

Lecture 5:

Chapter 4: Combinational Logic

Mirvat Al-Qutt, Ph.D Computer Systems Department , FCIS, Ain Shams University

NAND gate is a universal gate

Can implement any digital system using NAND gate only

NAND gate is a universal gate

Can implement any digital system using NAND gate only

NAND gate is a universal gate

Can implement any digital system using NAND gate only

NAND gate is a universal gate

Can implement any digital system using NAND gate only

NAND gate is a universal gate

Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

Two graphic symbols for a NAND gate

(a) AND-invert

(xyz)' = x'+y'+z'

By applying DeMorgan's Theorem

Two-level NAND–Only Implementation

 \boldsymbol{A}

- Two-level logic
 - NAND-NAND = sum of products
 - Example: F = AB+CD
 - ▶ F = ((AB)' (CD)')' =AB+CD

Three ways to implement F = AB + CD

Two-level NAND-Only Implementation

• Example: implement $F(x, y, z) = \sum (1, 2, 3, 4, 5, 7)$

$$F = xy' + x'y + z$$

Two-level NAND-Only Implementation

- The procedure
 - 1. Simplified in the form of sum of products;
 - 2. A NAND gate for each product term; the inputs to each NAND gate are the literals of the term (the first level);
 - 3. A single NAND gate for the second sum term (the second level);
 - 4. A term with a single literal requires an inverter in the first level.

Multilevel NAND Circuits

- Boolean function implementation
 - ► AND-OR logic → NAND-NAND logic
 - $\blacktriangleright \text{ AND} \rightarrow \text{NAND} + \text{inverter}$
 - OR: inverter + OR = NAND

Figure 3.22 Implementing F = A(CD + B) + BC'

NOR gate is a universal gate

Can implement any digital system using NOR gate only

NOR gate is a universal gate

Can implement any digital system using NOR gate only

NOR gate is a universal gate

Can implement any digital system using NOR gate only

NOR gate is a universal gate

Can implement any digital system using NOR gate only

NOR gate is a universal gate

Figure 3.24 Logic Operation with NOR Gates

Two graphic symbols for a NOR gate

(x+y+z)' = x'y'z'

By applying DeMorgan's Theorem

Figure 3.25 Two Graphic Symbols for NOR Gate

Two graphic symbols for a NOR gate

Figure 3.26 Implementing F = (A + B)(C + D)E

Figure 3.27 Implementing F = (AB' + A'B)(C + D') with NOR gates

Exclusive-OR Function

Exclusive-OR (XOR)	$x \oplus y = xy' + x'y$
Exclusive-NOR (XNOR)	$(x \oplus y)' = (x \odot y) = xy + x'y'$
Some identities	$x \oplus 0 = x$ $x \oplus 1 = x'$ $x \oplus x = 0$ $x \oplus x' = 1$ $x \oplus y' = (x \oplus y)'$ $x' \oplus y = (x \oplus y)'$
Commutative	$A \oplus B = B \oplus A$
Associative	$(A \oplus B) \oplus C = A \oplus (B \oplus C) = A \oplus B \oplus C$

Exclusive-OR Implementations

Odd Function

 $A \oplus B \oplus C = (AB' + A'B)C' + (AB + A'B')C$

 $= AB'C' + A'BC' + ABC + A'B'C = \Sigma(1, 2, 4, 7) \qquad \Box$

(a) Odd function $F = A \oplus B \oplus C$

XOR is a odd function \rightarrow an odd number of 1's, then F = 1.

(b) Even function $F = (A \oplus B \oplus C)'$

XOR and XNOR

Logic diagram of odd and even functions

Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

Four-variable Exclusive-OR function

 $A \oplus B \oplus C \oplus D = (AB'+A'B) \oplus (CD'+C'D) = (AB'+A'B)(CD+C'D') + (AB+A'B')(CD'+C'D)$

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Even Parity Generation and Checking

- Parity Generation and Checking
 - A parity bit: $P = x \oplus y \oplus z$
 - Parity check: $C = x \oplus y \oplus z \oplus P$
 - C=I: one bit error or an odd number of data bit error
 - ▶ C=0: correct or an even # of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.4Even-Parity-Generator Truth Table

Three	Bit Mes	Parity Bit	
x	¥	Z /	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Parity Generation and Checking

Table 3.5

Even-Parity-Checker Truth Table

	Four Rece	Parity Error Check		
x	y	z	Р	c
0	0	0	0	0
0	0	0	1	_1_
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

- Logic circuits for digital systems may be combinational or sequential.
- A combinational circuit consists of input variables, logic gates, and output variables.

Fig. 4-1 Block Diagram of Combinational Circuit

- Combinational circuits:
 - Consist of <u>logic gates</u> only
 - Outputs are determined from the present values of inputs
- Sequential circuits:
 - Consist of <u>logic gates</u> and <u>storage elements</u>
 - Outputs are a function of the inputs and the state of the storage elements
 - Depend not only on present inputs, but also on past values

- A combinational circuit consists of:
 - Input variables
 - Logic gates
 - Output variables
- Transform binary information from the given input data to a required output data.

