
Object Oriented Programming (OOP)

Lecture4: Inheritance & Polymorphis

Prepared by:

Mohamed Mabrouk

Those slides are based on slides by:

Dr. Sherin Mousa and Dr. Sally Saad

Lecture Outline

• Class reusability

• Inheritance

• Method overriding

• Abstract class/method

• Abstract classes and methods

• Polymorphism

2

Class Reusability

3

Class reusability

• Is simply reusing a class in another class

• Has two forms COMPOSITION and
INHERITANCE

• Composition is also called has-a à placing a

reference/object of a class in another class

• For instance, relation between class Employee
and Department

4

Class reusability

5

public class Department {

Employee[] employees;

}

OR

public class Employee {

Department department;

}

Class reusability

• Inheritance is also called is-a à extending a

class with another class

• For instance, relation between class Employee
and Person

6

Class reusability

7

public class Employee extends Person {

}

Inheritance

8

Inheritance

• Means that a new class (called child class or

subclass) inherits from an existing class (called
parent or super class) à It inherits all its
members and characteristics

• Can add/modify parent class functionality to
fit its requirements

• One of the main pillars of OOP

9

Inheritance

10

public class Person {

private String name;

String address;

public Person(String name, String address) {

this.name = name;

this.address = address;

}

}

public class Employee extends Person {

private float salary;

}

Subclass Constructors

• Subclass has to have a constructor similar to

that of base class

• Subclass constructor has to call base class
constructor directly or indirectly à constructor
calls another constructor that in turn calls
super

• super() can be used to call base class

constructor à otherwise a compilation error
11

Subclass Constructors

• Call to super MUST BE THE FIRST STATEMENT

• Super class constructor must be called to
ensure that all base class members are
initialized

• Super class members are also members of
subclass, so they have to be initialized first

12

Method Overriding

13

Method Overriding

• Access modifier for an overriding method can be
same or more, but not less, access than the
overridden method

• For instance, if base class method’s access
modifier is protected à the access modifier of
child class’s method can be protected or
public but NOT private

• Any method defined in Java is OVERRIDABLE BY

DEFAULT unless it defined as final

14

Method Overriding

• Second form of polymorphism (method
overloading is the other form)

• Method of subclass has the exact same
signature as that of the super class à same
name, same parameters and same return
type

• When a method is overridden the default
behavior or base class can be adapted

15

Overloading versus Overriding

• Overloading is between methods of the same
class

• Same method name but with different number of
parameter or parameter types but not return type

• Overriding is between methods of a base and
child classes

• It is the exact same method name and
parameters and return type but with different
behavior à parent class logic is
modified/adapted

16

Overriding Example

17

public class Student extends Person{

public void display() {

System.out.println("Name = " + name + ", Address = " +

address + ", Marks = " + marks);

}

}

public class Person {

public void display() {

System.out.println("Name = " + name);

System.out.println("Address = " + address);

}

}

Overriding Example

18

public class Student extends Person{

public void display() {

System.out.println("Name = " + name + ", Address = " +

address + ", Marks = " + marks);

}

}

public class Person {

public void display() {

System.out.println("Name = " + name);

System.out.println("Address = " + address);

}

}

Same method
signature but

different
behavior

Inheritance Summary

• Enables code reusability

• A class inherits (extends) another class which
has similar but not exact behavior

• Subclass can add new functionalities and/or
adapt existing ones

• It inherits all non-private members (fields and
methods)

• A class can have EXACTLY ONE PARENT class
19

Abstract Class/Method

20

Abstact Class

• A class that does not have any concrete

functionality by itself

• It MUST BE INHERITED (extended) to have a
meaning

• Is called abstract class

• CAN NEVER BE INSTANTIATED

21

Abstact Class Example

22

Vehicle

Bus Truck

Abstact Class Example

• Vehicle class can be defined

abstract

23

Vehicle

Bus Truck

Abstact Class Example

• Vehicle class can be defined

abstract

• It provides basic functionality
of any moving vehicle

24

Vehicle

Bus Truck

Abstact Class Example

• Vehicle class can be defined

abstract

• It provides basic functionality
of any moving vehicle

• Cannot be used by itself,
rather one of its children can

be used and instantiated

25

Vehicle

Bus Truck

Abstact Class UML Diagram

26

Bus

- numOfPassengers

+ getNumOfPassengers()

Truck

- payload

+ getPayload()

Vehicle

- make
- model

+ getMake()
+ getModel()

