Logic Design Lab Experiments Dr. Manal Tantawi

	Experiment Title
1	Logic gates
2	combination circuit I
3	Combination circuit II
4	Implementing functions using NAND only
5	Implementing functions using NOR only
6	Full adder
7	Full adder using decoder
8	Implementing functions using multiplexers
9	Sequential circuit
10	2 bit counter
11	Pseudo-random generator
12	Frequency division

Lab 1 (logic gates)

Objective: introducing lab equipment and integrated circuits (ICs) to students.

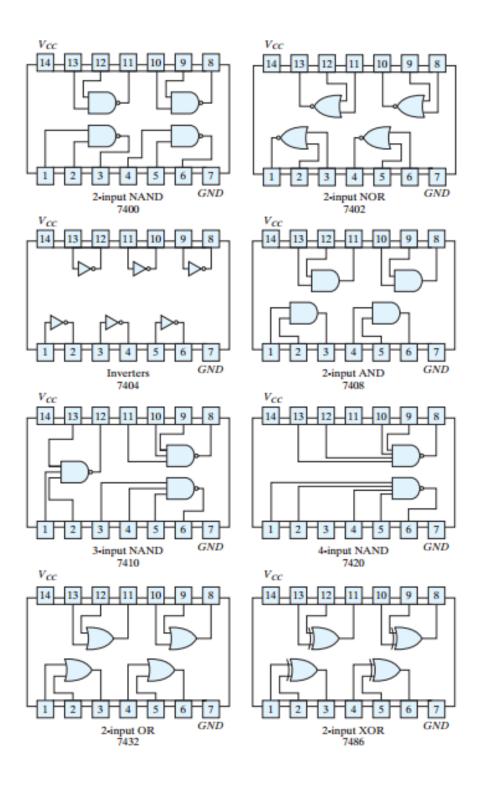
Task to do in lab: verify truth table of logic gates.

OR gate (IC:7432)

X	Y	X+Y
0	0	0
0	1	1
1	0	1
1	1	1

AND gate (IC:7408)

0	· ·	/
Х	Y	X.Y
0	0	0
0	1	0
1	0	0
1	1	1

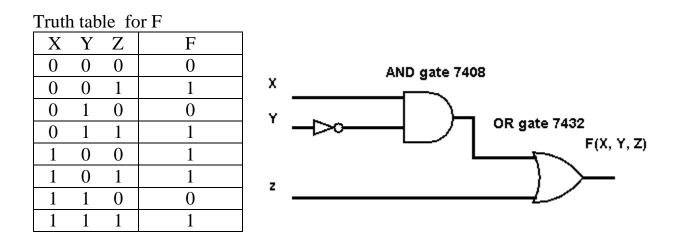

NOR gate (IC:7402)

X	Y	(X+Y) '
0	0	1
0	1	0
1	0	0
1	1	0

NAND gate (IC:7400)

- -	- (
Х	Y	(X.Y)'
0	0	1
0	1	1
1	0	1
1	1	0

ICs for logic gates

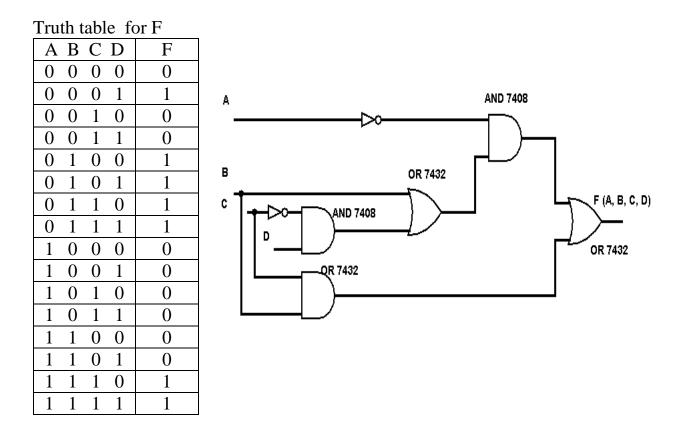


Lab 2 (combinational circuit I)

Objective: implementing simple combinational circuit.

