

Lecture 3:
 Chapter 2: Boolean Algebra and Logic Gates

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,
Ain Shams University

Basic Definitions

- The Postulates Boolean Algebra

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	$x+0=x$	(b)	$x \cdot 1=x$
Postulate 5	(a)	$x+x^{\prime}=1$	(b)	$x \cdot x^{\prime}=0$
Theorem 1	(a)	$x+x=x$	(b)	$x \cdot x=x$
Theorem 2	(a)	$x+1=1$	(b)	$x \cdot 0=0$
Theorem 3, involution		$\left(x^{\prime}\right)^{\prime}=x$		
Postulate 3, commutative	(a)	$x+y=y+x$	(b)	$x y=y x$
Theorem 4, associative	(a)	$x+(y+z)=(x+y)+z$	(b)	$x(y z)=(x y) z$
Postulate 4, distributive	(a)	$x(y+z)=x y+x z$	(b)	$x+y z=(x+y)(x+z)$
Theorem 5, DeMorgan	(a)	$(x+y)^{\prime}=x^{\prime} y^{\prime}$	(b)	$(x y)^{\prime}=x^{\prime}+y^{\prime}$
Theorem 6, absorption	(a)	$x+x y=x$	(b)	$x(x+y)=x$

Basic Definitions

- Duality Principle (DeMorgan's Theorem)
- Verify DeMorgan’sTheorem

$$
\begin{array}{ll|ll}
(x+y)^{\prime} & =x^{\prime} y^{\prime} & x+y & =\left(x^{\prime} y^{\prime}\right)^{\prime} \\
(x y)^{\prime} & =x^{\prime}+y^{\prime} & x y & =\left(x^{\prime}+y^{\prime}\right)^{\prime}
\end{array}
$$

\boldsymbol{x}	\boldsymbol{y}	x^{\prime}	y^{\prime}	$x+y$	$(x+y)^{\prime}$	$x^{\prime} y^{\prime}$	$X y$	$x^{\prime}+y^{\prime}$	$(x y)^{\prime}$
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Basic Definitions

- Duality Principle (DeMorgan's Theorem)
- Verify DeMorgan'sTheorem

$$
\begin{aligned}
& x^{\prime} y+x z^{\prime} \\
= & x^{\prime} y+x z^{\prime} \\
= & \left(\left(x^{\prime} y\right)^{\prime} \cdot\left(x z^{\prime}\right)^{\prime}\right)^{\prime} \\
= & \left(\left(x+y^{\prime}\right) \cdot\left(x^{\prime}+z\right)\right)^{\prime}
\end{aligned}
$$

Basic Definitions

Consensus Theorem
$x y+x^{\prime} z+y z=x y+x^{\prime} z$

Proof:

$$
\begin{aligned}
& x y+x \prime z+y z \\
& =x y+x \prime z+l . y z \\
& =x y+x ' z+\left(x+x^{\prime}\right) y z \\
& =x y+x \prime z+x y z+x x^{\prime} y z \\
& =(x y+x y z)+\left(x^{\prime} z+x x^{\prime} z\right) \\
& =x y(1+z)+x^{\prime} z(1+y) \\
& =x y+x^{\prime} z
\end{aligned}
$$

$(x+y) \cdot\left(x^{\prime}+z\right) \cdot(y+z)=(x+y) \cdot\left(x^{\prime}+z\right)$
Proof:
$(x+y) \cdot\left(x^{\prime}+z\right)^{\bullet}(y+z)$
$=(x+y) \cdot\left(x^{\prime}+z\right) \cdot(0+y+z)$
$=(x+y) \cdot\left(x^{\prime}+z\right)^{\bullet}\left(\left(x x^{\prime}\right)+y+z\right)$
$=(x+y) \cdot\left(x^{\prime}+z\right) \cdot(x+y+z) \cdot\left(x^{\prime}+y+z\right)$
$=((x+y)+(0 \cdot z))\left(\left(x^{\prime}+z\right)+(0 \cdot y)\right)$
$=(x+y)\left(x^{\prime}+z\right)$

Operator Precedence

- The operator precedence for evaluating Boolean Expression is
- Parentheses
, NOT
- AND
- OR
- Examples
> $x y^{\prime}+z$
- $(x y+z)^{\prime}$

Boolean Functions

- Implementation
with logic gates

FIGURE 2.1
Gate implementation of $F_{1}=x+y^{\prime} z$

Boolean Functions

- Implementation with logic gates

$$
\begin{aligned}
& F_{3}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} \\
&=x^{\prime} z\left(y^{\prime}+y\right)+x y^{\prime} \\
&=x^{\prime} z(I)+x y^{\prime} \\
&=x^{\prime} z+x y^{\prime} \\
& \hline
\end{aligned}
$$

(a) $F_{2}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime}$

Simplification

(b) $F_{2}=x y^{\prime}+x^{\prime} z$

Complement of a Function

- The complement of a function F is F ' and is obtained from an interchange of O's for I's and I's for 0's in the value of F.