How to Define an Abstract Class

27

public abstract class Vehicle {

private String make;

private String model;

public Vehicle(String make, String model){

this.make = make;

this.model = model;

}

public String getMake(){

return make;

}

public String getModel() {

return model;

}

}

How to Define an Abstract Class

28

public abstract class Vehicle {

private String make;

private String model;

public Vehicle(String make, String model){

this.make = make;

this.model = model;

}

public String getMake(){

return make;

}

public String getModel() {

return model;

}

}

Subclass of an Abstract Class

29

public class Truck extends Vehicle {

private float payload;

public Truck(String make, String model) {

super(make, model);

}

public Truck(String make, String model, float payload) {

this(make, model);

this.payload= payload;

}

public float getPayload() {

return payload;

}

}

Abstact Method

• A method declared in base class with full

signature but HAS NO BODY

• It has to be overridden in subclasses

• If a class has one or abstract methods à The
class MUST ALSO BE ABSTRACT

• Abstract classes can contain both concrete

(non-abstract) and abstract methods

30

Abstact Method Example

• Can you think of an abstract

method to be added to our
vehicle hierarchy???

31

Abstact Method Example

• What if we add a method called “clear” that

clears the vehicle?

32

Abstact Method Example

• What if we add a method called “clear” that

clears the vehicle?

• Does it depend on the type of car, i.e. does it
differ in truck from that of bus?

33

Abstact Method Example

• What if we add a method called “clear” that

clears the vehicle?

• Does it depend on the type of car, i.e. does it
differ in truck from that of bus?

• Yes, in truck you have to clear payload, i.e. set
it to 0, whereas in bus you have to set

numOfPassengers to 0

34

Abstract Method Example

35

public abstract class Vehicle {

public abstract void clear();

}

Abstract Method Example

36

public abstract class Vehicle {

public abstract void clear();

}

public class Bus extends Vehicle{

public void clear(){

this.numOfPassengers = 0;

}

}

Abstract Method Example

37

public abstract class Vehicle {

public abstract void clear();

}

public class Bus extends Vehicle{

public void clear(){

this.numOfPassengers = 0;

}

}

public class Truck extends Vehicle{

public void clear(){

this.payloda = 0;

}

}

Abstact Method

• Constructors and static methods cannot be
declared abstract à why???

38

Abstact Method

• Constructors and static methods cannot be
declared abstract à why???

• Constructors are not inherited

39

Abstact Method

• Constructors and static methods cannot be
declared abstract à why???

• Constructors are not inherited à we should
call super for them to get invoked

40

Abstact Method

• Constructors and static methods cannot be
declared abstract à why???

• Constructors are not inherited à we should
call super for them to get invoked

• Static methods are for the whole class

41

Abstact Method

• Constructors and static methods cannot be
declared abstract à why???

• Constructors are not inherited à we should
call super for them to get invoked

• Static methods are for the whole class à
cannot be overridden and their

implementations have to be provided when
defined

42

Abstact Method

• Can an abstract class have a constructor ???

43

Abstact Method

• Can an abstract class have a constructor ???
à yes, but if you try to call it you get a

compilation error

44

Abstact Class/Method Summary

• Abstract class provides basic implementation
that has to be extended to make it complete

• Abstract class may or may not contain and
abstract method

• If there at least one abstract method à class
must be abstract

• An abstract method does not have a body
rather has signature only

45

Abstact Class/Method Summary

• An abstract class variable can be instantiated

with a reference to any of its subclasses (if they
are not abstract)

• For instance:
Vehicle v = new Truck();

Vehicle v = new Bus();

• This is also called upcasting

46

Abstact Class/Method Summary

• An abstract class variable can be instantiated

with a reference to any of its subclasses (if they
are not abstract)

• For instance:
Vehicle v = new Truck();

Vehicle v = new Bus();

• This is also called upcasting à why is this

legal???
47

Abstact Class/Method Summary

• An abstract class variable can be instantiated

with a reference to any of its subclasses (if they

are not abstract)

• For instance:
Vehicle v = new Truck();

Vehicle v = new Bus();

• This is also called upcasting à why is this legal???

• Simply because a Truck or a Bus is also a vehicle

48

Abstact Class/Method Summary

• Is the other way around also legal???

• For instance: can we say something like
Truck t = new Vehicle();

Bus b = new Vehicle();

49

Abstact Class/Method Summary

• Is the other way around also legal???

