

Lecture 2:
Chapter 1\&2: Arithmetic Operations, Boolean Algebra and Logic Gates

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,
Ain Shams University

Arithmetic Operations (Addition)

- Arithmetic operations with numbers in base r follow the same rules as for decimal numbers. When a base other than the familiar base $\mathbf{I O}$ is used, one must be careful to use only the r-allowable digits.
- Example add 3758 and 4657

3758
$+\quad 4657$

Arithmetic Operations (Addition)

- Example add 3758 and 4657

$$
\begin{array}{r}
111 \\
3758 \\
+\quad 4657 \\
\hline 8415
\end{array}
$$

What just happened?

$$
\begin{array}{r}
1111 \quad \text { (carry) } \\
3758 \\
+4657 \\
\hline 8141115 \text { (sum) } \\
-\quad 101010 \text { (subtract the base) } \\
\hline 8415
\end{array}
$$

- when the sum of a column is equal to or greater than the base, we subtract the base from the sum, record the difference, and carry one to the next column to the left.

Arithmetic Operations (Addition)

- In Binary Just like in decimal
- Rules:
- $0+0=0$
- $0+1=1$
- $1+0=1$
- $I+I=2_{10}(2-2=0$, result in binary 0 with carry $I)$
) $I+I+I=3_{10}(3-2=I$, result in binary I with carry $I)$
- when the sum of a column is equal to or greater than the base, we subtract the base from the sum, record the difference, and carry one to the next column to the left.

Arithmetic Operations (Addition)

- In Binary Just like in decimal
- Add IIOIII + Ollloo

$$
\begin{array}{r}
11111 \\
110111 \\
+\quad 0111000 \\
\hline 1010011
\end{array}
$$

Arithmetic Operations (Addition)

Try it your self
Example 2:

$$
\begin{array}{r}
1111011_{2} \\
+001011 \\
\hline
\end{array}
$$

- Example 3:

$$
\begin{array}{r}
100101111_{2} \\
+110101011_{2} \\
\hline
\end{array}
$$

Arithmetic Operations (Addition)

Try it your self

- Example 2:

- Example 3:

$$
\rightarrow \quad \begin{array}{r}
151_{10} \\
+213_{10} \\
\hline 364_{10}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
1 & 1 & 1 & 1 & & 1 & \\
& 1 & 1 & 1 & 1 & 0 & 1_{2}
\end{array} \\
& \begin{array}{rlllll}
\\
+ & 0 & 0 & 1 & 1 & 1 \\
2
\end{array}
\end{aligned}
$$

Arithmetic Operations (Subtraction)

- Example subtract 8025 and 4657

$$
\begin{array}{r}
8025 \\
-4657 \\
\hline
\end{array}
$$

Arithmetic Operations (Subtraction)

- Example subtract 8025 and 4657

$$
\begin{array}{r}
\\
\\
801 \\
815 \\
-465 \\
\hline
\end{array}
$$

Arithmetic Operations (Subtraction)

- Example subtract 8025 and 4657

$$
\begin{array}{r}
7911 \\
810 \quad 215 \\
-46 \\
\hline
\end{array} \begin{array}{r}
7 \\
\hline
\end{array}
$$

Arithmetic Operations (Subtraction)

- Example subtract 8025 and 4657

$$
\begin{array}{rrr}
79 & 11 \\
8 & 10 & 2 \\
15 \\
-4 & 6 & 7 \\
\hline 3 & 3 & 6
\end{array}
$$

Arithmetic Operations (Subtraction)

- In Binary Just like in decimal
- In binary, the base unit is 2 ,
- So when you cannot subtract, you borrow from the column to the left.
- The amount borrowed is $\mathbf{2}$.
- The 2 is added to the original column value, so you will be able to subtract.