The complement of a function may be derived algebraically through DeMorgan's theorems,

- 3 variables DeMorgan's theorem

$$
\begin{aligned}
(A+B+C)^{\prime} & =(A+X)^{\prime} \\
& =A^{\prime} X^{\prime}
\end{aligned}
$$

$$
=A^{\prime}(B+C)^{\prime} \quad \text { substitute } B+C=X
$$

$$
=A^{\prime}\left(B^{\prime} C^{\prime}\right) \quad \text { by DeMorgan's theorem }
$$

$$
=A^{\prime} B^{\prime} C^{\prime} \quad \text { by associative theorem }
$$

Complement of a Function

- The complement of a function F is F, and is obtained from an interchange of 0 's for I's and I's for 0's in the value of F.

Generalization: a function is obtained by interchanging AND and OR operators and complementing each literal.
r $=A+B+C+D+\ldots$ Then $F^{\prime}=(A+B+C+D+\ldots)^{\prime}=A^{\prime} B^{\prime} C^{\prime} D^{\prime} . .$.
, $F=A B C D . .$. Then $F^{\prime}=(A B C D . . .)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime} . .$.

Complement of a Function

- Find the Complement of the following functions

$$
\begin{aligned}
& \text { > } F_{1}=x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z \quad \mid \quad F_{2}=x\left(y^{\prime} z^{\prime}+y z\right) \\
& \text { - } F_{1}{ }^{\prime}=\left(x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z\right)^{\prime} \\
& =\left(x^{\prime} y z z^{\prime}\right) '\left(x^{\prime} y^{\prime} z\right)^{\prime} \\
& \left.=(x+y '+z)(x+y+z)^{\prime}\right) \\
& \text { - } F_{2}{ }^{\prime}=\left[x\left(y^{\prime} z^{\prime}+y z\right)\right]^{\prime} \\
& =x^{\prime}+\left(y^{\prime} z^{\prime}+y z\right)^{\prime} \\
& =x^{\prime}+\left(y^{\prime} z^{\prime}\right)^{\prime}(y z)^{،} \\
& =x^{\prime}+(y+z)\left(y^{\prime}+z^{\prime}\right) \\
& =x^{\prime}+y z^{\prime}+y^{\prime} z
\end{aligned}
$$

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=x^{\prime} y^{\prime}$

x	y	x^{\prime}	y^{\prime}	F
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=x^{\prime} y^{\prime}+x^{\prime} y$

x	y	x^{\prime}	y^{\prime}	$x^{\prime} y^{\prime}$	$x^{\prime} y$	F
0	0	1	1	1	0	1
0	1	1	0	0	1	(1)
1	0	0	1	0	0	0
1	1	0	0	0	0	0

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=x^{\prime} y^{\prime}+x^{\prime} y+x y^{\prime}$

x	y	x^{\prime}	y^{\prime}	$x^{\prime} y^{\prime}$	$x^{\prime} y$	$x y^{\prime}$	F
0	0	1	1	1	0	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=x^{\prime} y^{\prime}+x^{\prime} y+x y^{\prime}+x y$

x	y	x^{\prime}	y^{\prime}	F
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Canonical and Standard Forms

Drive truth table of the following function F = $x^{\prime} y^{\prime} z^{\prime}$

x	y	z	x^{\prime}	y^{\prime}	z^{\prime}	F
0	0	0	1	1	1	1
0	0	1	1	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

Canonical and Standard Forms

Drive truth table of the following function F = $x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$

x	y	z	x^{\prime}	y^{\prime}	z^{\prime}	F
0	0	0	1	1	1	1
0	0	1	1	1	0	1
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

Canonical and Standard Forms

Minterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.
. For example,
- two binary variables x and y,
* $x y, x y^{\prime}, x^{\prime} y, x^{\prime} y^{\prime}$
- It is also called a standard product.
- n variables can be combined to form 2^{n} minterms.

