Digital Design
 Lecture of week 10 Dr Manal Tantawi

Recap: Synchronous Sequential Circuits

Recap: Synchronous Sequential Circuits

Recap: Synchronous Sequential Circuits

Design Procedure

1) State Diagram
2) Number of ex. Inputs and outputs and number of flipflops
3) State Table
4) Simplified expressions using Kmap for external outputs and inputs of flipflops
5) Logic diagram

Designing using JK flip flops (deriving Excitation Table)

1) $\mathrm{Qn}=0$-> $\mathrm{Qn}+1=0$

$0->0$	
J	K
0	0
0	1
0 X	

\boldsymbol{K} Flip-Flop			
\boldsymbol{J}	\boldsymbol{K}	$\boldsymbol{Q}(\mathrm{n}+\mathbf{1})$	
0	0	$Q(\mathrm{n})$	No change
0	1	0	Reset
1	0	1	Set
1	1	$Q^{\prime}(\mathrm{n})$	Complement

2) $\mathrm{Qn}=0 \quad->\mathrm{Qn}+1=1$
3) $\mathrm{Qn}=1 \quad->\mathrm{Qn}+1=0$ 4) $\mathrm{Qn}=1 \quad->\mathrm{Qn}+1=1$

1	$->0$	1	$->1$
J K	J	K	
0	1	0	0
1	1	1	0
X	1	X	0

Designing using JK flip flops (deriving Excitation Table) continued..

$\boldsymbol{Q}(\mathrm{n})$	$\boldsymbol{Q}(\mathrm{n}+\mathbf{1})$	\boldsymbol{J}	\boldsymbol{K}
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0
$J K$ Flip-Flop			

Design a sequential circuit with input x that follows the following state diagram using JK flip flops

$\mathbf{Q (n)}$	$\mathbf{Q}(\mathrm{n}+\mathbf{1})$	\boldsymbol{J}	\boldsymbol{K}
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0
$J K$ Flip-Flop			

Present State		$\frac{\text { Input }}{x}$	Next State		Flip-Flop Inputs			
A	B		A	B	J_{A}	$K_{\text {A }}$	J_{B}	K_{B}
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

3)

$J_{A}=B x^{\prime}$

4)

Counters

\section*{Design a 2 bit counter using JK flip flops
 | $\boldsymbol{Q (n)}$ | $\boldsymbol{Q}(\mathrm{n}+\mathbf{1})$ | \boldsymbol{J} | \boldsymbol{K} |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | X |
| 0 | 1 | 1 | X |
| 1 | 0 | X | 1 |
| 1 | 1 | X | 0 |
| $J K$ Flip-Flop | | | |}

A_{n}	B_{n}	$\mathrm{A}_{\mathrm{n}+1}$	$\mathrm{~B}_{\mathrm{n}+1}$	$\mathrm{~J}_{\mathrm{A}}$	K_{A}	J_{B}	K_{B}
0	0	0	1	0	X	l	X
0	1	1	0	l	X	X	l
1	0	1	1	X	0	1	X
1	1	0	0	X	l	X	I

3) $\mathrm{J}_{\mathrm{A}}=\mathrm{K}_{\mathrm{A}}=\mathrm{B}$ $\mathrm{J}_{\mathrm{B}}=\mathrm{K}_{\mathrm{B}}=1$
4)

Design a counter that counts the following sequence 1, 6, 7, 3, 2 using T flipflops. Check if it self correcting or not

A_{n}	B_{n}	C_{n}	$\mathrm{A}_{\mathrm{n}+1}$	$\mathrm{~B}_{\mathrm{n}+1}$	$\mathrm{C}_{\mathrm{n}+1}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	T_{C}
0	0	0	x	x	x			
0	0	1	1	1	0			
0	1	0	0	0	l			
0	1	1	0	l	0			
1	0	0	x	x	x			
1	0	1	x	x	x			
1	1	0	l	l	l			
1	1	1	0	l	l			

Design a counter that counts the following sequence 1, 6, 7, 3, 2 using T flipflops. Check if it self correcting or not

T Flip-Flop	
\boldsymbol{T}	$\boldsymbol{Q}(\mathrm{n}+1)$
0	$Q(n)$
1	$Q^{\prime}(\mathrm{n})$

A_{n}	B_{n}	C_{n}	$\mathrm{A}_{\mathrm{n}+1}$	$\mathrm{~B}_{\mathrm{n}+1}$	$\mathrm{C}_{\mathrm{n}+1}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	T_{C}
0	0	0	x	x	x	x		
0	0	1	1	1	0	1		
0	1	0	0	0	l	0		
0	1	1	0	l	0	0		
1	0	0	x	x	x	x		
1	0	1	x	x	x	x		
1	1	0	l	l	l	0		
1	1	1	0	l	l	l		

Design a counter that counts the following sequence 1, 6, 7, 3, 2 using T flipflops. Check if it self correcting or not
T Flip-Flop

