

Lecture 4:

Chapter 3: Gate Level Minimization (K-Maps)

Mirvat Al-Qutt, Ph.D Computer Systems Department , FCIS, Ain Shams University

Lecture 3: Chapter 2: Boolean Algebra and Logic Gates

Basic Definitions

Duality Principle (DeMorgan's Theorem)

Verify DeMorgan'sTheorem

(x + y)'	= x'y'	x + y	=	(x'y')'
(x y)'	= x' + y'	x y	=	(x'+y')'

x	у	<i>x</i> '	у,	<i>x</i> + <i>y</i>	(x+y)'	<i>x'y'</i>	Ху	x'+y'	(xy)'
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Basic Definitions

Consensus Theoren	า
xy + x'z + <mark>yz</mark> = xy + x'z	$(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z)$
Proof:	Proof:
xy + x'z + yz	(x+y)•(x'+z)•(y+z)
= xy + x'z + .yz	$= (x+y) \cdot (x'+z) \cdot (0+y+z)$
= xy + x'z + <mark>(x+x')</mark> yz	$= (x+y) \cdot (x'+z) \cdot ((xx')+y+z)$
= xy + x'z + <mark>xyz + x'yz</mark>	$= (x+y) \cdot (x'+z) \cdot (x+y+z) \cdot (x'+y+z)$
= (xy + xyz) + (x'z + x'zy)	= ((x+y)+(0•z))((x'+z)+(0•y))
= xy (l+z) + x'z (l+ y)	= (x+y)(x'+z)
= xy + x'z	

I

Minterms and Maxterms

Convert from any form to the other

Challenge

Sum of Minterms

- Sum of minterms: there are 2ⁿ minterms and 2²ⁿ combinations of functions with n Boolean variables.
- Example : express F = A+B'C as a sum of minterms.

F = A + B'C

- = A (B+B') + B'C
- = AB + AB' + B'C
- =AB(C+C') + AB'(C+C') + (A+A')B'C
- = ABC + ABC' + AB'C + AB'C' + A'B'C
- = A'B'C + AB'C' + AB'C + ABC' + ABC
- $= m_1 + m_4 + m_5 + m_6 + m_7$
- = $\Sigma(1, 4, 5, 6, 7)$

or, built the truth table first Table 2.5

Truth Table for F = A + B'C

Α	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Sum of Minterms

- Sum of minterms: there are 2ⁿ minterms and 2²ⁿ combinations of functions with n Boolean variables.
- Example: express F = A+B'C as a product of maxterms

= (A+B')(A+C) $= (A+B'+CC')(A+C+BB'')$		or, bui Table 2 Truth To	ilt the tr 2.5 Ible for F	= A + l	le first
(1) = (A+B'+C)(A+B'+C')(A'+C')(-B+C)(A+B '+ C)	A	В	С	F
$-\Pi(M M M)$		0	0	0	0
$-\Pi(m_0,m_2,m_3)$		0	0	1	1
		0	1	0	0
		0	1	1	0
		1	0	0	1
		1	0	1	1
		1	1	0	1
		1	1	1	1

Product of Maxterms

- Product of maxterms: using distributive law to expand.
- Example : express F = xy + x'z as a product of maxterms.
 - F = xy + x'z
 - = (xy + x')(xy + z)
 - = (x+x')(y+x')(x+z)(y+z)
 - = (x'+y)(x+z)(y+z)

= (x'+y+zz')(x+z+yy')(y+z+xx')

- = (x'+y+z)(x'+y+z')(x+z+y)(x+z+y')(y+z+x)(y+z+x')
- =(x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')
- $= M_0 M_2 M_4 M_5$

= П(0, 2, 4, 5)

2

or, built the truth table first

Table 2.6

Truth Table for F = xy + x'z

x	y	Z	F
0	0	0	0
0 0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Complement of a Function Expressed in Canonical Forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
 - ► $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - ► $F(A, B, C) = = \Pi(0, 2, 3)$