Task to do in lab: implementing practically the following function

F(X, Y, Z) = XY'+Z

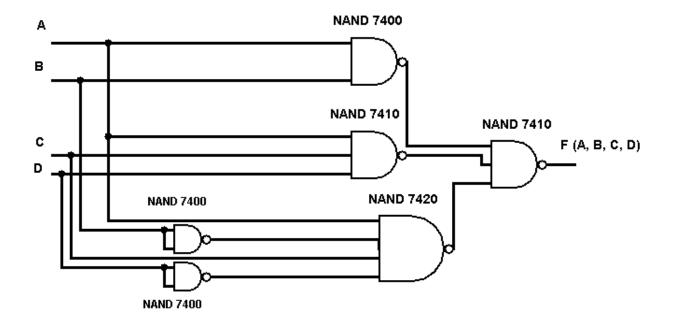


Lab 3 (combinational circuit II)

Objective: implementing combinational circuit (long expression)

Task to do in lab: implementing practically the following function

F(A, B, C, D) = A'(B + C'D) + BC

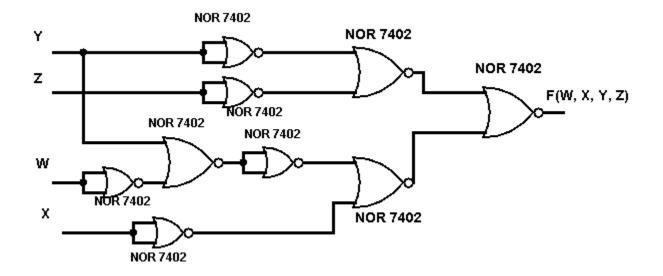


Lab 4 (NAND only)

Objective: implementing Functions using NAND only

Task to do in lab: implementing practically the following function using NAND only

F(A, B, C, D) = AB + ACD + AB'CD'


F (A, B, C, D) = \sum (10, 11, 12, 13, 14, 15)

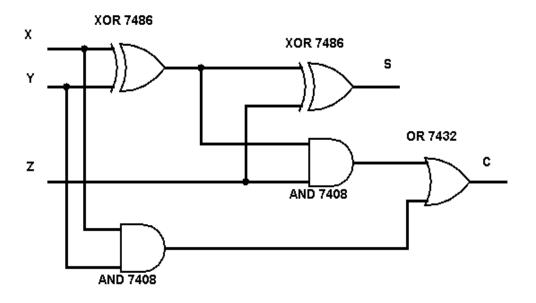
Lab 5 (NOR only)

Objective: implementing functions using NOR only.

Task to do in lab: implementing practically the following function using NOR only.

F(W, X, Y, Z) = (Y'+Z')(W'+X'+Y)

 $F(W, X, Y, Z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 10, 14)$


Lab 6 (Full adder)

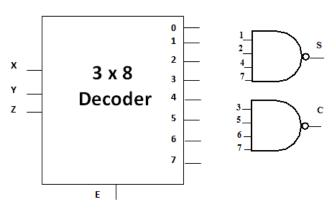
Objective: implementing Full Adder.

Task to do in lab: implementing practically the Full Adder.

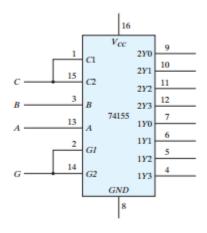
C S
0 0
0 1
0 1
1 0
0 1
1 0
1 0
1 1

Truth table for Full Adder

Lab 7 (Decoders)


Objective: implementing functions using decoder.

Task to do in lab: implementing practically the Full Adder using suitable decoder.