\boldsymbol{T}	$\boldsymbol{Q}(\mathrm{n}+\mathbf{1})$
0	$Q(\mathrm{n})$
1	$Q^{\prime}(\mathrm{n})$

A_{n}	B_{n}	C_{n}	$\mathrm{A}_{\mathrm{n}+1}$	$\mathrm{~B}_{\mathrm{n}+1}$	$\mathrm{C}_{\mathrm{n}+1}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	T_{C}
0	0	0	x	x	x	x	x	
0	0	1	1	1	0	1	1	
0	1	0	0	0	1	0	1	
0	1	1	0	1	0	0	0	
1	0	0	X	X	X	X	X	
1	0	1	x	x	x	X	X	
1	1	0	1	1	1	0	0	
1	1	1	0	1	1	1	0	

Design a counter that counts the following sequence 1, 6, 7, 3, 2 using T flipflops. Check if it self correcting or not

A_{n}	B_{n}	C_{n}	$\mathrm{A}_{\mathrm{n}+1}$	$\mathrm{~B}_{\mathrm{n}+1}$	$\mathrm{C}_{\mathrm{n}+1}$	$\mathrm{~T}_{\mathrm{A}}$	T_{B}	T_{C}
0	0	0	x	x	x	x	x	x
0	0	1	l	l	0	l	l	l
0	1	0	0	0	l	0	l	l
0	1	1	0	l	0	0	0	l
1	0	0	x	x	x	x	x	x
1	0	1	x	x	x	x	x	x
1	1	0	l	l	l	0	0	l
1	1	1	0	l	l	l	0	0

TB

$$
\mathrm{TA}=\mathrm{Bn}{ }^{\prime}+\mathrm{AnCn}
$$

$$
\mathrm{TB}=\mathrm{Bn}{ }^{\prime}+\mathrm{An} \mathrm{n}^{\prime} \mathrm{Cn}{ }^{\prime}
$$

4) Draw logic diagram

The unused states of this counter are 0
, 4 and 5
Is it self-correcting ??

Examples for self-correcting

- If the unused states are 2, 4 and 6 for example. Let us consider some cases for checking the designed counter

Now what about our counter

$$
\begin{aligned}
& T A=B n '+A n C n \\
& \mathrm{~TB}=\mathrm{Bn}{ }^{\prime}+\mathrm{An}{ }^{\prime} \mathrm{Cn}{ }^{\prime} \\
& \mathrm{TC}=\mathrm{An}{ }^{\prime}+\mathrm{Cn}{ }^{\prime}=(\mathrm{AnCn})^{\prime}
\end{aligned}
$$

Unused states

Unused state A B C	Ta Tb Tc	Its next state A B C
000	111	$111 \quad \sqrt{ }$
100		
101		

Now what about our counter

$$
\begin{aligned}
& T A=B n '+A n C n \\
& \mathrm{~TB}=\mathrm{Bn}{ }^{\prime}+\mathrm{An}{ }^{\prime} \mathrm{Cn}{ }^{\prime} \\
& \mathrm{TC}=\mathrm{An}{ }^{\prime}+\mathrm{Cn}{ }^{\prime}=(\mathrm{AnCn})^{\prime}
\end{aligned}
$$

Unused states

Unused state A B C	Ta Tb Tc	Its next state A B C	
000	111	111	$\sqrt{2}$
100	111	011	$\sqrt{2}$
101			

Now what about our counter

$$
\begin{aligned}
& T A=B n '+A n C n \\
& \mathrm{~TB}=\mathrm{Bn}{ }^{\prime}+\mathrm{An}{ }^{\prime} \mathrm{Cn}{ }^{\prime} \\
& \text { TC = An' }+C n \prime=(A n C n)^{\prime}
\end{aligned}
$$

Unused states

Unused state A B C	Ta Tb Tc	Its next state					
A B C			$\quad /$	000	111	111	$\sqrt{ }$
:---:	:---:	:---:	:---:				
100	111	011	$\sqrt{ }$				
101	110	011	$\sqrt{ }$				

Counter is self correcting

What if	A_{n}	B_{n}	C_{n}	$\mathrm{A}_{\mathrm{n}+1}$	$\mathrm{B}_{\mathrm{n}+1}$	$\mathrm{C}_{\mathrm{n}+1}$	T_{A}	T_{B}	T_{C}
	0	0	0	X	X	X	X	X	X
	0	0	1	1	1	0	1	1	1
	0	1	0	0	0	1	0	1	1
	0	1	1	0	1	0	0	0	1
	1	0	0	x	X	x	X	X	X
	1	0	1	0 (X)	1 (X)	0 (x)	${ }_{1} \mathrm{X}$	${ }_{1} \mathrm{X}$	${ }_{1} \mathrm{X}$
	1	1	0	1	1	1	0	0	1
	1	1	1	0	1	1	1	0	0

What we can do ??

Break the loop, update the table and redesign (repeat the maps)

Next Lecture we will explain analysis of sequential circuits thank you

