

Lecture 6:
 Chapter 4: Combinational Logic

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,
Ain Shams University

Design Procedure

- Input: the specification of the problem.
- Output: the logic circuit diagram or Boolean functions.

Code Conversion Design Problems

- It is sometimes necessary to use the output of one system as the input to another.
- A conversion circuit must be inserted between the two system if each uses different codes for the same information.
- Thus, a code converter is a circuit that makes the two system compatible even though each uses a different binary code.
- To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output lines must generate the corresponding bit combination of code B.

Code Conversion Example

- BCD to Excess-3 Code Converter

4 -Variables Input
Output Excess-3
4 -Variables output

Input BCD				Output Excess-3 Code			
A	B	C	D	W	X	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

\section*{| Input BCD- Code | Output Excess -3 Code |
| :---: | :---: |
 - BCD to Excess-3 Code Converter
 - Input BCD

 , 4-Variables Input
 - Output Excess-3
 4 -Variables output
 | A | B | C | D | W | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | I | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | I | 0 | x | x | x | x |
| I | 0 | I | I | x | x | x | x |
| 1 | I | 0 | 0 | x | x | x | x |
| 1 | I | 0 | I | x | x | x | x |
| I | 1 | I | 0 | x | x | x | x |
| 1 | 1 | 1 | 1 | x | x | x | x |

Code Conversion Example

- Boolean Expression :
- The six don't care minterms ($10 \sim 15$) are marked with X.
- Each of four maps represents one of the four outputs of this circuit as a function of the four input variables.

$$
X=B^{\prime} C+B^{\prime} D+B C^{\prime} D^{\prime}
$$

$$
w=A+B C+B D
$$

Code Conversion Example

- Boolean Expression : 3

Code Conversion Example

- Logic Diagram: Reduce the number of gates used.

$C+D$ is used to implement the three outputs.

Code Conversion Example

Design Examples

- Design a circuit that takes an input $X=x_{1} x_{0}$ and calculate the output $\mathrm{Y}=\mathrm{X}^{2}$

$$
\begin{array}{|c|}
\hline \mathrm{Y} 3=\mathrm{x}_{1} \mathrm{x}_{0} \\
\hline \mathrm{Y} 2=\mathrm{x}_{1} \mathrm{x}_{0}^{\prime} \\
\hline \mathrm{Y} 1=0 \\
\mathrm{Y} 1=\mathrm{x}_{0} \\
\hline
\end{array}
$$

Design Examples

Design a circuit that takes an input $X=x_{1} x_{0}$ and calculate the output $\mathrm{Y}=\mathrm{X}^{2}$

Design Examples

- Design a circuit that takes an input $N=n_{2} n_{1} n_{0}$ and calculates the output M , where M is calculated as the following:

$$
M= \begin{cases}2 \mathrm{~N} & 0 \leq \mathrm{N} \leq 3 \\ \mathrm{~N}+1 & 4 \leq \mathrm{N}<7\end{cases}
$$

Input		
n 2	nI	$\mathrm{n0}$
0	0	0
0	0	I
0	I	0
0	I	I
I	0	0
I	0	I
I	I	0
I	I	I

Output		
M2	MI	M0
$\mathbf{0}$	0	0
$\mathbf{0}$	I	0
\mathbf{I}	0	0
\mathbf{I}	\mathbf{I}	0
\mathbf{I}	0	$\mathbf{1}$
\mathbf{I}	\mathbf{I}	0
\mathbf{I}	\mathbf{I}	$\mathbf{1}$
\mathbf{x}	\mathbf{x}	\mathbf{x}

Design Examples

- Design a circuit that takes an input $N=n_{2} n_{1} n_{0}$ and calculates the output M , where M is calculated as the following:

$$
M= \begin{cases}2 \mathrm{~N} & 0 \leq \mathrm{N} \leq 3 \\ \mathrm{~N}+1 & 4<\mathrm{N}<7\end{cases}
$$

$$
\begin{gathered}
M_{2}=n_{2}+n_{1} \\
\hline M_{1}=n_{0}+n_{2} n_{1} \\
M_{0}=n_{2} n_{0}^{\prime}
\end{gathered}
$$