\mathbf{x}	\boldsymbol{y}	Term	Symbol
0	0	$x^{\prime} y^{\prime}$	m_{0}
0	I	$x^{\prime} y$	m_{1}
I	0	$x y^{\prime}$	m_{2}
I	l	xy	m_{3}

Minterms and Maxterms for Three Binary Variables

			Minterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}
0	1	1	$x^{\prime} y z$	m_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	$x y^{\prime} z$	m_{5}
1	1	0	$x y z^{\prime}$	m_{6}
1	1	1	$x y z$	m_{7}

Canonical and Standard Forms

Minterms

- Sum of minterms for each combination of variables that produces a (I) in the function

Minterms and Maxterms for Three Binary Variables

			Minterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}
0	1	1	$x^{\prime} y z$	m_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}
1	0	1	$x y^{\prime} z$	m_{5}
1	1	0	$x y z^{\prime}$	m_{6}
1	1	1	$x y z$	m_{7}

Canonical and Standard Forms

Drive truth table of the following function
F $=x^{\prime} y^{\prime}$

x	y	x^{\prime}	y^{\prime}	F
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

$\mathrm{F} \quad=\sum m_{0}$

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=x^{\prime} y^{\prime}+x^{\prime} y$

x	y	x^{\prime}	y^{\prime}	\boldsymbol{F}
0	0	1	1	1
0	1	1	0	$(1$
1	0	0	1	0
1	1	0	0	0

$\mathrm{F} \quad=\sum\left(m_{0}, m_{1}\right)$

$$
\begin{aligned}
F \quad & =x^{\prime} y^{\prime}+x^{\prime} y \\
& =(00,01) \\
& =\sum\left(m_{0}, m_{1}\right)
\end{aligned}
$$

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=x^{\prime} y^{\prime}+x^{\prime} y+x y^{\prime}+x y$

x	y	x^{\prime}	y^{\prime}	\boldsymbol{F}
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

$\mathrm{F} \quad=\sum\left(m_{0}, m_{1}, m_{2}, m_{3}\right)$

Much More Compact Form

$$
F=I
$$

Canonical and Standard Forms

Drive truth table of the following function F $\quad=x^{\prime} y^{\prime} z^{\prime}=\sum\left(m_{0}\right)$

x	y	z	x^{\prime}	y^{\prime}	z^{\prime}	F
0	0	0	1	1	1	1
0	0	1	1	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

Canonical and Standard Forms

Drive truth table of the following function F

$$
\begin{gathered}
=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z=\sum\left(m_{0}, m_{1}\right) \\
=000,001^{\prime \prime}
\end{gathered}
$$

x	y	z	x^{\prime}	y^{\prime}	z^{\prime}	F
0	0	0	1	1	1	1
0	0	1	1	1	0	1
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

Canonical and Standard Forms

Write the following function in terms sum of its minterms

x	y	z	$F 1$	$F 2$	$F 3$
0	0	0	1	0	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	1	0	1

$$
\begin{aligned}
& \mathrm{FI}=\sum\left(m_{0}, m_{1}, m_{7}\right) \\
& \mathrm{FI}=x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z^{+} \mathrm{xyz}
\end{aligned} \begin{aligned}
& \mathrm{F} 2=\sum\left(m_{1}, m_{4}\right) \\
& \mathrm{F} 2=x^{\prime} y^{\prime} z^{+}+x y^{\prime} z^{\prime} \\
& \text { F3 }= \\
& \sum\left(m_{0}, m_{1}, m_{5}, m_{6}, m_{7}\right)
\end{aligned}
$$

Canonical and Standard Forms

Minterms and Maxterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.

Sum means ORing

- A maxterm (standard sums): an OR term

। It is also called a standard sum.

- 2^{n} maxterms.

Product means ANDing

Canonical and Standard Forms

Drive truth table of the following function $F \quad=x+y$

x	y	x^{\prime}	y^{\prime}	F
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

Canonical and Standard Forms

Drive truth table of the following function
F $\quad=(x+y)\left(x+y^{\prime}\right)$

x	y	x^{\prime}	y^{\prime}	$x+y$	$x+y^{\prime}$	F
0	0	1	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	1	1	1
1	1	0	0	1	1	1

Minterms and Maxterms

- Each maxterm is the complement of its corresponding minterm, and vice versa.

