

Lecture 5:
 Chapter 4: Combinational Logic

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,
Ain Shams University

NAND-Only Implementation

- NAND gate is a universal gate
- Can implement any digital system using NAND gate only

- Universal gate : we can implement all logic Operations with NAND Gates ONLY

NAND-Only Implementation

- NAND gate is a universal gate
- Can implement any digital system using NAND gate only AND

- Universal gate : we can implement all logic Operations with NAND Gates ONLY

NAND-Only Implementation

- NAND gate is a universal gate
- Can implement any digital system using NAND gate only

- Universal gate : we can implement all logic Operations with NAND Gates ONLY

NAND-Only Implementation

- NAND gate is a universal gate
- Can implement any digital system using NAND gate only

Inverter

- Universal gate : we can implement all logic Operations with NAND Gates ONLY

NAND-Only Implementation

- NAND gate is a universal gate
- Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

- Two graphic symbols for a NAND gate

(a) AND-invert
(b) Invert-OR

$$
(x y z)^{\prime}=x^{\prime}+y^{\prime}+z^{\prime}
$$

By applying DeMorgan's Theorem

Two-level NAND-Only Implementation

- Two-level logic
- NAND-NAND = sum of products
- Example: $F=A B+C D$
p $F=\left((A B)^{\prime}(C D)^{\prime}\right)$ ' $=A B+C D$

Three ways to implement $F=A B+C D$

NAND-Only Implementation

(a)

(b)

(c)

Two-level NAND-Only Implementation

, Example: implement $F(x, y, z)=\sum(1,2,3,4,5,7)$

(a)

$$
F=x y^{\prime}+x^{\prime} y+z
$$

(b)

(c)

Two-level NAND-Only Implementation

- The procedure

1. Simplified in the form of sum of products;
2. A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
3. A single NAND gate for the second sum term (the second level);
4. A term with a single literal requires an inverter in the first level.

Multilevel NAND Circuits

- Boolean function implementation
- AND-OR logic \rightarrow NAND-NAND logic
- AND \rightarrow NAND + inverter
- OR: inverter + OR = NAND

(a) AND-OR gates

(b) NAND gates

Figure 3.22 Implementing $F=A(C D+B)+B C^{\prime}$

NAND-Only Implementation

Figure 3.23 Implementing $F=\left(A B^{\prime}+A B\right)\left(C+D^{\prime}\right)$

NOR-Only Implementation

- NOR gate is a universal gate
* Can implement any digital system using NOR gate only

NOR

- Universal gate : we can implement all logic Operations with NOR Gates ONLY

NOR-Only Implementation

- NOR gate is a universal gate
- Can implement any digital system using NOR gate only

OR

- Universal gate : we can implement all logic Operations with NOR Gates ONLY

NOR-Only Implementation

- NOR gate is a universal gate
- Can implement any digital system using NOR gate only

- Universal gate : we can implement all logic Operations with NOR Gates ONLY

NOR-Only Implementation

- NOR gate is a universal gate
- Can implement any digital system using NOR gate only

- Universal gate : we can implement all logic Operations with NOR Gates ONLY

NOR-Only Implementation

- NOR gate is a universal gate

Inverter

Figure 3.24 Logic Operation with NOR Gates

NOR-Only Implementation

- Two graphic symbols for a NOR gate

(a) OR-invert

(b) Invert-AND

$$
(x+y+z)^{\prime}=x^{\prime} y^{\prime} z^{\prime}
$$

By applying
DeMorgan's Theorem

Figure 3.25 Two Graphic Symbols for NOR Gate

NOR-Only Implementation

- Two graphic symbols for a NOR gate

Example: $F=(A+B)(C+D) E$

Figure 3.26 Implementing $F=(A+B)(C+D) E$

NOR-Only Implementation

Example: $F=\left(A B^{\prime}+A B\right)(C+D)$

Figure 3.27 Implementing $F=\left(A B^{\prime}+A^{\prime} B\right)\left(C+D^{\prime}\right)$ with NOR gates