Fig. 4-1 Block Diagram of Combinational Circuit

Logic diagram for analysis example

- There are 2ⁿ possible binary input combinations for n input variable
- Only one possible output value for each possible input combination
 - Can be specified with a truth table, <u>m</u> Boolean functions, one for each output variable, Each output function is expressed in terms of n input variables

Fig. 4-1 Block Diagram of Combinational Circuit

Analysis Procedure

- The "analysis" is the reverse of "design".
- Analysis: determine the function that the circuit implements
 - Often start with a given logic diagram
- First step: make sure that circuit is combinational and not sequential.
 - Without feedback paths or memory elements
- Second step: obtain the output Boolean functions or the truth table

Analysis Procedure

2

To obtain the output Boolean functions from a logic diagram, proceed as follows: (**do it backward**)

• Label all gate outputs that are a function of input variables with arbitrary symbols. Determine the Boolean functions for each gate output.

- Label the gates that are a function of input variables and previously labeled gates with other arbitrary symbols. Find the Boolean functions for these gates.
- Repeat the process outlined in step 2 until the outputs of the circuit are obtained.
- By repeated substitution of previously defined functions, obtain the output Boolean functions in terms of input variables.

Analysis procedure - Example

Truth Table: We can derive the truth table by using the logic gate diagram

Table 4.1

Truth Table for the Logic Diagram of Fig. 4.2

Α	В	C	F ₂	F '2	T 1	T ₂	T ₃	F
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Analysis procedure - Example

- Truth Table: We can derive the truth table by using the logic gate diagram
- To obtain the truth table from the logic diagram:
 - I. Determine the number of input variables
 - For n inputs:
 - ▶ 2ⁿ possible combinations
 - List the binary numbers from 0 to 2ⁿ 1 in a table
 - 2. Label the outputs of selected gates
 - 3. Obtain the truth table for the outputs of those gates that are a function of the input variables only
 - 4. Obtain the truth table for those gates that are a function of previously defined variables at step 3
 - Repeatedly until all outputs are determined

Design Procedure

2

- Input: the specification of the problem.
- Output: the logic circuit diagram or Boolean functions.

- **derive the truth table** that defines the required relationship between inputs and outputs
- obtain the **simplified Boolean function** for each output as a function of the input variables
- draw the logic diagram and verify the correctness of the design.

Code Conversion Design Problems

- It is sometimes necessary to use the output of one system as the input to another.
 - A conversion circuit must be inserted between the two system if each uses different codes for the same information.
 - Thus, a code converter is a circuit that makes the two systems compatible even though each uses a different binary code.
 - To convert from binary code A to binary code B, the input lines must supply the bit combination of elements as specified by code A and the output lines must generate the corresponding bit combination of code B.

BCD to Excess-3 Code Converter

	_								
) -		Input	BCD		Output Excess-3 Code			ode
		А	В	С	D	w	х	у	z
Input BC	D -	0	0	0	0	0	0	1	1
4 – Variab	les Input	0	0	0	1	0	1	0	0
• Output E	xcess-3	0	0	1	0	0	1	0	1
▶ 4–Variab	les output	0	0	1	1	0	1	1	0
	-	0	1	0	0	0	1	1	1
		0	1	0	1	1	0	0	0
		0	1	1	0	1	0	0	1
		0	1	1	1	1	0	1	0
		1	0	0	0	1	0	1	1
		1	0	0	1	1	1	0	

Code Conver

- BCD to Excess-3 Code Converter
- Input BCD
- 4 Variables Input
- Output Excess-3
- 4 Variables output

In	put BC	D- Co	de	Outp	out Exc	ess -3 (Code
Α	В	С	D	W	X	Y	Z
0	0	0	0	0	0	I	I
0	0	0	I	0	I	0	0
0	0	I	0	0	I	0	I
0	0	I	I	0	I	I	0
0	I	0	0	0	I	I	I
0	I	0	I		0	0	0
0	I	I	0		0	0	I
0	I	I	I		0	I	0
I	0	0	0		0	I	I
I	0	0	I		I	0	0
	0	1	0	x	х	х	x
1	0	1	1	x	х	х	x
	1	0	0	x	х	х	x
I	I	0	I.	x	х	х	x
I	I	1	0	x	x	x	Nº0
I	I	I.	I.	х	x	x	

- Boolean Expression :
- The six don't care minterms (10~15) are marked with X.
- Each of four maps represents one of the four outputs of this circuit as a function of the four input variables.

Boolean Expression : (

Þ

3

Logic Diagram: Reduce the number of gates used.

Z	= D'	X	= B'C + B'D + BC' D' = B' (C + D) + BC' D' = B' (C + D) + B(C + D)'
у	= CD + C' D' = CD + (C + D)'	w	= A + BC + BD = A + B(C + D)

C + D is used to implement the three outputs.

4