Table 2.3

Minterms and Maxterms for Three Binary Variables

			Minterms			Maxterms	
\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Term	Designation		Term	Designation
0	0	0	$x^{\prime} y^{\prime} z^{\prime}$	m_{0}		$x+y+z$	M_{0}
0	0	1	$x^{\prime} y^{\prime} z$	m_{1}		$x+y+z^{\prime}$	M_{1}
0	1	0	$x^{\prime} y z^{\prime}$	m_{2}		$x+y^{\prime}+z$	M_{2}
0	1	1	$x^{\prime} y z$	m_{3}		$x+y^{\prime}+z^{\prime}$	M_{3}
1	0	0	$x y^{\prime} z^{\prime}$	m_{4}		$x^{\prime}+y+z$	M_{4}
1	0	1	$x y^{\prime} z$	m_{5}		$x^{\prime}+y+z^{\prime}$	M_{5}
1	1	0	$x y z^{\prime}$	m_{6}	$x^{\prime}+y^{\prime}+z$	M_{6}	
1	1	1	$x y z$	m_{7}	$x^{\prime}+y^{\prime}+z^{\prime}$	M_{7}	

Minterms and Maxterms

- Express the following functions in terms . sum of standard product terms (minterms)

2. product of standard sum terms (Maxterms)

Table 2.4
Functions of Three Variables

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Function $\mathbf{f}_{\mathbf{1}}$	Function $\mathbf{f}_{\mathbf{2}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	$=\sum\left(m_{1}, m_{4}, m_{7}\right)$
	$=x^{\prime} y^{\prime} z+x y^{\prime} z^{\prime}+x y z$			
	$=(x+y+z)\left(x+y_{0} M_{2} M_{3} M_{5} M_{6}\right)$			

Minterms and Maxterms

Convert from any form to the other

Table 2.4
Functions of Three Variables

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	Function $\boldsymbol{f}_{\mathbf{1}}$	Function $\mathbf{f}_{\mathbf{2}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Minterms and Maxterms

- Express the following functions in terms of
I. sum of its minterms

2. product of its Maxterms

Table 2.4

Functions of Three Variables

x	y	z	Function f_{1}	Function f_{2}	$\begin{aligned} \mathrm{F} 2 & =\sum\left(m_{3}, m_{5}, m_{6}, m_{7}\right) \\ & =\prod\left(M_{0} M_{1} M_{2} M_{4}\right) \end{aligned}$
0	0	0	0	0	
0	0	1	1	0	
0	1	0	0	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Minterms and Maxterms

Any Boolean function can be expressed as:

- A sum of minterms expressions ("sum" meaning the ORing of terms)

$$
\mathrm{F}=\mathrm{XYZ}+\mathrm{XY} Y^{\prime} \mathrm{Z}+\mathrm{X}^{\prime} \mathrm{Y}^{\prime} \mathrm{Z}^{\prime}+\ldots
$$

- A product of maxterms expressions ("product" meaning the ANDing of terms).

$$
\mathrm{F}=(\mathrm{X}+\mathrm{Y}+\mathrm{Z}) \cdot\left(\mathrm{X}+\mathrm{Y}^{\prime}+\mathrm{Z}\right) \cdot\left(\mathrm{X}^{\prime}+\mathrm{Y}^{\prime}+\mathrm{Z}^{\prime}\right) \ldots
$$

- Both Boolean functions are said to be in Canonical form.

Sum of Minterms

- Sum of minterms: there are 2^{n} minterms and $2^{2 n}$ combinations of functions with n Boolean variables.
- Example : express $F=A+B^{\prime} C$ as a sum of minterms.

$$
\begin{aligned}
F & =A+B^{\prime} C \\
& =A\left(B+B^{\prime}\right)+B^{\prime} C \\
& =A B+A B^{\prime}+B^{\prime} C \\
& =A B\left(C+C^{\prime}\right)+A B^{\prime}\left(C+C^{\prime}\right)+\left(A+A^{\prime}\right) B^{\prime} C \\
& =A B C+A B C^{\prime}+A B^{\prime} C+A B^{\prime} C^{\prime}+A^{\prime} B^{\prime} C \\
& =A^{\prime} B^{\prime} C+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C^{\prime}+A B C \\
& =m_{1}+m_{4}+m_{5}+m_{6}+m_{7} \\
& =\Sigma(1,4,5,6,7)
\end{aligned}
$$

or, built the truth table first
Table 2.5
Truth Table for $F=A+B^{\prime} C$

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Sum of Minterms

- Sum of minterms: there are 2^{n} minterms and $2^{2 n}$ combinations of functions with n Boolean variables.
- Example: express $F=A+B^{\prime} C$ as a product of maxterms

$$
\Rightarrow F=A+B^{\prime} C
$$

$$
=\left(A+B^{\prime}\right)(A+C)
$$

$$
=\left(A+B^{\prime}+C C^{\prime}\right)\left(A+C+B B^{\prime \prime}\right)
$$