Exclusive-OR Function

Exclusive-OR (XOR)	$x \oplus y=x y^{\prime}+x^{\prime} y$
Exclusive-NOR (XNOR)	$(x \oplus y)^{\prime}=(x \odot y)=x y+x^{\prime} y^{\prime}$
Some identities	$x \oplus 0=x$ $x \oplus I=x^{\prime}$ $x \oplus x=0$ $x \oplus x^{\prime}=1$ x $x \oplus y^{\prime}=(x \oplus y)^{\prime}$ $\left.x^{\prime} \oplus y=(x \oplus y)\right)^{\prime}$
Commutative	$A \oplus B=B \oplus A$
Associative	$(A \oplus B) \oplus C=A \oplus(B \oplus C)=A \oplus B \oplus C$

Exclusive-OR Implementations

- Implementations
* $x \oplus y=x y^{\prime}+x^{\prime} y$

(a) With AND-OR-NOT gates
* $x \oplus y=\left(x^{\prime}+y^{\prime}\right) x+\left(x^{\prime}+y^{\prime}\right) y$

(b) With NAND gates

Odd Function

- $A \oplus B \oplus C=\left(A B^{\prime}+A^{\prime} B\right) C^{\prime}+\left(A B^{\prime}+A^{\prime} B^{\prime}\right) C$

$$
=A B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B C+A^{\prime} B^{\prime} C=\Sigma(1,2,4,7) \quad \bullet\lfloor\square
$$

(a) Odd function $F=A \oplus B \oplus C$

XOR is a odd function

\rightarrow an odd number of I's, then $F=1$.

(b) Even function $F=(A \oplus B \oplus C)^{\prime}$

XNOR is a even

 function \rightarrow an even number of I 's, then $F=I$.
XOR and XNOR

- Logic diagram of odd and even functions

(a) 3-input odd function

(b) 3-input even function

Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

- Four-variable Exclusive-OR function
- $A \oplus B \oplus C \oplus D=\left(A B^{\prime}+A^{\prime} B\right) \oplus\left(C D^{\prime}+C^{\prime} D\right)=$ $\left(A B^{\prime}+A^{\prime} B\right)\left(C D+C ' D^{\prime}\right)+\left(A B+A^{\prime} B^{\prime}\right)\left(C D^{\prime}+C^{\prime} D\right)$

(a) Odd function $F=A \oplus B \oplus C \oplus D$

(b) Even function $F=(A \oplus B \oplus C \oplus D)^{\prime}$

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

3 Data bits

I	P	
0	I	
0 0 1		

Even Parity Generator
Receiver

| 0 | 0 | 1 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | No Error Data Received Correctly

Even Parity Checking

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Odd Parity Generator
Odd Parity Checking

Even Parity Generation and Checking

- Parity Generation and Checking
. A parity bit: $\mathrm{P}=x \oplus y \oplus z$
- Parity check: $C=x \oplus y \oplus z \oplus P$
- $\mathrm{C}=\mathrm{I}$: one bit error or an odd number of data bit error
- $\mathrm{C}=0$: correct or an even \# of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.4
Even-Parity-Generator Truth Table

Three-Bit Message			Parity Bit
\boldsymbol{x}	\boldsymbol{y}	z_{2}	\boldsymbol{P}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Parity Generation and Checking

Table 3.5
Even-Parity-Checker Truth Table

	Four Bits Received				
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{P}	Parity Error Check	
0	0	0	0		0
0	0	0	1		-1
0	0	1	0		1
0	0	1	1		0
0	1	0	0		1
0	1	0	1		0
0	1	1	0		0
0	1	1	1		1
1	0	0	0		1
1	0	0	1		0
1	0	1	0		0
1	0	1	1		1
1	1	0	0		0
1	1	0	1		1
1	1	1	0		1
1	1	1	1		0

Combinational Logic

- Logic circuits for digital systems may be combinational or sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.

