
Lecture 5:

Chapter 4: Combinational Logic

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,

Ain Shams University

Digital Logic Design

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

NAND

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

AND

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

OR

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

Inverter

NAND-Only Implementation

 NAND gate is a universal gate

 Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

 Two graphic symbols for a NAND gate

(xyz)’ = x’+y’+z’

By applying

DeMorgan’s Theorem

Two-level NAND–Only Implementation

 Two-level logic

 NAND-NAND = sum of products

 Example: F = AB+CD

 F = ((AB)' (CD)')' =AB+CD

Three ways to implement F = AB + CD

NAND–Only Implementation

Two-level NAND–Only Implementation

 Example: implement F(x, y, z) = σ(1,2,3,4,5,7)

Two-level NAND–Only Implementation

 The procedure

1. Simplified in the form of sum of products;

2. A NAND gate for each product term; the inputs to each

NAND gate are the literals of the term (the first level);

3. A single NAND gate for the second sum term (the second

level);

4. A term with a single literal requires an inverter in the first

level.

Multilevel NAND Circuits

 Boolean function implementation

 AND-OR logic → NAND-NAND logic

 AND → NAND + inverter

 OR: inverter + OR = NAND

Figure 3.22 Implementing F = A(CD + B) + BC

NAND-Only Implementation

Figure 3.23 Implementing F = (AB +AB)(C+ D)

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

NOR

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

OR

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

AND

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

Inverter

NOR-Only Implementation

 NOR gate is a universal gate

Figure 3.24 Logic Operation with NOR Gates

NOR-Only Implementation

Figure 3.25 Two Graphic Symbols for NOR Gate

 Two graphic symbols for a NOR gate

(x+y+z)’ = x’y’z’

By applying

DeMorgan’s Theorem

NOR-Only Implementation

Example: F = (A + B)(C + D)E

Figure 3.26 Implementing F = (A + B)(C + D)E

 Two graphic symbols for a NOR gate

NOR-Only Implementation

Example: F = (AB +AB)(C + D)

Figure 3.27 Implementing F = (AB +AB)(C + D) with NOR gates

Exclusive-OR (XOR) xy = xy'+x'y

Exclusive-NOR (XNOR) (xy)' = (x y)= xy + x'y'

Some identities x0 = x
x1 = x'
xx = 0
xx' = 1
xy' = (xy)'
x'y = (xy)'

Commutative AB = BA

Associative (AB) C = A (BC) = ABC

.

Exclusive-OR Function

Exclusive-OR Implementations

 Implementations

 x y = xy'+x'y

 x y = (x'+y')x + (x'+y')y

Odd Function

 ABC = (AB'+A'B)C' +(AB+A'B')C

 = AB'C'+A'BC'+ABC+A'B'C = S(1, 2, 4, 7)

XOR is a odd function

→ an odd number of 1's,

then F = 1.

XNOR is a even

function → an even

number of 1's, then F = 1.

XOR and XNOR

 Logic diagram of odd and even functions

Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

 Four-variable Exclusive-OR function

 ABCD = (AB'+A'B)(CD'+C'D) =

(AB'+A'B)(CD+C'D')+(AB+A'B')(CD'+C'D)

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Sender

3 Data bits

1 0 1

P

0

1

C

1

0

Even Parity Generator Even Parity Checking

Error Data Corruption

No Error Data Received Correctly

Receiver

0 0 1

4 Data bits

0 0 1 0

0 0 1 1

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Sender

3 Data bits

1 0 1

P

1

0

C

1

0

Odd Parity Generator Odd Parity Checking

Error Data Corruption

No Error Data Received Correctly

Receiver

0 0 1

4 Data bits

0 0 1 1

0 0 1 0

Even Parity Generation and Checking

 Parity Generation and Checking

 A parity bit: P = xyz

 Parity check: C = xyzP

 C=1: one bit error or an odd number of data bit error

 C=0: correct or an even # of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Parity Generation and Checking

Combinational Logic

 Logic circuits for digital systems may be

combinational or sequential.

 A combinational circuit consists of input variables,

logic gates, and output variables.

