� Why using getters and setters?
⚫ Main problem with making field public instead

of getter and setter is that it violates Encapsulation
by exposing internals of a class.

⚫ Once you exposed internals of class you can not
change internal representation or make it better
until making change in all client code.

� You can write them using a wizard on the IDE.
25

GETTERS AND SETTERS

26

Right click on the

line you want to

place your

generated code.

Chose insert code.

GETTERS AND SETTERS

27

Choose

which

function you

need, and it

will be

written for

you.

GETTERS AND SETTERS

28

Select the

attributes you

want to generate

code for them.

Click “Generate”

GETTERS AND SETTERS

class Rectangle {

private int len, width;

public void setLen(int len) {

this.len = len;

}

public void setWidth(int width) {

this.width = width;

}

public int getLen() {

return len;

}

public int getWidth() {

return width;

}

}

29

QUESTIONS

30