Fig. 4-1 Block Diagram of Combinational Circuit

Combinational Logic

- Combinational circuits:
, Consist of logic gates only
- Outputs are determined from the present values of inputs
- Sequential circuits:
- Consist of logic gates and storage elements
- Outputs are a function of the inputs and the state of the storage elements
- Depend not only on present inputs, but also on past values

Combinational Logic

- A combinational circuit consists of:
- Input variables
- Logic gates
- Output variables
- Transform binary information from the given input data to a required output data.

Fig. 4-1 Block Diagram of Combinational Circuit

FIGURE 4.2
Logic diagram for analysis example

Combinational Logic

- There are 2^{n} possible binary input combinations for n input variable
- Only one possible output value for each possible input combination
- Can be specified with a truth table, \underline{m} Boolean functions, one for each output variable, Each output function is expressed in terms of n input variables

Fig. 4-1 Block Diagram of Combinational Circuit

Analysis Procedure

"The "analysis" is the reverse of "design".

- Analysis: determine the function that the circuit implements - Often start with a given logic diagram
- First step: make sure that circuit is combinational and not sequential.
- Without feedback paths or memory elements
- Second step: obtain the output Boolean functions or the truth table

Analysis Procedure

To obtain the output Boolean functions from a logic diagram, proceed as follows: (do it backward)

Analysis Procedure - Example

Analysis procedure - Example

Truth Table: We can derive the truth table by using the logic gate diagram

Table 4.1
Truth Table for the Logic Diagram of Fig. 4.2

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	$\boldsymbol{F}_{\mathbf{2}}$	$\boldsymbol{F}_{\mathbf{2}}^{\prime}$	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{3}}$	$\boldsymbol{F}_{\mathbf{1}}$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Analysis procedure - Example

* Truth Table: We can derive the truth table by using the logic gate diagram
- To obtain the truth table from the logic diagram:
I. Determine the number of input variables
, For n inputs:
- 2^{n} possible combinations
- List the binary numbers from 0 to $2^{n}-I$ in a table

2. Label the outputs of selected gates
3. Obtain the truth table for the outputs of those gates that are a function of the input variables only
4. Obtain the truth table for those gates that are a function of previously defined variables at step 3

- Repeatedly until all outputs are determined

Design Procedure

- Input: the specification of the problem.
- Output: the logic circuit diagram or Boolean functions.

Code Conversion Design Problems

- It is sometimes necessary to use the output of one system as the input to another.
- A conversion circuit must be inserted between the two system if each uses different codes for the same information.
- Thus, a code converter is a circuit that makes the two systems compatible even though each uses a different binary code.
- To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output lines must generate the corresponding bit combination of code B.

Code Conversion Example

- BCD to Excess-3 Code Converter

4 -Variables Input
Output Excess-3
4 -Variables output

Input BCD				Output Excess-3 Code			
A	B	C	D	W	X	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	10
1	0	0	1	1	1	0	05

\section*{| Input BCD- Code | Output Excess -3 Code |
| :---: | :---: |
 - BCD to Excess-3 Code Converter
 - Input BCD

 , 4-Variables Input
 - Output Excess-3
 4 -Variables output
 | A | B | C | D | W | X | Y | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 | 1 | I | 0 |
| 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
| 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 1 | 1 | 0 | 0 |
| I | 0 | I | 0 | x | x | \times | x |
| I | 0 | 1 | 1 | x | x | x | x |
| 1 | I | 0 | 0 | x | x | x | x |
| I | I | 0 | I | x | x | x | x |
| 1 | I | I | 0 | x | x | x | \% |
| 1 | I | I | I | x | x | x | \times |

Code Conversion Example

- Boolean Expression :
- The six don't care minterms ($10 \sim 15$) are marked with X.
- Each of four maps represents one of the four outputs of this circuit as a function of the four input variables.

Code Conversion Example

- Boolean Expression : 3

Code Conversion Example

- Logic Diagram: Reduce the number of gates used.

$C+D$ is used to implement the three outputs.

Code Conversion Example