Arithmetic Operations (Subtraction)

- In Binary Just like in decimal
- Example Subtract IIOOII - IIIOO

$$
\begin{array}{r}
110011 \\
-\quad 11100 \\
\hline
\end{array}
$$

Arithmetic Operations (Subtraction)

- In Binary Just like in decimal
- Example Subtract IIOOII - IIIOO

$$
\begin{array}{r}
110011 \\
-\quad 111100 \\
\hline
\end{array}
$$

Arithmetic Operations (Subtraction)

- In Binary Just like in decimal
- Example Subtract IIOOII - IIIOO

$$
\begin{array}{r}
1 \\
0 \not 22 \\
1 \not 1 \otimes \theta 11 \\
11110 \\
\hline
\end{array} \begin{array}{r}
111
\end{array}
$$

Arithmetic Operations (Subtraction)

- In Binary Just like in decimal
- Example Subtract IIOOII - IIIOO

$$
\begin{aligned}
& 21 \\
& 0 \nless 22 \\
& \text { エ1 } \boldsymbol{1} \boldsymbol{\theta} 11 \\
& -\quad 11100 \\
& 10111
\end{aligned}
$$

Arithmetic Operations (Subtraction)

Try it your self

- Example 2:

$$
\begin{array}{r}
110101_{2}^{1} \\
-1010111_{2} \\
\hline
\end{array}
$$

- Example 3:

$$
\begin{array}{r}
1001101_{2}^{1} \\
-\quad 110111 \\
\hline
\end{array}
$$

Arithmetic Operations (Subtraction)

Try it your self

- Example 2:

- Example 3:

$$
\begin{array}{rrrrr}
1 & 2 \\
0 & 2 & 2 & 0 & 2 \\
1 & 0 & 0 & 1 & 1
\end{array} 01_{2} \quad \rightarrow \quad \begin{aligned}
& 77_{10} \\
& -\quad 1 \\
& 1
\end{aligned} 1001111_{2} \quad-\quad 55_{10}
$$

Arithmetic Operations (Hexadecimal)

Addition

$$
\text { (subtract Base (16)) }
$$

Arithmetic Operations (Hexadecimal)

Subtraction

$$
\begin{array}{rrr}
B & 16 \\
7 \ell & \underline{3} \quad 9_{16} \\
& 19 & \\
-\quad 37 & F_{2} 2_{16} \\
\hline 44 & 47_{16}
\end{array}
$$

Arithmetic Operations (Octal)

Addition

$$
\begin{array}{r}
11 \\
6437_{8} \\
+\quad 2510_{8} \\
\hline 99 \\
-\quad 88 \\
\hline 11147_{8}
\end{array} \text { (subtract Base (8)) }
$$

Arithmetic Operations (Octal)

Subtraction

$$
\begin{aligned}
& 8 \\
& 008 \\
& x \not 11478 \\
& 89 \\
& -\quad 6437 \\
& \hline 2510_{8}
\end{aligned}
$$

Arithmetic Operations (Multiplication)

- Bit by bit

				$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
\mathbf{x}				$\mathbf{1}$			
				$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
			$\mathbf{0}$	$\mathbf{0}$			
			$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$
	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$		
$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$			
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$

Complements

, There are two types of complements for each base-r system

Diminished Radix Complement (r - I)'s Complement

Given a number N in base r having n digits,
the $(r-1$)'s complement of N is defined as:

$$
\left(r^{n}-1\right)-N
$$

Radix
 Complement r's complement

Given n -digit number N in base r the r's complement of N is defined as

$$
\begin{gathered}
\mathbf{r}^{\mathrm{n}}-\mathbf{N} \text { for } \mathrm{N} \neq 0 \text { and } \\
\text { as } \mathbf{0} \text { for } \mathrm{N}=0 .
\end{gathered}
$$

Comparing with the ($r-1$) 's complement, we note that the r's complement is obtained by adding 1 to the ($r-1$) 's complement, since

$$
r^{n}-N=\left[\left(r^{n}-1\right)-N\right]+1 .
$$

Complements

- Diminished Radix Complement - (r - 1)'s Complement
- Given a number N in base r having n digits, the $(r-l)$'s complement of N is defined as:

$$
\left(r^{n}-l\right)-N
$$

- Example for 6-digit decimal numbers:
- 9's complement is $\left(r^{n}-I\right)-N=\left(10^{6}-I\right)-N=999999-N$
- 9's complement of 546700

$$
999999
$$

- 546700 453299

Complements

Diminished Radix Complement, (r-I)'s Complement

- Example for 7-digit binary numbers:
- I's complement is $\left(r^{n}-I\right)-N=\left(2^{7}-\mid\right)-N=\||||| |-N$
1.s complement of 1011000 is

$$
\begin{array}{r}
1111111 \\
-\quad 1011000 \\
\hline 0100111
\end{array}
$$

Observation:

