Sheet 7

1) Implement the following function using suitable multiplexer $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(0,3,5,6,8,9,14,15)$
Ans: 8×1 mux (the number of its selection lines equals the number of input variables -1): A, B and C on selections and D on inputs as follows:
$\mathrm{I} 0=\mathrm{D}^{\prime}, \mathrm{I} 1=\mathrm{D}, \mathrm{I} 2=\mathrm{D}, \mathrm{I} 3=\mathrm{D}^{\prime}, \mathrm{I} 4=1, \mathrm{I} 5=0, \mathrm{I} 6=0$ and $\mathrm{I} 7=1$
2) Implement the full subtractor using suitable multiplexers.

Ans: for the truth table of the full subtractor use two 4×1 muxs one for B borrow and one for D difference.
3) Construct a 4×16 decoder from 2×4 decoders.

Ans: 5 decoders will be used, 4×16 decoder has 4 inputs. So the two least significant inputs will be inputs for 4 decoders, while the first two inputs will be the input of the fifth decoder whose outputs are connected to the enables of the other four decoders.
4) Construct a 8×1 multiplexer from 4×1 multiplexers and one 2×1 multiplexer. Ans: 8×1 mux has 3 selectors, the two least significant bits will be selectors for two 4×1 muxs and the outputs of these muxs wills be inputs to 2×1 mux whose selection is the most significant remaining bit.
5) Implement practically a full adder using a suitable NAND decoder.

Ans: 3x8 decoder and two NAND gates for C and S
6) Implement practically the following function using a suitable multiplexer $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(0,1,3,4,8,9,15)$
Ans: 8×1 mux: W, X and Y on selections and Z on inputs as follows:
$\mathrm{I} 0=1, \mathrm{I} 1=\mathrm{Z}, \mathrm{I} 2=\mathrm{Z}, \mathrm{I} 3=0, \mathrm{I} 4=1, \mathrm{I} 5=0, \mathrm{I} 6=0$ and $\mathrm{I} 7=\mathrm{Z}$

Good Luck
Dr. Manal Tantawi

