## Digital Design <br> Lecture of week 11 part 2 <br> Dr Manal Tantawi

## Computer Memories

1) Registers
2) RAM (self read not included in final exam)
3) ROM (self read not included in final exam)

## Registers

- 4 bit register with parallel load

Only one clock is needed to upload an input


## Registers

- 4 bit shift register (right or left)



## Registers

- 4 bit shift register (right)


4 clocks are needed

## Shift register

- Serial transfer $\quad(B=A)$



## Shift register

- Serial transfer $\quad(B=A)$

(b) Timing diagram


## Shift register

- Serial transfer $\quad(B=A)$


| Timing Pulse | Shift Register $\boldsymbol{A}$ |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shift Register $\boldsymbol{B}$ |  |  |  |  |  |  |  |  |
| Initial value | 1 | 0 | 1 | (1) | 0 | 0 | 1 | 0 |
| After $T_{1}$ | (1) | 1 | 0 | 1 | (1) | 0 | 0 | 1 |
| After $T_{2}$ | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 |
| After $T_{3}$ | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 |
| After $T_{4}$ | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 |

Find the content of the register after 4 clocks (initial value for Q $=0$ )



| clocks | SI <br> Last bit $\oplus \mathrm{Q}$ | Register content | D <br> =Last bit | Q |
| :--- | :--- | :--- | :--- | :--- |
|  | 0 | $101 \underline{0}$ | 0 | $\underline{\mathbf{0}}$ |
| CLK 1 | 1 | 0101 | 1 | $\underline{\mathbf{0}}$ |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |



| clocks | SI <br> Last bit $\oplus \mathrm{Q}$ | Register content | D <br> =Last bit | Q |
| :--- | :--- | :--- | :--- | :--- |
|  | 0 | $101 \underline{\mathbf{0}}$ | 0 | $\underline{\mathbf{0}}$ |
| CLK 1 | $\mathbf{1}$ | $010 \underline{1}$ | 1 | $\underline{\mathbf{0}}$ |
| CLK 2 | $\mathbf{1}$ | $\mathbf{1} 01 \underline{0}$ | 0 | $\underline{1}$ |
|  |  |  |  |  |
|  |  |  |  |  |



| clocks | $\begin{aligned} & \text { SI } \\ & \text { Last bit } \oplus Q \end{aligned}$ | Register content | $\underset{=\text { Last bit }}{\mathrm{D}}$ | Q |
| :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1010 | 0 | 0 |
| CLK 1 | 1 | 0101 | 1 | 0 |
| CLK 2 | , | 1010 | 0 | 1 |
| CLK 3 | 1 | 1101 | $1 \triangle$ | 0 |
|  |  |  |  |  |



| clocks | $\begin{aligned} & \text { SI } \\ & \text { Last bit } \oplus \mathrm{Q} \end{aligned}$ | Register content | $\begin{aligned} & \mathrm{D} \\ & =\text { Last bit } \end{aligned}$ | Q |
| :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1010 | 0 | $\underline{0}$ |
| CLK 1 | 1 | 0101 | 1 | $\underline{0}$ |
| CLK 2 | 1 | 101 O | 0 | 1 |
| CLK 3 | 1 | 1101 | 1 | $\underline{0}$ |
| CLK 4 |  | 1110 |  | 1 |

## Serial Adder

$X+Y+Z+W \quad$ (each of them is 4 bits)


Register B


1

Register A

$$
X+Y
$$

Register B


2
( 4 clocks )

Register A

$$
X+Y+Z
$$

Register B


3
( 4 clocks )

## Serial Adder



## Serial Adder

$\mathrm{X}=0101$
Register A
$\mathrm{Y}=0011$
$Z=0111$
Register B

| Clocks | SI $_{\mathrm{A}}=\mathrm{S}$ | Register A | SI $_{\mathrm{B}}$ | Register B | $\mathrm{D}=\mathrm{C}$ | Q | C | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | $010 \underline{1}$ | 1 | $001 \underline{1}$ | 1 | $\underline{0}$ | 1 | 0 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Serial Adder

$\mathrm{X}=0101$
Register A
$\mathrm{Y}=0011$
$Z=0111$
Register B

| Clocks | $S I_{A}=S$ | Register A | SIB | Register B | D = C | Q | C | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0101 | 1 | 0011 | 1 | $\underline{0}$ | 1 | 0 |
| CLK 1 | 0 | 0010 | 1 | 1001 | 1 | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Serial Adder

$X=0101$
Register A
$\mathrm{Y}=0011$
$Z=0111$
Register B

| Clocks | $S I_{A}=S$ | Register A | SIB | Register B | D =C | Q | C | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0101 | 1 | 0011 | 1 | $\underline{0}$ | 1 | 0 |
| CLK1 | 0 | 0010 | 1 | 1001 | 1 | 1 | 1 | 0 |
| CLK2 | 0 | 0001 | 1 | 1100 | 1 | 1 | 1 | 0 |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