Output		
M2	MI	M0
0	0	0
0	1	0
1	0	0
1	1	0
1	0	1
1	1	0
1	1	1
x	x	\mathbf{x}

Design Examples

- Design a circuit that takes an input $N=n_{2} n_{1} n_{0}$ and calculates the output M , where M is calculated as the following:

$$
M= \begin{cases}2 \mathrm{~N} & 0 \leq \mathrm{N} \leq 3 \\ \mathrm{~N}+1 & 4 \leq \mathrm{N}<7\end{cases}
$$

$$
\begin{gathered}
M_{2}=n_{2}+n_{1} \\
M_{1}=n_{0}+n_{2} n_{1} \\
M_{0}=n_{2} n_{0}^{\prime}
\end{gathered}
$$

Design Examples

- Design a code converter that converts a decimal digit from, The $8,4,-2,-1$ code to BCD

Table 1.5
Four Different Binary Codes for the Decimal Digits

Decimal Digit	$\mathbf{B C D}$ $\mathbf{8 4 2 1}$	$\mathbf{2 4 2 1}$	Excess-3	$\mathbf{8 , 4 , \mathbf { 2 } , \mathbf { - 1 }}$
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

Design Exampl		Input 8, 4, -2, -1 code				Output BCD			
		A	B	C	D	W	X	Y	Z
		0	0	0	0	0	0	0	0
Design a code converter that converts a decimal digit from, The 8, 4, $-2,-1$ code to BCD		0	0	0	1	X	X	x	x
		0	0	I	0	x	X	x	x
		0	0	1	I	x	X	x	x
		0	I	0	0	0	I	0	0
$\begin{aligned} & \text { BCD } \\ & 8421 \end{aligned}$	8, 4, -2, -1	0	I	0	1	0	0	I	I
0000	0000	0	I	1	0	0	0	I	0
0001 0010	0111 0110	0	1	1	1	0	0	0	1
0011	0101	I	0	0	0	I	0	0	0
0100 0101	0100 1011	I	0	0	1	0	I	I	I
0110 0111	1010 1001	I	0	I	0	0	1	1	0
1000	1000	1	0						
1001	1111	I	0	I	I	0	1	0	1
1010	0001	1	1	0	0	X	X	x	x
1011 1100	0010 0011	I	I	0	I	x	x	x	x
1101	1100								
1110	1101	1	I	1	0	x	x	x	x
1111	1110	I	I	I	I	1	0	0	1

Adder

- The most basic arithmetic operation is the addition of two binary digits
- When both augend and addend bits are equal to I, the binary sum consists of two digits $(1+I=10)$
* The higher significant bit of this result is called a carry
- A combination circuit that performs the addition of two bits is half adder.
- A adder performs the addition of three bits (2 significant bits and a previous carry) is called a full adder

Half Adder

- Inputs: x and y

Outputs: S (for sum) and C (for carry)

- The simplified Boolean functions for the two inputs can be obtained directly from the truth table.

Half Adder

Implementation of Half Adder

$$
\text { (a) } \begin{aligned}
S & =x y^{\prime}+x^{\prime} y \\
C & =x y
\end{aligned}
$$

Full Adder

Full Adder

- A full adder is a combinational circuit that forms the arithmetic sum of three input bits

It consists of three inputs and tw outputs. Full Adder				$\mathbf{2}$
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\mathbf{C}	\boldsymbol{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

(a) $S=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$

(b) $C=x y+x z+y z$

Implementation of Full Adder

(a) $S=x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z$
(b) $C=x y+x z+y z$

Full Adder

- A full adder is a combinational circuit that forms the arithmetic sum of three input bits
- It consists of three inputs and two outputs.