- Subtraction from $\left(r^{n}-1\right)$ will never require a borrow
- Diminished radix complement can be computed digit-by-digit
- For binary: $1-0=1$ and $1-1=0$

Complements

I's Complement (Diminished Radix Complement)

- All '0's become 'I's
- All 'l's become '0's

Example (10110000)
$\Rightarrow(0100|l| l \mid)_{2}$
If you add a number and its l's complement ...

Complements

, There are two types of complements for each base-r system

Diminished Radix Complement (r - I)'s Complement

Given a number N in base r having n digits,
the $(r-1)$'s complement of N is defined as:

$$
\left(r^{n}-1\right)-N
$$

Radix
 Complement r's complement

Given n -digit number N in base r the r's complement of N is defined as
$\mathbf{r}^{\mathrm{n}}-\mathbf{N}$ for $\mathrm{N} \neq 0$ and as $\mathbf{0}$ for $\mathrm{N}=0$.

Complements

- Radix Complement
- Example: Base-IO
- The IO's complement of 012398 is 987602
- The IO's complement of 246700 is 753300

1000000
$-\quad 012398$
987602

1000000

$-\quad 246700$
753300

Comparing with the $(r-1)$'s complement, we note that the r's complement is obtained by adding 1 to the ($r-1$) 's complement, since

$$
r^{n}-N=\left[\left(r^{n}-1\right)-N\right]+1 .
$$

Complements

- Radix Complement
- Example: Base-2
- The 2's complement of 1101100 is 0010100
- The 2's complement of OlIOIII is 1001001

10000000
$-\quad 1101100$
0010100

10000000 01IOIII 1001001

Comparing with the $(r-1)$'s complement, we note that the r's complement is obtained by adding 1 to the ($r-1$) 's complement, since

$$
r^{n}-N=\left[\left(r^{n}-1\right)-N\right]+1
$$

Complements

, 2's Complement (Radix Complement)
, Take I's complement then add I
OR • Toggle all bits to the left of the first 'l' from the right

Example:
Number: 10110000
10110000
l's Comp.: 01001111

$$
\begin{array}{r}
+\quad 1 \\
\hline 01010000
\end{array}
$$

01010000

Complements

- Subtraction with Complements
- The subtraction of two n-digit unsigned numbers $M-N$ in base r can be done as follows:

1. Add the minuend M to the r 's complement of the subtrahend N. Mathematically, M $+\left(r^{n}-N\right)=M-N+r^{n}$.
2. If $M \geqq N$, the sum will produce and end carry r^{n}, which can be discarded; what is left is the result $M-N$.
3. If $M<N$, the sum does not produce an end carry and is equal to $r^{n}-(N-M)$, which is the r 's complement of $(N-M)$. To obtain the answer in a familiar form, take the r 's complement of the sum and place a negative sign in front.

Complements

- Example I. 7

Given the two binary numbers perform the subtraction

- $X=1010 . Y=0110$,
(a) $\mathrm{X}-\quad$; (b) $\mathrm{Y}-\mathrm{X}$, using complement.