Thus,

- $F'(A, B, C) = \Sigma(0, 2, 3)$
- ► F'(A, B, C) = Π (1, 4, 5, 6, 7)
- By DeMorgan's theorem $m_i' = M_i$

X	У	Z	FI	FI'
0	0	0	0	I
0	0	I	I	0
0	I	0	0	I
0	I	I	0	I
I	0	0	I	0
I	0	I	I	0
I	I	0	I	0
			I	0

Conversion between Canonical Forms

Example

- F = xy + x'z
- $F(x, y, z) = \Sigma(1, 3, 6, 7)$
- ► $F(x, y, z) = \prod (0, 2, 4, 6)$
- Complement ????
- $F'(x, y, z) = \Sigma(0, 2, 4, 6)$
- F'(x, y, z) = Π (1, 3, 6, 7)

		· ·			
x	y	Z	F	F`	
0	0	0	0	1	
0	0	1	1	0	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	0	1	
1	1	0	1	0	
1	1	1	1	0	

Truth Table for F = xy + x'z

Canonical Forms vs. Standard Forms

Canonical Forms

- Each minterm or maxterm must contain all the variables either complemented or uncomplemented,
- Sum of minterms (Product terms)
- OR Product of Maxterms (sum terms)

Standard forms

- the terms that form the function may obtain one, two, or any number of literals, .
- There are two types of standard forms:
 - Sum of products:

 $F_{l} = y' + xy + x'yz'$

Product of sums:

 $F_2 = x(y'+z)(x'+y+z')$

Standard Forms

A Boolean function may be expressed in a nonstandard form

 $F_3 = AB + C(B + A)$

But it can be changed to a standard form by using The distributive law

$$F_3 = AB + C(B + A) = AB + BC + AC$$

- And it can be changed to a canonical form by using The distributive law after adding missing literal
 - $F_3 = AB + BC + AC = AB(C+C') + BC(A+A') + AC(B+B')$
 - =ABC+ABC'+ABC+A'BC+ABC+AB'C
 - =ABC+ABC'+A'BC+AB'C

Implementation

Two-level implementation

(b) Product of Sums

Multi-level implementation

SOP	POS	
Sum of minterms	Product of Maxterms	
$F = \sum (m_0, m_2, \dots, m_i)$	$F = \prod (M_0 M_1 \dots M_i)$	
Sum of terms that function gives I	Product of terms that function gives 0	
Minterms (Locate 1's) $m_0 = x'y'z' = 000$ $m_1 = x'y'z = 001$ $m_7 = xyz = 111$	Maxterms (Locate 0's) $M_0 = x+y+z = 000$ $M_1 = x+y+z' = 001$ $M_7 = x'+y+'z' = 111$	
Convert Boolean function to SOP By multiplying each term by the missing variable Ored with its complement F = xy = xy(z+z') = xyz + xyz'	Convert Boolean function to POS By expanding using distributive law and then for each term add the missing variable ANDed with its complement F=x+y=x+y+zz'=(x+y+z)(x+y+z')	
 Logic Diagram: 2 level implantation Level of AND gates followed by one OR gate 14 	 Logic Diagram: 2 level implantation Level of OR gates followed by one AND gate 	

Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables.
- > 2^{2^n} functions for n binary variables.
- I6 functions of two binary variables.

Truth Tables for the 16 Functions of Two Binary Variables F_0 F_1 F_2 F_3 F_4 F_5 F_6 F_7 F_8 F_9 F_{10} F_{11} F_{12} F_{13} F_{14} F_{15} X y $1 \quad 1 \quad 1 \quad 1 \quad 0$ 0 0 $1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 0$ 1 1 0

Table 2.7

All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Boolean Expressions

Table 2.8

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	<i>x'</i>	Complement	Not x
$F_{13} = x' + y$	$x \supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$	-	Identity	Binary constant 1

