OBJECT ORIENTED

® PROGRAMMING USING JAVA
Lab 2

CONTENT

Arrays in Java
Loops in Java

Decision Making in Java: if — else, switch, break
and continue.

Introduction to OOP
Classes and objects
Principles of OOP
Class constructor

Access modifiers and field modifiers

public, protected, default, private
Static (field and method), final field

UML diagrams.

ARRAYS IN JAVA

In Java, all arrays are dynamically allocated, means
you can read the size as an input from the user and
then allocate the array.
Obtailning an array 1s a two-step process:

Variable declaration:

int myArr[]; or int[] myArr;

int multiArr[][]; or int [][] multiArr;

Memory allocation (Instantiating an Array):
myArr = new int[3];
multiArr = new mnt[2][3];

ROWCO] 0

ARRAYS IN JAVA 0

1]
Can make them 1n one step:
int myArr[| = new int[3]; Row')| 0
int myArr[] ={10,11,12}; / 0 1

int[][] multiArr = new int[2][3]; 1 13
it][] multiArr = {{1,2}, {3,4}};

ROWCO] 0
. 0)))
For non-uniform 2D array:)
it][] multD = new int[3][]; 2 ‘
multD[0] = new int[3];
multD[1] = new int[2]; _ Row

int[][] arr2 = {{1,2}, {4},{1,1,1}}; ————

LOOPS IN JAVA

While:
(x_IsTrue)
{/] do these stetments }

Do while:

{ /] do these statements
} (x_IsTrue);

For:
(int 1=0; 1<N; 1++)
{//do these statements}

IF - ELSE

1f (conditionl)

{ statement]1;
statement2;

h

else 1f (condition?2)

{ statement3;
statement4;

h

else

statementd;

SWITCH CASE

switch (Expression)

{
case valuel:
statment];
break;
1t

case value2:
statment?2;

break;

default:
statment3;

b

// Duplicate case values are not allowed

//loptional, if omitted, then execution will
/lcontinue on 1nto the next case and execute
/lregardless of the expression value..

//loptional

INTRODUCTION TO OOP

Object oriented programming is an approach that
provides a way of modularizing programs by
creating partitioned memory area of both data
and functions that can be used as templates for
creating copies of such modules on demand.

Think about everything as objects of classes!

CLASSES AND OBJECTS

Eating
Drinking
Running

What Is an Object?

Name = Peter \

Age =3
Color = white
Sex = male

Peter can eat mare
foods

Peter can drink more
water

Peter can run fast)

Name = john
Age=2

Color = brown
Sex = male

V' John can eat less
foods
v John can drink

more water
¥ John can run slow

Name = Julla
Age =2

Color = white
Sex = female

v Julia can eat less
foods

v Julia can drink less

waler

Jushia can run fast

CLASSES AND OBJECTS

A class 1s a kind of data type that you can define
yourself.

The class defines the characteristics of the object

and the operations that are performed on/by the
object.

Objects are variable of type class.
Every object belongs to (is an instance of) a class.

A program 1s a set of objects telling each other
what to do, by sending messages.

PRINCIPLES OF OOP

wsiydiowAjod —

3duelayuj —

uolloealsqy —

uonjensdesuy —

CREATING FIRST CLASS

[Access

Class
name
modifier public class Rectangle {
int len, width;
String color; [_Aﬁmﬂnnes]

public Rectangle () {

len = 0;

width = 0; Co(nstrgc‘;or
= specia

CQO l(—-— ;

color null othod)

public void setColorxr (String color) {

this.color =

color;
} \[Method] @

MAKING OBJECT FROM CLASS

Automatically Calls
Name of an the

— = R —

Rectangle myrect = new Rectangle();

1

1

Dynamically

LR -~

Create Object
using new

UML — CLASS DIAGRAM

In OOP, a class can contains member functions and member
data(attributes).

We can represent the class by graphical design called UML (Unified
Modeling Language).

Each class is represented by a rectangle subdivided into three
compartments

1. Class name in top box.
Unique Name, No spaces, Short CIaSS
Use italics for an abstract class name.

I

2. Attributes (optional) in middle box. - :
Should include all fields of the object. Att”bme

3. Operations / Methods (optional) in bottom box.

May omit trivial (get/set) methods. t Operathn()
Should not include inherited methods.

UML — CLASS DIAGRAM

Represent the rectangle class in UML

A

class name

Rectangle
_ N
- for private access
+ for public access Len : Int - -
for protected access Width : Int) Attributes/ fields

Color: String

A

+ setColor(string c) methods/ functions

There 1s a plugin for NetBeans that can be used to
generate a class diagram for your code and vice versa.

CONSTRUCTOR

Is a member function with the same name as the class, can
take arguments but has no return type (not even void).

A special method that is used to initialize a newly
created object and 1s called automatically just after the
memory 1s allocated for the object.

It can be used to initialize the objects to required or
default values at the time of object creation.

A class can have any number of constructors that differ
1in parameter lists (Constructor overloading).

Public constructors enable any other class to create object
from 1t. While Private constructors prevent other classes
from making object using this constructor.

EXAMPLE ON CONSTRUCTORS

ublic Rectangle
p gle() 1 Default constructor, takes no parameters.

le.n = 0; Public means other classes will be able to
width = 0; create object from the class.
color = null;

len =1;

public Rectangle(int 1, int w) {
[number of parameters.

Parametrized constructor. Takes any]

width = w;

color = null;

/Copy constructor. Takes only one parameter\
which is of the same time of the class and set
all the values of data members to make copy

width = r.width; of the object.