X-Y	
I's Comp	2's Comp
1010	1010
-0110	$\frac{-0110}{1010}$
1010	+1010
+1001	
10011	10100
+0100	

Y-X	
I's Comp	2's Comp
0110	0110
$\frac{-1010}{0110}$	$\frac{-1010}{0110}$
+0101	+0110
1011	$\bigcirc 1100$
-0100	--0100

Complements

I's Complement

Subtract \mathbf{N} from ($\left.\mathbf{2}^{\mathrm{n}}-\mathrm{I}\right)$

Inverting 0's to be I's and I's to be 0's Bitwise toggling

Subtraction M-N is done By:

- Get I's Complement of \mathbf{N}
- Add M + N
- If carry then Add carry to summation
- If no carry then result = - I's complement of result

2's Complement

Subtract \mathbf{N} from ($\mathbf{2 ~}^{\mathrm{n}}$)

Toggle all bits to the left of the first ' I ' from the right

Subtraction M-N is done By:

- Get 2's Complement of \mathbf{N}
- Add M + N
- If carry then discard carry
- If no carry then result = - 2's complement of result

Digital Logic Gates

- Definition of Binary Logic

- Binary logic consists of binary variables and a set of logical operations.
- The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, with each variable having two and only two distinct possible values: I and 0 ,
» Three basic logical operations:AND, OR, and NOT.

1. AND: This operation is represented by a dot or by the absence of an operator. For example, $x \cdot y=z$ or $x y=z$ is read " x AND y is equal to z," The logical operation AND is interpreted to mean that $z=1$ if only $x=1$ and $y=1$; otherwise $z=0$. (Remember that x, y, and z are binary variables and can be equal either to 1 or 0 , and nothing else.)
2. OR: This operation is represented by a plus sign. For example, $x+y=z$ is read " x OR y is equal to z," meaning that $z=1$ if $x=1$ or $y=1$ or if both $x=1$ and $y=1$. If both $x=0$ and $y=0$, then $z=0$.
3. NOT: This operation is represented by a prime (sometimes by an overbar). For example, $\mathrm{x}^{\prime}=\mathrm{z}$ (or $\bar{x}=z$) is read "not x is equal to z," meaning that z is what z is not. In other words, if $x=1$, then $z=0$, but if $x=0$, then $z=1$, The NOT operation is also referred to as the complement operation, since it changes a 1 to 0 and a 0 to 1.

Digital Logic Gates

- Truth Tables, Boolean Expressions, and Logic Gates

(a) Two-input AND gate

x	y	F
0	0	0
0	1	0
1	0	0
1	1	1

(b) Two-input OR gate

x	y	F
0	0	0
0	1	1
1	0	1
1	1	1

Switching Circuits

Digital Logic Gates

- Truth Tables, Boolean Expressions, and Logic Gates

(a) Two-input AND gate

x	y	F
0	0	0
0	1	0
1	0	0
1	1	1

(b) Two-input OR gate

NOT

(c) NOT gate or inverter

Digital Logic Gates

- Truth Tables, Boolean Expressions, and Logic Gates

Digital Logic Gates

Exclusive-OR (XOR)		$\begin{aligned} F & =x y^{\prime}+x^{\prime} \mathrm{y} \\ & =x \oplus \mathrm{y} \end{aligned}$	x	y	F
			0 0 1 1	0 1 0 1	0 1 1 0
		$\begin{aligned} F & =x y+x^{\prime} y^{\prime} \\ & =(x \oplus \mathrm{y})^{\prime} \end{aligned}$	x	y	F
Exclusive-NOR or equivalence	$x>F$		0 0 1 1	0 1 0 1	1 0 0 1

Digital Logic Gates

- Logic gates
- Graphic Symbols and Input-Output Signals for Logic gates:

(a) Three-input AND gate
(b) Four-input OR gate

Fig. 1.6 Gates with multiple inputs

Chapter 2:

Boolean Algebra and Logic Gates

Outlines
I. Basic Definitions
2. Axiomatic Definition of Boolean Algebra
3. Basic Theorems and Properties of Boolean Algebra
4. Boolean Functions
5. Canonical and Standard Forms
6. Other Logical Operations

Boolean Algebra

- Finding simpler and cheaper, but equivalent, realizations of a circuit can reap huge payoffs in reducing the overall cost of the design.
- Mathematical methods that simplify circuits rely primarily on Boolean algebra.
- Therefore, this chapter provides a basic vocabulary and a brief foundation in Boolean algebra that will enable you to optimize simple circuits

Algebras

What is an algebra?