Combinational Logic

 Combinational circuits:

 Consist of logic gates only

 Outputs are determined from the present values of inputs

 Sequential circuits:

 Consist of logic gates and storage elements

 Outputs are a function of the inputs and the state of the

storage elements

 Depend not only on present inputs, but also on past values

Combinational Logic

 A combinational circuit consists of:

 Input variables

 Logic gates

 Output variables

 Transform binary information from the given input data to

a required output data.

Combinational Logic
 There are 2n possible binary input combinations for n input

variable

 Only one possible output value for each possible input
combination

 Can be specified with a truth table, m Boolean functions, one for
each output variable , Each output function is expressed in
terms of n input variables

Analysis Procedure

 The “analysis” is the reverse of “design”.

 Analysis: determine the function that the circuit implements

 Often start with a given logic diagram

 First step: make sure that circuit is combinational and not

sequential.

 Without feedback paths or memory elements

 Second step: obtain the output Boolean functions or the

truth table

Analysis Procedure

 To obtain the output Boolean functions from a logic

diagram, proceed as follows: (do it backward)

1

• Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the Boolean
functions for each gate output.

2

• Label the gates that are a function of input variables and
previously labeled gates with other arbitrary symbols.
Find the Boolean functions for these gates.

3

• Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

4

• By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input
variables.

F1 = T3 + T2

= F'2 T1 + ABC

= (AB + AC + BC)' (A + B + C) + ABC

= (A' + B')(A' + C')(B' + C') (A + B + C) + ABC

= (A' + B' C')(AB' + AC' + BC' +B' C) + ABC

= A' BC' + A' B' C + AB' C' + ABC

Analysis Procedure - Example

F2 = AB + AC + BC;

 Truth Table: We can derive the truth table by using

the logic gate diagram

Analysis procedure - Example

Analysis procedure - Example
 Truth Table: We can derive the truth table by using the logic

gate diagram

 To obtain the truth table from the logic diagram:
1. Determine the number of input variables

 For n inputs:
 2n possible combinations

 List the binary numbers from 0 to 2n -1 in a table

2. Label the outputs of selected gates

3. Obtain the truth table for the outputs of those gates that are a
function of the input variables only

4. Obtain the truth table for those gates that are a function of
previously defined variables at step 3
 Repeatedly until all outputs are determined

Design Procedure
 Input: the specification of the problem.

 Output: the logic circuit diagram or Boolean functions.

1

• determine the required number of inputs and
outputs from the specification

2

• derive the truth table that defines the required
relationship between inputs and outputs

3
• obtain the simplified Boolean function for

each output as a function of the input variables

4

• draw the logic diagram and verify the
correctness of the design.

Code Conversion Design Problems

 It is sometimes necessary to use the output of one system

as the input to another.

 A conversion circuit must be inserted between the two system if

each uses different codes for the same information.

 Thus, a code converter is a circuit that makes the two systems

compatible even though each uses a different binary code.

 To convert from binary code A to binary code B, the input lines

must supply the bit combination of elements as specified by code

A and the output lines must generate the corresponding bit

combination of code B.

Code Conversion Example

1

2 BCD to Excess-3 Code Converter

 Input BCD

 4 –Variables Input

 Output Excess-3

 4 –Variables output

Code Conversion Example

1

2 BCD to Excess-3

Code Converter

 Input BCD

 4 –Variables Input

 Output Excess-3

 4 –Variables output

Input BCD- Code Output Excess -3 Code

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x

Code Conversion Example

 Boolean Expression :

 The six don’t care minterms (10~15) are marked with X.

 Each of four maps represents one of the four outputs of this

circuit as a function of the four input variables.

3

Code Conversion Example

 Boolean Expression : 3

Code Conversion Example

 Logic Diagram: Reduce the number of gates used.

z = D‘

y = CD + C' D‘

= CD + (C + D)'

 C + D is used to implement the three outputs.

4

x = B'C + B'D + BC' D'

= B' (C + D) + BC' D'

= B' (C + D) + B(C + D)'

w = A + BC + BD

= A + B(C + D)

Code Conversion Example

4

z = D‘

y = CD + (C + D)‘

x = B' (C + D) + B(C + D)'

w = A + B(C + D)