2

Implementation of Full Adder

- A full adder can be implemented with two half adders and an OR gate

$$
\begin{aligned}
S & =x^{\prime} y^{\prime} z+x^{\prime} y z^{\prime}+x y^{\prime} z^{\prime}+x y z \\
& =(x \dot{\oplus} y) \oplus z
\end{aligned}
$$

$$
\begin{aligned}
C & =x y+x z+y z \\
& =x y+x y^{\prime} z+x^{\prime} y z \\
& =x y+(x \oplus y) z
\end{aligned}
$$

4 Bits Binary Parallel Adder

Binary Parallel Adder

- A binary adder produces the arithmetic sum of two binary numbers in parallel.
- Consider two binary number: $\mathrm{A}=10 \mathrm{I} \mathrm{I}$ and $\mathrm{B}=00 \mathrm{I} \mathrm{I}$

Subscript i :	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Input carry	0	1	1	0	C_{i}
Augend	1	0	1	1	$\mathrm{~A}_{\mathrm{i}}$
Addend	0	0	1	1	$\mathrm{~B}_{\mathrm{i}}$
	1	1	1	0	$\mathrm{~S}_{\mathrm{i}}$
Sum	1				
Output carry	0	0	1	1	$\mathrm{C}_{\mathrm{i}+1}$

- The output carry from each full adder is connected to input carry of the next full adder in the chain.
- An n-bit parallel adder requires \mathbf{n} full-adder
- 4-bit adder: Interconnection of four full adder (FA) circuits.

4-bit Adder Example

Subscript i :	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	
Input carry	0	1	1	1	0
C_{i}					
Augend	1	0	1	1	$\mathrm{~A}_{\mathrm{i}}$
Addend	0	0	1	1	$\mathrm{~B}_{\mathrm{i}}$
Sum	1	1	1	0	$\mathrm{~S}_{\mathrm{i}}$
Output carry	0	0	1	1	$\mathrm{C}_{\mathrm{i}+1}$

4-bit Binary Subtractor

4-bit Adder Example

?

Can you think about 4-bits binary subtractors ???

4-bit Subtractor Example

Can you think about 4-bits binary Adder - subtractors ???

4-bit Adder-Subtractor

4-bit Adder-Subtractor

Function	\mathbf{C}_{0}	Opr.
Adder	$\mathbf{0}$	$\mathbf{A + B}$
Subtractor	\mathbf{I}	$\mathbf{A + B}$

Recall some XOR properties

4-bit Adder-Subtractor Example

Overflow is a problem in digital computers because the number of bits that hold the number is finite and a result that contains $n+1$ bits cannot be accommodated.

Binary Multiplier

- Multiplication of binary numbers is performed in the same way as multiplication of decimal numbers.
- The multiplicand is multiplied by each bit of the multiplier, starting from the least significant bit.

Four-bit

by three-bit
binary
multiplier

Magnitude Comparator

- The comparison of two numbers is an operation that determines whether one number is greater than, less than, or equal to the other number.
- A magnitude comparator is a combinational circuit that compares two numbers A and B and determines their relative magnitudes.
- The outcome of the comparison is specified by three binary variables that indicate whether
- $A>B$,
- $A=B$, or
- $A<B$.

Magnitude Comparator

A	B	A<B	A $=$ B	$A>B$
0	0	0	I	0
0	I	I	0	0
I	0	0	0	I
I	I	0	I	0

Magnitude Comparator

$$
x_{i}=\left(A_{i}^{\prime} B_{i}+A_{i} B_{i}^{\prime}\right)^{\prime} \text { for } i=0,1,2,3
$$

where $x_{i}=1$ only if the pair of bits in position i are equal (i.e., if both are 1 or 0).

4 Bits Magnitude Comparator

$$
\begin{gathered}
(A=B)=x_{3} x_{2} x_{1} x_{0} \\
(A>B)=A_{3} B_{3}^{\prime}+x_{3} A_{2} B_{2}^{\prime}+x_{3} x_{2} A_{1} B_{1}^{\prime}+x_{3} x_{2} x_{1} A_{0} B_{0}^{\prime} \\
(A<B)=A_{3}^{\prime} B_{3}+x_{3} A_{2}^{\prime} B_{2}+x_{3} x_{2} A_{1}^{\prime} B_{1}+x_{3} x_{2} x_{1} A_{0}^{\prime} B_{0}
\end{gathered}
$$

4 Bits Magnitude Comparator