- Mathematical system consisting of
- Set of elements (example: $N=\{1,2,3,4, \ldots\}$)
- Set of operators (+, -, \times, \div)
- Axioms or postulates (associativity, distributivity, closure, identity elements, etc.)
Why is it important?
- Defines rules of "calculations"

Note: operators with two inputs are called binary

- Does not mean they are restricted to binary numbers!
- Operator(s) with one input are called unary

Axiomatic Definition of Boolean Algebra

- We need to define algebra for binary values
- Developed by George Boole in I854
- Huntington postulates (1904) for Boolean algebra :
- $B=\{0, \mathrm{I}\}$ and two binary operations, (+) and (.)
- Terminology:
- Literal: A variable or its complement
- Product term: literals connected by ()
- Sum term: literals connected by (+)

Basic Definitions

- The Postulates Boolean Algebra
- Closure (+ and ${ }^{-}$)
- The identity elements
- $\quad+\rightarrow 0$
$\rightarrow \quad \rightarrow 1$
AND

x	y	$x . y$
0	0	0
0	1	0
1	0	0
1	1	1

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	1

NOT

x	x
0	1
1	0

Basic Definitions

- The Postulates Boolean Algebra
- The commutative laws $x+y=y+x, \quad x \cdot y=y \cdot x$
\rightarrow The distributive laws $x .(y+z)=(x . y)+(x . z)$

x	y	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Basic Definitions

- The Postulates Boolean Algebra

- The commutative laws $x+y=y+x, \quad x . y=y . x$
- The distributive laws $x \cdot(y+z)=(x . y)+(x . z)$

x	y	z	$y+z$	$x \cdot(y+z)$	$x \cdot y$	$x \cdot z$	$(x \cdot y)+(x \cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Basic Definitions

- The Postulates Boolean Algebra

- The distributive laws $x+(y \cdot z)=(x+y) \cdot(x+z)$

x	y	z	$y \cdot z$	$x+(y . z)$	$x+y$	$x+z$	$(x+y) .(x+z)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Basic Definitions
The Postulates Boolean Algebra

- Complement

$$
\begin{aligned}
& x+x^{\prime}=I, \text { since } \\
& \quad 0+0^{\prime}=0+I=I ; \\
& \quad I+I^{\prime}=I+0=1 \\
& x \cdot x^{\prime}=0, \text { since } \\
& 0 \cdot 0^{\prime}=0 \cdot I=0 ; \\
& \quad 1 \cdot I^{\prime}=1 \cdot 0=0
\end{aligned}
$$

Basic Definitions

- Duality Principle (DeMorgan's Law)
- Every algebraic expression deducible from the postulates of Boolean algebra remains valid if the operators and identity elements are interchanged.
- To get dual form:
- Interchange OR(+) and AND(.)
- Toggle O's and I's

Basic Definitions

- Duality Principle (DeMorgan's Theorem)

Verify DeMorgan'sTheorem

$$
\begin{array}{ll}
(x+y)^{\prime} & =x y^{\prime} \\
(x y)^{\prime} & =x^{\prime}+y^{\prime}
\end{array}
$$

\boldsymbol{x}	\boldsymbol{y}	x^{\prime}	\boldsymbol{y}^{\prime}	$x+y$	$(x+y)^{\prime}$	$x^{\prime} y^{\prime}$	$\boldsymbol{X y}$	$x^{\prime}+y^{\prime}$	$(x y)^{\prime}$
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

Basic Definitions

- The Postulates Boolean Algebra

Table 2.1

Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	$x+0=x$	(b)	$x \cdot 1=x$
Postulate 5	(a)	$x+x^{\prime}=1$	(b)	$x \cdot x^{\prime}=0$
Theorem 1	(a)	$x+x=x$	(b)	$x \cdot x=x$
Theorem 2	(a)	$x+1=1$	(b)	$x \cdot 0=0$
Theorem 3, involution		$\left(x^{\prime}\right)^{\prime}=x$		
Postulate 3, commutative	(a)	$x+y=y+x$	(b)	$x y=y x$
Theorem 4, associative	(a) $x+(y+z)=(x+y)+z$	(b)	$x(y z)=(x y) z$	
Postulate 4, distributive	(a)	$x(y+z)$	$=x y+x z$	(b) $x+y z=(x+y)(x+z)$
Theorem 5, DeMorgan	(a)	$(x+y)^{\prime}$	$=x^{\prime} y^{\prime}$	(b)
Theorem 6, absorption	(a)	$x+x y=x$	(b) $x(x+y)^{\prime}=x^{\prime}+y^{\prime}$	