Outline of Chapter 3

- 3.1 Introduction
- ▶ 3.2 The Map Method
- 3.3 Four-Variable Map
- 3.4 Five-Variable Map
- 3.5 Product-of-Sums Simplification
- 3.6 Don't-Care Conditions

Gate-level minimization

- Gate-level minimization refers to the design task of finding an optimal gate-level implementation of Boolean functions describing a digital circuit.
- Different representation of Boolean Function
 - Boolean Expression (Many)
 - Truth Table (Unique)
 - Logic Gates Diagram (Many)

FIGURE 2.1 Gate implementation of $F_1 = x + y'z$

x	y	Z	F_1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
- 1	1	1	1

The Map Method

The complexity of the digital logic gates is directly related to the complexity of the algebraic expression

Logic minimization

Algebraic approaches	The Karnaugh map
 lack specific rules The simplified	 A simple straight-
expression may not be	forward procedure A pictorial form of a
unique	truth table

The Map Method

K- Map : A pictorial form of a truth table

The Map Method

D

x	y	F1	F2
0	0	0	0
0	1	0	
1	0		0
1	1	1	1

K- Map : A pictorial form of a truth table

Two-Variable Map

- A two-variable map
 - Four minterms
 - x' = row 0; x = row 1
 - y' = column 0; y = column 1
 - A truth table in square diagram

- A three-variable map: Eight minterms
 - The Gray code sequence
 - Any two adjacent squares in the map differ by only on variable
 - Primed in one square and unprimed in the other

•
$$m_1 + m_3 = x'y'z + x'yz = x'z (y'+y) = x'z$$

					7			<i>y</i>
				x	00	01	11	10
m_0	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₂	0	x'y'z'	x'y'z	x'yz	x'yz'
m_4	<i>m</i> ₅	m_7	<i>m</i> ₆	$x \left\{ 1 \right\}$	xy'z'	xy'z	xyz	xyz'

- A three-variable map: Eight minterms
 - The Gray code sequence
 - Any 4 adjacent squares in the map differ by two variable (have only 1 variable in common)
 - Primed in one square and unprimed in the other

$m_1 + m_3 + m_5 + m_6 = x'y'z + x'yz + xy'z + xyz = z(x'y' + x'y + xy' + xy)$										
= z(x'(y'+y)+x(y'+y))										
$= z(x'+x) = z \qquad y$										
				x x	^z 00	01	11	10		
m_0	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₂	0	<i>x'y'z'</i>	x'y'z	x'yz	x'yz'		
m_4	<i>m</i> 5	<i>m</i> 7	<i>m</i> ₆	$x \left\{ 1 \right\}$	xy'z'	xy'z	xyz	xyz'		

Simplification of Adjacent Squares :

▶ $m_0 + m_2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z'$

 $m_4 + m_6 = xy'z' + xyz' = xz'(y'+y) = xz$

Z,

m_0	m_1	<i>m</i> ₃	<i>m</i> ₂
m_4	m_5	m_7	<i>m</i> ₆

Example: simplify the Boolean function F(x, y, z) = ∑(2, 3, 4, 5)
 F(x, y, z) = ∑(2, 3, 4, 5) = x'y + xy'

K-Map Rules

- I. Group (2ⁿ) adjacent I's (2,4,8,16 ,....)
- 2. Group possible maximum (2ⁿ) adjacent I's
- 3. Group overlapping is allowed as long as there are some 1's are not covered yet
- 4. Must cover all I's, each one must be covered at least once, trying possible minimum number of coverage
- 5. Stop when all one's are covered at least once.
- 6. Each group expression is based on the shared area label.
- 7. Group adjacent (2ⁿ) I's on the same row, column , consider folded Maps

Number of squares and Number of Variables

• Example simplify F(x, y, z) = S(3, 4, 6, 7)

• $F(x, y, z) = \Sigma (3, 4, 6, 7) = yz + xz'$

Example: simplify F(x, y, z) = ∑(0,2,4,5,6)
F(x, y, z) = ∑ (0, 2, 4, 5, 6) = z'+ xy'