Unlike C++, java doesn’t create a copy

_ constructor if you don’t write your own. Y,

public Rectangle(Rectangle r) {

len =r.len;

color = r.color;

NOTES ON CONSTRUCTORS

If you do not define ANY constructor, then the compiler will provide a
default constructor and initializes the member variables with their default
values.

If you defined any other type of constructors (parameterized or copy); then
the compiler will NOT provide any default constructors.

public class Rectangle {
int len, width;
public Rectangle(int 1, int w){
len =1;
width = w;
h

public static void main(String[] args) {
Rectangle rec = new Rectangle(); % Error

;

ACCESS MODIFIERS

Java provides several access modifiers to set
access levels for classes, variables, methods,
and constructors. The four access levels are:

No modifiers are needed to be Visible to the
package, this is default.

Private: Visible to the class only.
Public: Visible to the world, anywhere.

Protected: Visible to the package and all
subclasses.

EXAMPLE USING PRIVATE MODIFIER

Package myPack {

class A{ //No constructors are written then a default one will be
//generated automatically with public access

private int data = 40;

private void msg(){
System.out.println("Hello java");

h

;

public class Simple{
public static void main(String args[]){
A obj=new A(); //will call the default constructor that
//was generated automatically

System.out.println(obj.data); //Compile Time Frror as “data”
/lattribute 1s private

obj.msg(); //Compile Time Error as msg() function is private

}

FIELD MODIFIERS: STATIC

A static member has only one copy of instance variables
that i1s shared among all the objects of the class whereas
a non-static member has its own copy of instance
variable at each object.

Static fields are be accessed by the class name but also
can be accessed with object name.

One of the most common use for static fields 1s to count
number of instantiated objects created from the class.

FIELD MODIFIERS: STATIC

Item {

static int numOfItems= 0;

Item() {

numOfltems ++;
h

main(String[] args) {

Item item1=new Item(); /| numOfltems=1
Item item2=new Item(); // numOfltems=2

Item.numOfltems++; // numOfltems=3

I

FILED MODIFIERS: FINAL

Final modifier is used to declare a constant
attribute that takes its value once at the
constructor or while declaring this variable, and
then can not be changed after that at all.

Ex. Math.PI and Math.E (These fields are
declared in class Math with the modifiers
public, final and static.)

FILED MODIFIERS: FINAL

package oop_lab2;
class Rectangle {
int len, width;
final String msg;

public Rectangle(){
len = 0;
width = 0;
msg = "This 1s constant string";

b
h

public class OOP_lab2 {

public static void main(String[] args) {

Rectangle rec = new Rectangle();
rec.msg = "try to change!";

//Error: cannot assigi
/Ivalue to final variable

GETTERS AND SETTERS

The class’s private members can not be accessed
by other classes (but we can access them using
their getters and setters).

Why using getters and setters?

Main problem with making field public instead
of getter and setter 1s that it violates Encapsulation
by exposing internals of a class.

Once you exposed internals of class you can not
change internal representation or make it better
until making change in all client code.

You can write them using a wizard on the IDE.

GETTERS AND SETTERS

class Rectangle {
private int 1e

i At -

final String n

public Rectanc

len = 0O;
width = 0]
msg = "Thi

rublic class OOP_lab2

* [@param args thd
— +*
!
=] prublic static woid
S/ ToODO code 4
FEectangle rec

//rec.msg = "4

)p_lab2.Rectangle » &0 width 3

- lab2 {run) X |

rumn:

a

1

2

BUILD SUCCESSFUL (total time: 0 second

MNavigate
Show Javadoc
Find Usages
Call Hierarchy

Insert Code...
Fix Imports
Refactor
Format

Run File
Debug File
Test File
Debug Test File

Run Focused Test Method
Debug Focused Test Method

Run Into Method
MNew Watch...

Toagagle Line Breakpoint

Profile

Cut
Copy
Paste

Code Folds
Select in Projects

Alt+F1
Alt+F7

Alt+Insert
Ctri+Shift+I

Alt+Shift+F

Shift+F6
Ctrl+Shift+F5
Ctrl+Fo6
Ctrl+Shift+F6

Ctrl+Shift+F7
Ctrl+F8

Ctrl+X
Ctrl+C
Ctrl+V

Right click on the
line you want to
place your
generated code.
Chose insert code.

GETTERS AND SETTERS

class Rectangle
private int len, width;

final String msg;

public Rectangle () {
len = 0;
width = 0;

msg = "This i1s cons

L

Generate

Constructor...

Logger...

Setter...

Getter and Setter...
equals() and hashCode()...
toString()...

Delegate Method...
Override Method...

Add Property...

Choose
which
function you
need, and 1t
will be
written for
you.

GETTERS AND SETTERS

class Rectangle
private int len, width;

final String msg;

Select fields to generate getters for:

] Generate Getters iy

= [Rectangle
& len : int
[] B& msg : String

S width : ing

labZ.Rectangle

b2 (run) < |

oz

. Selectall | Select None |

[] Encapsulate Fields
ILD SUCCESSED

I Generate || Cancel

Select the
attributes you
want to generate
code for them.

Click “Generate”

GETTERS AND SETTERS

class Rectangle {
private int len, width;

public void setLen(int len) {
this.len=len;

}

public void setWidth(int width) {
this.width = width;
h

public int getLen() {
return len;

j

public int getWidth() {
return width;

j

b

QUESTIONS

?