Basic Definitions

Consensus Theorem

$$
x y+x^{\prime} z+y z=x y+x^{\prime} z \quad \mid(x+y) \cdot\left(x^{\prime}+z\right) \cdot(y+z)=(x+y) \cdot\left(x^{\prime}+z\right)
$$

Proof:

$$
\begin{aligned}
& \text { by + x'z + yo } \\
& =x y+x ' z+1 . y z \\
& =x y+x \prime z+(x+x) y z \\
& =x y+x \prime z+x y z+x \prime y z \\
& =(x y+x y z)+\left(x^{\prime} z+x \prime z y\right) \\
& =x y(1+z)+x ' z(I+y) \\
& =x y+x \text { 'z }
\end{aligned}
$$

Proof:
$(x+y) \cdot\left(x^{\prime}+z\right) \cdot(y+z)$
$=(x+y) \cdot\left(x^{\prime}+z\right) \cdot(0+y+z)$
$=(x+y) \cdot\left(x^{\prime}+z\right)^{\bullet}\left(\left(x x^{\prime}\right)+y+z\right)$
$=(x+y) \cdot\left(x^{\prime}+z\right) \cdot(x+y+z) \cdot\left(x^{\prime}+y+z\right)$
$=(x+y) \cdot(0 \cdot z)\left(x^{\prime}+z\right) \cdot(0 \cdot y)$
$=(x+y)\left(x^{\prime}+z\right)$

Operator Precedence

- The operator precedence for evaluating Boolean Expression is
- Parentheses
, NOT
- AND
- OR
- Examples
> $x y^{\prime}+z$
- $(x y+z)^{\prime}$

Boolean Functions

A Boolean function my include:

- Binary variables
- Binary operators OR and AND
- The truth table of $\mathbf{2}^{n}$ entries ($\mathrm{n}=$ number of variables)
- Two Boolean expressions may specify the same function $F_{3}=F_{4}$
- Unary operator NOT
- Parentheses

Examples

- $F_{1}=x y z^{\prime}$
- $F_{2}=x+y^{\prime} z$
- $F_{3}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime}$
* $F_{4}=x y^{\prime}+x^{\prime} z$

x	y	z	F_{1}	F_{2}	F_{3}	F_{4}
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Boolean Functions

- Different representation of Boolean Function
- Boolean Expression (Many)
- Truth Table (Unique)
- Logic Gates Diagram (Many)
- Examples
- $F_{1}=x y z{ }^{\prime}$
- $F_{2}=x+y^{\prime} z$
- $F_{3}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime}$
- $F_{4}=x y^{\prime}+x^{\prime} z$

x	y	z	F_{1}	F_{2}	F_{3}	F_{4}
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0^{1}

Boolean Functions

- Implementation
with logic gates

FIGURE 2.1
Gate implementation of $F_{1}=x+y^{\prime} z$

Boolean Functions

- Implementation with logic gates

$$
\begin{aligned}
F_{2} & =x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime} \\
& =x^{\prime} z\left(y^{\prime}+y\right)+x y^{\prime} \\
& =x^{\prime} z(I)+x y^{\prime} \\
& =x^{\prime} z+x y^{\prime}
\end{aligned}
$$