- Example: let F = A'C + A'B + AB'C + BC
 - a) Express it in sum of minterms.
 - b) Find the minimal sum of products expression. $F(A, B, C) = \Sigma(1, 2, 3, 5, 7) = C + A'B$

- The map (w,x,y,z)
 - I6 minterms
 - Combinations of 2, 4, 8, and 16 adjacent squares

m_0	m_1	<i>m</i> ₃	<i>m</i> ₂
m_4	<i>m</i> ₅	<i>m</i> ₇	<i>m</i> ₆
<i>m</i> ₁₂	<i>m</i> ₁₃	<i>m</i> ₁₅	<i>m</i> ₁₄
<i>m</i> ₈	m_9	m_{11}	m_{10}

	v7	,]	y	
wx	Ň	00	01	11	10	
		m_0	<i>m</i> ₁	<i>m</i> ₃	<i>m</i> ₂	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
						,
		m_4	<i>m</i> ₅	<i>m</i> ₇	<i>m</i> ₆	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
						l,
		<i>m</i> ₁₂	<i>m</i> ₁₃	m ₁₅	<i>m</i> ₁₄	1
	11	wxy'z'	wxy'z	wxyz	wxyz'	
w 1						J
"		<i>m</i> ₈	<i>m</i> ₉	<i>m</i> ₁₁	<i>m</i> ₁₀	
	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	
	l					
				7	,	
			(b)			
			(0)			

• Example: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

D

F = y'+ w'z'+ xz'

D

• Example: simplify $F(w, x, y, z) = \Sigma(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

Example: simplify F =A'B'C'+B'CD'+A'BCD'+AB'C'D+AB'D'

B'C B'D' A'CD' F = B'C'+B'D'+A'CD'

Number of adjacent squares and the number of literals

Relationship between the number of adjacent squares and the number of literals in the term.

Number of Adjacent Squares	Number of Literals in a Term in an <i>n</i> -variable Map				
2 ^k	n = 2	n = 3	n = 4		
1	2	3	4		
2	1	2	3		
4	0	1	2		
8		0	1		
16			0		

It is obvious that we can represent the function F in sum of product directly using K-Map

What if we want to represent F in Product of Sum Form !!!!!!!!!

- Get a Simplified F' in the form of sum of products (groupings zeros of F)
- 2. Get F with aid of DeMorgan's theorem F = (F')

F': sum of products \rightarrow *F*: product of sums

- Simplify $F = \sum (0, 1, 2, 5, 8, 9, 10)$ into
- (a) sum-of-products form, and
- (b) product-of-sums form:

- Consider the function defined in Table 3.2.
 - In sum-of-minterm:

$$F(x, y, z) = \sum (1, 3, 4, 6)$$

In sum-of-maxterm:

 $F'(x, y, z) = \Pi(0, 2, 5, 7)$

Table 3.2Truth Table of Function F

x	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

- Consider the function defined in Table 3.2.
 - Combine the I's:

$$F(x, y, z) = x'z + xz'$$

• Combine the 0's :

F'(x, y, z) = xz + x'z'

Taking the complement of F'

$$F(x, y, z) = (x' + z')(x + z)$$

Don't-Care Conditions

- The value of a function is not specified for certain combinations of variables
- The don't-care conditions can be utilized in logic minimization
 - Can be implemented as 0 or 1

Don't-Care Conditions

 $\begin{array}{ll} F = 1 & if & 0 < (wxyz)_{10} < 4 \\ F = 0 & if & 4 \leq (wxyz)_{10} < 9 \end{array}$

w	x	y	z	F
0	0	0	0	x
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	x
1	0	1	0	x
1	0	1	1	x
1	1	0	0	x
1	1	0	1	x
1	1	1	0	x
1	1	1	1	x

Don't-Care Conditions

• Example: simplify $F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ which has the don't-care conditions $d(w, x, y, z) = \Sigma(0, 2, 5)$.