Truth table for Full Adder

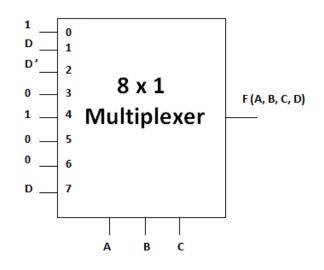
X	Y	Ζ	C S
0	0	0	0 0
0	0	1	0 1
0	1	0	0 1
0	1	1	1 0
1	0	0	0 1
1	0	1	1 0
1	1	0	1 0
1	1	1	1 1

Full adder using active low decoder

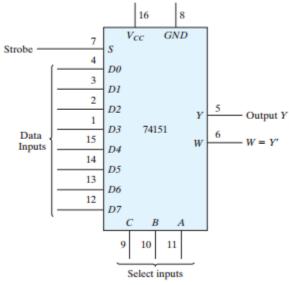
Pin assignment for available Active low decoder IC: 74155 Truth table for IC: 74155

					Truth	table					
	Inj	outs					Out	puts			
G	С	В	Α	2Y0	2Y1	2¥2	2¥3	1¥0	1 Y 1	172	$1Y_{2}$
1	х	х	х	1	1	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1	1	1
0	0	0	1	1	0	1	1	1	1	1	1
0	0	1	0	1	1	0	1	1	1	1	1
0	0	1	1	1	1	1	0	1	1	1	1
0	1	0	0	1	1	1	1	0	1	1	1
0	1	0	1	1	1	1	1	1	0	1	1
0	1	1	0	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	1	1	0

Lab 8 (Multiplexers)


Objective: implementing functions using multiplexer.

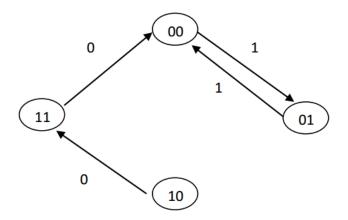
Task to do in lab: implementing practically the Following function using multiplexer.


 $F(A, B, C, D) = \sum (0, 1, 3, 4, 8, 9, 15)$

Truth	n ta	ble	for	F
Α	В	С	D	F
0	0	0	0	1
0	0	0	1	1
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Implementation using multiplexer

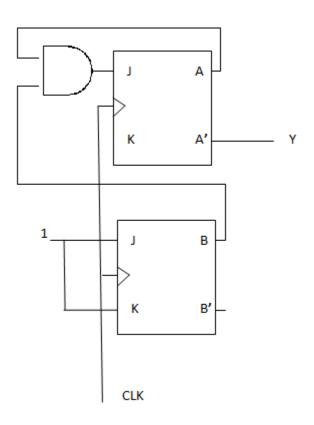
Pin assignment for available multiplexer IC: 74151

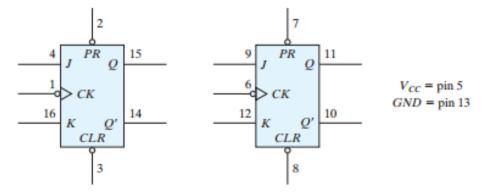

Function table for IC: 74155

Strobe		Select		Output
S	С	B	A	Y
1	х	х	х	0
0	0	0	0	D0
0	0	0	1	D1
0	0	1	0	D2
0	0	1	1	D3
0	1	0	0	D4
0	1	0	1	D5
0	1	1	0	D6
0	1	1	1	D7

Lab 9 (Sequential circuits)

Objective: implementing sequential circuits using different flip flops.


Task to do in lab: design and implement a sequential circuit that follows the following state diagram with one external output using T flip flops.


A _n	B _n	A_{n+1}	B _{n+1}	T _A	T _B	Y
0	0	0	1	0	1	1
0	1	0	0	0	1	1
1	0	1	1	0	1	0
1	1	0	0	1	1	0

 $T_A = AB$ $T_B = 1$ Y = A'

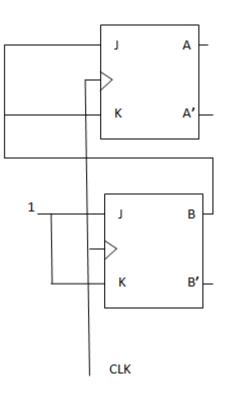
Circuit Logic diagram using JK flip flops (j and k are connected to form T flip flop)

Pin assignment for available JK flip flop IC: 7476

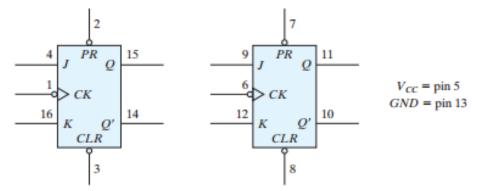
		Inputs			Out	puts
Preset	Clear	Clock	J	K	Q	Q'
0 1 0	1 0 0	X X X	X X X	x x x	1 0 1	0 1 1
1 1 1 1	1 1 1 1	Â	0 0 1 1	0 1 0 1	0 1	hange 1 0 ggle

Function table

Lab 10 (Counters)


Objective: implementing counter circuits using different flip flops.