(a) $F_{2}=x^{\prime} y^{\prime} z+x^{\prime} y z+x y^{\prime}$

Simplification

(b) $F_{2}=x y^{\prime}+x^{\prime} z$

Boolean Functions

Simplify the following functions

F	$\begin{aligned} & =x\left(x^{\prime}+y\right) \\ & =x x^{\prime}+x y \\ & =0+x y \\ & =x y \end{aligned}$	F	$\begin{aligned} & =x+x^{\prime} y \\ & =\left(x+x^{\prime}\right)(x+y) \\ & =1(x+y) \\ & =(x+y) \end{aligned}$
F	$\begin{aligned} & =(x+y)\left(x+y^{\prime}\right) \\ & =x+x y+x y^{\prime}+y y^{\prime} \\ & =x\left(1+y+y^{\prime}\right) \\ & =x \end{aligned}$	F	$\begin{aligned} & =x y+x^{\prime} z+y z \\ & =x y+x^{\prime} z+y z\left(x+x^{\prime}\right) \\ & =x y+x^{\prime} z+x y z+x^{\prime} y z \\ & =x y(1+z)+x^{\prime} z(1+y) \\ & =x y+x^{\prime} z \end{aligned}$ Consensus Theorem

Complement of a Function

- The complement of a function F is F ' and is obtained from an interchange of O's for I's and I's for 0's in the value of F.

The complement of a function may be derived algebraically with aid of DeMorgan's theorems,

- 3 variables DeMorgan's theorem

$$
\begin{aligned}
(A+B+C)^{\prime} & =(A+X)^{\prime} & & \text { //let } B+C=X \\
& =A^{\prime} X^{\prime} & & \text { //by theorem } 5(a) \text { (DeMorgan's) } \\
& =A^{\prime}(B+C), & & \text { //substitute } B+C=X \\
& =A^{\prime}\left(B^{\prime} C^{\prime}\right) & & \text { //by DeMorgan's theorem } \\
& =A^{\prime} B^{\prime} C^{\prime} & & \text { I/by associative theorem }
\end{aligned}
$$

Complement of a Function

- The complement of a function F is F ' and is obtained from an interchange of O's for I's and I's for 0's in the value of F.

The complement of a function may be derived algebraically with aid of DeMorgan's theorems,
, 3 variables DeMorgan's theorem

$$
\begin{aligned}
(A+B+C)^{\prime} & =(A+X)^{\prime} \\
& =A^{\prime} X^{\prime}
\end{aligned}
$$

$$
=A^{\prime}(B+C)^{\prime} \quad \text { substitute } B+C=X
$$

$$
=A^{\prime}\left(B^{\prime} C^{\prime}\right) \quad \text { by DeMorgan's theorem }
$$

$$
=A^{\prime} B^{\prime} C^{\prime} \quad \text { by associative theorem }
$$

Complement of a Function

- The complement of a function F is F ' and is obtained from an interchange of 0 's for I's and I's for 0's in the value of F.

Generalization: a function is obtained by interchanging AND and OR operators and complementing each literal.

$$
\begin{aligned}
& F=A+B+C+D+\ldots \text { Then } F^{\prime}=(A+B+C+D+\ldots)^{\prime}=A^{\prime} B^{\prime} C^{\prime} D^{\prime} . . . \\
& \quad \underline{\text { Then }} F^{\prime}=(A B C D \ldots . . .)^{\prime}=A^{\prime}+B^{\prime}+C^{\prime}+D^{\prime} . . .
\end{aligned}
$$

The complement of a function may be derived algebraically with aid of DeMorgan's theorems

Complement of a Function

- Find the Complement of the following functions

$$
\begin{aligned}
& F_{1}=x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z \\
& F_{2}=x\left(y^{\prime} z^{\prime}+y z\right)
\end{aligned}
$$

. $F_{1}{ }^{\prime}=\left(x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z\right)^{\prime}=\left(x^{\prime} y z^{\prime}\right)^{\prime}\left(x^{\prime} y^{\prime} z\right)^{\prime}=\left(x+y^{\prime}+z\right)\left(x+y+z^{\prime}\right)$

- $F_{2}^{\prime}=\left[x\left(y^{\prime} z^{\prime}+y z\right)\right]^{\prime}=x^{\prime}+\left(y^{\prime} z^{\prime}+y z\right)^{\prime}=x^{\prime}+\left(y^{\prime} z^{\prime}\right)^{\prime}(y z)^{‘}$

$$
=x^{\prime}+(y+z)\left(y^{\prime}+z^{\prime}\right)=x^{\prime}+y z^{\prime}+y^{\prime} z
$$