## Serial Adder

$\mathrm{X}=0101$
Register A
$\mathrm{Y}=0011$
$Z=0111$
Register B

| Clocks | SIA $=$ S | Register A | SIB | Register B | D = C | Q | C | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0101 | 1 | 0011 | 1 | $\underline{0}$ | 1 | 0 |
| CLK1 | 0 | 0010 | 1 | 1001 | 1 | 1 | 1 | 0 |
| CLK2 | 0 | 0001 | 1 | 1100 | 1 | 1 | 1 | 0 |
| CLK3 | 1 | $000 \underline{0}$ | 0 | 1110 | 0 | 1 | 0 | 1 |
|  |  |  |  |  |  |  |  |  |

## Serial Adder

$\mathrm{X}=0101$
Register A
$\mathrm{Y}=0011$
$Z=0111$
Register B

| Clocks | SI $_{\mathrm{A}}=\mathrm{S}$ | Register A | SI $_{\mathrm{B}}$ | Register B | $\mathrm{D}=\mathrm{C}$ | Q | C | S |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | 0 | $010 \underline{1}$ | 1 | $001 \underline{1}$ | 1 | $\underline{0}$ | 1 | 0 |
| CLK1 | 0 | $001 \underline{0}$ | 1 | $100 \underline{1}$ | 1 | $\underline{1}$ | 1 | 0 |
| CLK2 | 0 | $000 \underline{1}$ | 1 | $110 \underline{0}$ | 1 | $\underline{1}$ | 1 | 0 |
| CLK3 | 1 | $000 \underline{0}$ | 0 | $111 \underline{0}$ | 0 | $\underline{1}$ | 0 | 1 |
| CLK4 |  | $100 \underline{0}$ |  | $01 \underline{1}$ |  | $\underline{0}$ |  |  |

## Selection circuit (remember)



4 bit register with parallel load \} no change


4 bit register with parallel load \} no change

Load $=0$ no change


4 bit register with parallel load \} no change

Load $=1$
Parallel load


## 4 bit Universal Shift Register example 1

Parallel outputs


Parallel inputs

4 bit Universal Shift Register (cont.)

## example 1

Function table

| Mode Control |  |  |
| :---: | :---: | :--- |
| $\mathbf{s}_{1}$ | $\mathbf{s}_{0}$ | Register Operation |
| 0 | 0 | No change |
| 0 | 1 | Shift right |
| 1 | 0 | Shift left |
| 1 | 1 | Parallel load |

## 3 bit Universal Shift Register(cont.) example 2



3 bit Universal Shift Register (cont.)

## example 2

Function table

| So | S1 | Register operation |
| :---: | :---: | :---: |
| 0 | 0 | Circular shift right |
| 0 | 1 | Parallel Load |
| 1 | 0 | Circular shift left |
| 1 | 1 | complement |

## Random Access Memory (RAM)

Different representations for OR gate

(a) Conventional gmbol

Ex: A + B + C

(a) Coaventional symbol

(b) Array loge gimbol

(b) Array logic symbol

## Memory unit (RAM)



## Memory unit (RAM)



RAM size $=$ \# of words $x$ word size ex: $8 \times 4$ RAM
number of words $=8=2^{3}$
Word size $=$ number of inputs $=$ number of outputs $=4$ number of address lines $=3$

## A Binary Cell



## Diagram of a $4 \times 4$ RAM



## If we have $32 \mathrm{M} \times 8$ RAM then

- Kilobyte $=2^{10}$ Mega $=2^{20} \quad$ Gaga $=2^{30}$

Number of words $=25 * 2^{20}=2^{25}$
Word size $=8$ bits
Number of inputs $=8$
Number of outputs $=8$
Number of address lines $=25$
Decoder size $=25 \times 2^{25}$

## Read-only Memory (ROM)



## $32 \times 8$ ROM



## Example

ROM Truth Toble (Partiol)

| Inputs |  |  |  |  | Outputs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | $\\|_{1}$ | $l_{2}$ | $I_{1}$ | $I_{0}$ | $A_{7}$ | 4 | $\mathrm{A}_{3}$ | A $_{4}$ | $A_{3}$ | $\mathrm{A}_{2}$ | A $_{1}$ | $\mathrm{A}_{0}$ |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | i | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |

## Programmed ROM

## ROM Truth Table (Partial)

| Inputs |  |  |  |  | Outputs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | 1 | $H_{2}$ | $I_{1}$ | $\mathrm{I}_{0}$ | $A_{7}$ | $A_{8}$ | $\mathrm{A}_{3}$ | $A_{4}$ | $A_{3}$ | $A_{2}$ | A $_{1}$ | $A_{3}$ |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |



## Thank you