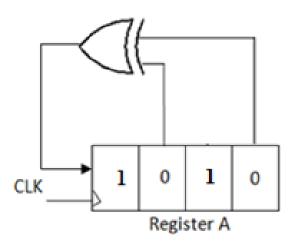
Task to do in lab: design and implement a two bit counter using JK flipflops


A _n	B _n	A _{n+1}	B _{n+1}	JA	K _B	J _B	K _B
0	0	0	1	0	Х	1	Х
0	1	1	0	1	Х	Х	1
1	0	1	1	Х	0	1	Х
1	1	0	0	Х	1	Х	1

 $\begin{aligned} J_A &= K_A = B\\ J_B &= K_B = 1 \end{aligned}$

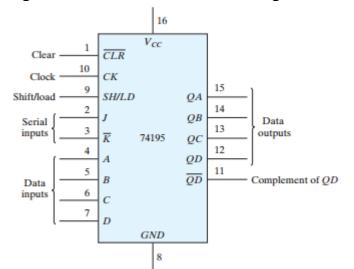
Circuit Logic diagram using JK flip flops

Pin assignment for available JK flip flop IC: 7476


Function table

	Outputs					
Preset	Clear	Clock	J	K	Q	Qʻ
0 1 0	1 0 0	X X X	X X X	x x x	1 0 1	0 1 1
1 1 1 1	1 1 1 1		0 0 1 1	0 1 0 1	0 1	hange 1 0 ggle

Lab 11 (Registers)

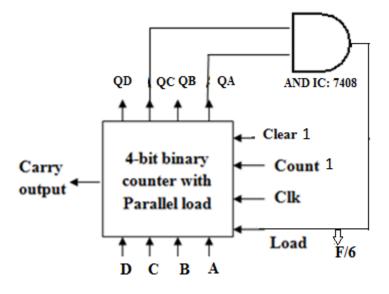

Objective: implementing pseudorandom generator using 4 bit shift register.

Task to do in lab: use 4 bit shift register with XOR to generate random numbers.

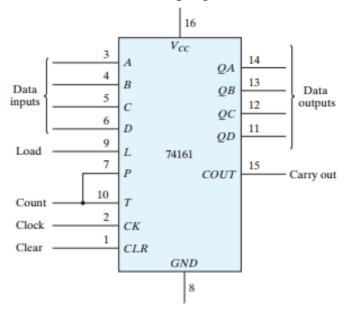
Serial input (SI)	Register Content
0	1010
0	0101
0	0010
1	0001
0	1000
1	0100
	1010

Cycle length = 6

Pin assignment for available 4 bit shift register IC: 74195


- HOUR	oction	tabl	10
1.01	iciion	Laur	-

Clear	Shift/ load	Clock	J	ĸ	Serial input	Function
0 1 1 1 1	X X 0 1 1	X 0 ↑ ↑	X X 0 1	X X 0 1	X X 0 1	Asynchronous clear No change in output Load input data Shift from QA toward QD , $QA = 0$ Shift from QA toward QD , $QA = 1$


Lab 12 (Programmable counters)

Objective: implementing frequency divider.

Task to do in lab: implement frequency divider using 4 bit programmable counter. Ex: F/6

Pin assignment for available 4 bit programmable counter IC: 74161

Function	table	
----------	-------	--

Clear	Clock	Load	Count	Function
0 1 1 1	X ↑ ↑	X 0 1 1	X X 1 0	Clear outputs to 0 Load input data Count to next binary value No change in output