1 = $\left(A+B^{\prime}+C\right)\left(A+B^{\prime}+C^{\prime}\right)(A+B+C)\left(A+B^{\prime}+C\right)$ $=\prod_{(}\left(M_{0} M_{2} M_{3}\right)$
or, built the truth table first
Table 2.5
Truth Table for $F=A+B^{\prime} C$

\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Product of Maxterms

- Product of maxterms: using distributive law to expand.
- Example : express $F=x y+x ' z$ as a product of maxterms.

$$
\begin{aligned}
F & =x y+x^{\prime} z \\
& =\left(x y+x^{\prime}\right)(x y+z) \\
& =\left(x+x^{\prime}\right)\left(y+x^{\prime}\right)(x+z)(y+z) \\
& =\left(x^{\prime}+y\right)(x+z)(y+z) \\
& =\left(x^{\prime}+y+z z^{\prime}\right)\left(x+z+y y^{\prime}\right)\left(y+z+x x^{\prime}\right) \\
& =\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right)(x+z+y)\left(x+z+y^{\prime}\right)(y+z-x) \\
& \left(y+z \nmid x^{\prime}\right) \\
& =(x+y+z)\left(x+y^{\prime}+z\right)\left(x^{\prime}+y+z\right)\left(x^{\prime}+y+z^{\prime}\right) \\
& =M_{0} M_{2} M_{4} M_{5} \\
& =\Pi(0,2,4,5)
\end{aligned}
$$

or, built the truth table first
Table 2.6
Truth Table for $\boldsymbol{F}=$
\boldsymbol{x}
\boldsymbol{y}
0

Complement of a Function Expressed in Canonical Forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.

$$
\begin{aligned}
& F(A, B, C)=\Sigma(I, 4,5,6,7) \\
& F(A, B, C)==\Pi(0,2,3)
\end{aligned}
$$

Thus,

- $F^{\prime}(A, B, C)=\Sigma(0,2,3)$
- $F^{\prime}(A, B, C)=\Pi(1,4,5,6,7)$
* By DeMorgan's theorem $m_{j}^{\prime}=M_{j}$

X	y	z	FI	FI'
0	0	0	0	I
0	0	I	I	0
0	I	0	0	I
0	I	I	0	I
I	0	0	I	0
I	0	I	I	0
I	1	0	I	0
1	1	1	I	0

Conversion between Canonical Forms

- To convert from one canonical form to another: interchange the symbols Σ and Π and list those numbers missing from the original form
- Σ of I's
- П of 0's

Conversion between Canonical Forms

Example

- $F=x y+x^{\prime} z$
- $F(x, y, z)=\Sigma(I, 3,6,7)$
* $F(x, y, z)=\Pi(0,2,4,6)$

Table 2.6
Truth Table for $F=x y+x^{\prime} z$

\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	\boldsymbol{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Canonical Forms vs. Standard Forms

Canonical Forms

- Each minterm or maxterm must contain all the variables either complemented or uncomplemented,
- Sum of minterms
(Product terms)
- OR Product of Maxterms (sum terms)

Standard forms

the terms that form the function may obtain one, two, or any number of literals, .

There are two types of standard forms:

- Sum of products:

$$
F_{I}=y^{\prime}+x y+x^{\prime} y z^{\prime}
$$

- Product of sums:

$$
F_{2}=x\left(y^{\prime}+z\right)\left(x^{\prime}+y+z^{\prime}\right)
$$

Standard Forms

- A Boolean function may be expressed in a nonstandard form

$$
\text { - } F_{3}=A B+C(B+A)
$$

- But it can be changed to a standard form by using The distributive law
- $F_{3}=A B+C(B+A)=A B+B C+A C$
- And it can be changed to a canonical form by using The distributive law after adding missing literal

$$
\begin{aligned}
F_{3} & =A B+B C+A C=A B\left(C+C C^{\prime}\right)+B C\left(A+A^{\prime}\right)+A C\left(B^{\prime}+B^{\prime}\right) \\
& =A B C+A B C^{\prime}+A B^{\prime} C+A^{\prime} B C+A B C+A B^{\prime} C \\
& =A B C+A B C^{\prime}+A^{\prime} B C+A B^{\prime} C^{\prime}
\end{aligned}
$$