• For instance: can we say something like
Truck t = new Vehicle();

Bus b = new Vehicle();

• Try it out yourself

50

Polymorphism

51

Polymorphism

• Polymorphism means many/several forms

• It has two forms; method overloading and
method overriding

• Refers to the dynamic binding mechanism
that determines which method definition will
be called in case of overriding

52

Polymorphism Example

53

Bus

- numOfPassengers

+ getNumOfPassengers()
+ display()

Truck

- payload

+ getPayload()
+ display()

Vehicle

- make
- model

+ getMake()
+ getModel()

+ display

Dynamic Binding Example

54

public static void main(String[] args){

Vehicle v = new Truck("Ford", "Ranger");

v.display();

}

Dynamic Binding Example

55

public static void main(String[] args){

Vehicle v = new Truck("Ford", "Ranger");

v.display();

v = new Bus("Toyota", "Coaster");

v.display();

}

Dynamic Binding Example

56

public static void main(String[] args){

Vehicle v;

Truck t = new Truck("Ford", "Ranger");

v = t;

v.display();

}

Dynamic Binding Example

57

public static void main(String[] args){

Vehicle v;

Truck t = new Truck("Ford", "Ranger");

v = t;

v.display();

Bus b = new Bus("Toyota", "Coaster");

v = b;

v.display();

}

Why Polymorphism

• Allows you to define general methods in super

classes and leave implantation details for sub
classes

• Promotes software extensibility à At the time
of implementation you are not aware of the
new classes that will be defined but you are

sure that they should implement certain
method

58

Dynamic Binding

• When a method is overridden in a subclass
and you define an object of base type à

method of subclass is still called

• For instance:
Person p = new Employee();

• This means that p internally refers to an

Employee, however you can only reference
methods defined in Person (at compile time)

59

Dynamic Binding

• Via inheritance, a variable of superclass can

point to an object of the class itself or any of its
subclasses

• However, YOU CANNOT DIRECTLY MAKE A

VARIABLE VARIABLE OF A SUBCLASS TYPE AND

POINT TO OBJECT OF ITS SUPERCLASS.

• The actual type of the instance AT RUNTIME

determines which method will get invoked
60

Upcasting and Downcasting

• Upcasting is converting an object of a
subclass to it superclass à Done implicitly

• Upcasting example:
Person p;

Employee emp = new Employee();

p = emp;

61

Upcasting and Downcasting

• Downcasting is converting an object of a
superclass to one of its subclasses à Must be

done explicitly

• Downcasting example:
Person p = new Employee();

Employee emp;

emp = p;

62

Upcasting and Downcasting

• Downcasting is converting an object of a
superclass to one of its subclasses à Must be

done explicitly

• Downcasting example:
Person p = new Employee();

Employee emp;

emp = (Employee) p;

63

Upcasting and Downcasting

• Downcasting is converting an object of a
superclass to one of its subclasses à Must be
done explicitly

• Downcasting example:
Person p = new Employee();

Employee emp;

emp = (Employee) p;

• Can throw an exception if p is not actually of type
Employee, but of type Student for instance

64

instanceof Operator

• instanceof operator can be used to check

whether an object is a certain class type or
not

65

public static void main(String[] args){

Person p1 = new Person();

Student s1 = new Student();

Person p2 = new Student();

}

instanceof Operator Exmple

66

public static void main(String[] args){

if(p1 instanceof Person){}

if(p1 instanceof Student){}

if(s1 instanceof Student){}

if(s1 instanceof Person){}

if(p2 instanceof Person){}

if(p2 instanceof Student){}

}

instanceof Operator Exmple

67

public static void main(String[] args){

if(p1 instanceof Person){}

if(p1 instanceof Student){}

if(s1 instanceof Student){}

if(s1 instanceof Person){}

if(p2 instanceof Person){}

if(p2 instanceof Student){}

}

Upcasting and Downcasting Summary

• Assign a superclass variable to superclass

object?

• Assign a subclass variable to subclass

object?

• Assign a superclass variable to a subclass
object?

• Assign a subclass variable to a superclass

object? à Must be done via explicit casting

68

Exercise on Up/Down casting

• Define an abstract class called Employee with field
“baseSalary” and abstract method called “calcSalary”

• Define 3 types of employees Normal, Manager, and
Trainee all are subclasses of Employee

• For normal employee, net salary equals base salary *
1.2

• For manager, net salary equals base salary * 1.5

• For trainee, net salary equals base salary * 1

• Define an array of length 3 and place one of each
type in that array

69

Thank You!

70