Implementation

, Two-level implementation

(a) Sum of Products

(b) Product of Sums

- Multi-level implementation

${ }_{(\mathrm{a}) A B+C D+E)} \quad D D D D$
(b) $A B+C D+C E$

Sum of minterms

$$
F=\sum\left(m_{0}, m_{2}, \ldots m_{i}\right)
$$

Sum of terms that function gives I
Minterms (Locate I's)
$m_{0}=x^{\prime} y^{\prime} z^{\prime}=000$
$m_{1}=x^{\prime} y^{\prime} z=001$

$$
m_{7}=x y z=\|I\|
$$

Convert Boolean function to SOP

By multiplying each term by the missing variable Ored with its complement
$F=x y=x y\left(z+z^{\prime}\right)=x y z+x y z '$

Logic Diagram:

- 2 level implantation
- Level of AND gates followed by one OR gate

Product of Maxterms

$$
F=\prod\left(M_{0} M_{1} \ldots \ldots . M_{i}\right)
$$

Product of terms that function gives 0
Maxterms (Locate 0's)
$M_{0}=x+y+z=000$
$M_{1}=x+y+z^{\prime}=001$
$M_{7}=x^{\prime}+y+{ }^{\prime} z^{\prime}=1| |$
Convert Boolean function to POS
By expanding using distributive law and then for each term add the missing variable ANDed with its complement F= $x+y=x+y+z z^{\prime}=(x+y+z)\left(x+y+z^{\prime}\right)$

Logic Diagram:

- 2 level implantation

- Level of OR gates followed by one AND gate

Other Logic Operations

- 2^{n} rows in the truth table of n binary variables.
- $2^{2^{n}}$ functions for n binary variables.
- 16 functions of two binary variables.

Table 2.7
Truth Tables for the 16 Functions of Two Binary Variables

| \boldsymbol{x} | \boldsymbol{y} | $\boldsymbol{F}_{\mathbf{0}}$ | $\boldsymbol{F}_{\mathbf{1}}$ | $\boldsymbol{F}_{\mathbf{2}}$ | $\boldsymbol{F}_{\mathbf{3}}$ | $\boldsymbol{F}_{\mathbf{4}}$ | $\boldsymbol{F}_{\mathbf{5}}$ | $\boldsymbol{F}_{\mathbf{6}}$ | $\boldsymbol{F}_{\mathbf{7}}$ | $\boldsymbol{F}_{\mathbf{8}}$ | $\boldsymbol{F}_{\mathbf{9}}$ | $\boldsymbol{F}_{\mathbf{1 0}}$ | $\boldsymbol{F}_{\mathbf{1 1}}$ | $\boldsymbol{F}_{\mathbf{1 2}}$ | $\boldsymbol{F}_{\mathbf{1 3}}$ | $\boldsymbol{F}_{\mathbf{1 4}}$ | $\boldsymbol{F}_{\mathbf{1 5}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |

- All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Boolean Expressions

Table 2.8

Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol		Name
$F_{0}=0$	$x \cdot y$	Null	Comments
$F_{1}=x y$	$x y$	AND	Binary constant 0
$F_{2}=x y^{\prime}$		Inhibition	x and y
$F_{3}=x$	y / x	Transfer	x but not y
$F_{4}=x^{\prime} y$	$x \oplus y$	Inhibition	x
$F_{5}=y$	$x+y$	Transfer	y but not x
$F_{6}=x y^{\prime}+x^{\prime} y$	$x \downarrow y$	Exclusive-OR	y
$F_{7}=x+y$	$(x \oplus y)^{\prime}$	OR or y, but not both	
$F_{8}=(x+y)^{\prime}$	y^{\prime}	NOR	x or y
$F_{9}=x y+x^{\prime} y^{\prime}$	$x \subset y$	Equivalence	Not-OR
$F_{10}=y^{\prime}$	x^{\prime}	Complement	x equals y
$F_{11}=x+y^{\prime}$	$x \supset y$	Implication	If y, then x
$F_{12}=x^{\prime}$	$x \uparrow y$	Complement	Not x
$F_{13}=x^{\prime}+y$		Implication	If x, then y
$F_{14}=(x y)^{\prime}$		NAND	Not-AND
$F_{15}=1$		Identity	Binary constant 1

