

Lecture 1:
 Chapter 1: Digital Systems and Binary Numbers

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,
Ain Shams University

Agenda

- What's this course about?

Course Arrangement:
, Study Materials

- Teaching Methods
- Lab Activities,
, Grading and Assessment
, Syllabus (Planned)
- Instructor Contact

Logistics

- Lectures
- Tell \& Show you digital logic design concepts
- Tutorial and Lab
- Exercises and Practical matters
- Assignments
- Weekly Assignment

What is this course about? What is Logic

 Design ?What is design?

- Given a problem specification, come up with a systematic way of finding the solution, that involves choosing appropriate components while meeting some of the design constraints such as size, cost, power, beauty, elegance, etc.

What is logic design?

- Determining the collection of digital logic components and the interconnections between them to perform a specified control and/or data manipulation and/or communication functions
- The design may need to be optimized and/or transformed to meet design constraints

What is this course about? What is Logic Design ?

Why study Logic Design

- First step to understand computer architectures from both hardware and computations perspectives
- It is the base of all modern computing/ control devices
- It makes all the following possible
- Microprocessors
- Storage so inexpensive and dense
, Wireless networking
- New materials

Study Materials

।. Notes/slides
2. Tutorial / Lab Sheets
3. Textbook

- Digital Design [5th Edition] (M. Morris Mano and Michael Ciletti), Download PDF From Here.

Teaching Methods

- Interactive Lecture
- Discussions
- Problem Based learning
- Assignments
- Experimental learning: Lab Activities devoted to practice Digital Design concepts through a series of hands-on

Grading and Assessment

Assessment	Marks
Final Written Exam	$\mathbf{5 0}$
Midterm	$\mathbf{1 5}$
Quizzes	$\mathbf{5}$
Lab Activities ,Assignments and Tasks	10
Practical Exam	20

1. Digital Systems and Binary Numbers
2. Boolean Algebra and Logic Gates
3. Gate - Level Minimization
4. Combinational Logic
5. Synchronous Sequential Logic
6. Registers and Counters

Contact

- Mirvat Al-Qutt, Ph.D.

Email: mmalqutt@cis.asu.edu.eg

Outlines

- I.I Digital Systems
- I. 2 Binary Numbers
- I. 3 Number-base Conversions
- I. 4 Octal and Hexadecimal Numbers
- I. 9 Binary Logic

Digital Systems

- One characteristic of digital systems is their ability to represent and manipulate discrete elements of information
- $I 0$ decimal digits $\{0, I, 2,3, \ldots, 9\}$
- 26 letters of alphabet $\{A, B, C, \ldots, Z\}$
- 64 squares of chessboard

Analog and Digital Signal

- Discrete quantities of information either emerge from the nature of the data being processed or may be quantized from a continuous process.
- Analog system
* The physical quantities or signals may vary continuously over a specified range.
- Digital system
- The physical quantities or signals can assume only discrete values.

Digital signal

Why Digital Systems ?

A World Transformed: What Are the Top 30 Innovations of the Last 30 Years?

Published. February 18, 2009 in Knowledge@/Wharion

Of these 30 innovations , 10 are directly related to advances in Digital Logic and Solid State Circuits;

Another 8 are the indirect results of ICs.

\Rightarrow 1. Internet, broadband, WWW (browser and html)
2. PC/laptop computers
3. Mobile phones
4. E-mail
5. DNA testing and sequencing/Human genome mapping
6. Magnetic Resonance Imaging (MRI)
7. Microprocessors
8. Fiber optics
9. Office software (spreadsheets, word processors)
10. Non-invasive laser/robotic surgery (laparoscopy)
\Rightarrow 11. Open source software and services (e.g., Linux, Wikipedia)
12. Light emitting diodes
13. Liquid crystal display (LCD)
14. GPS systems
\Rightarrow 15. Online shopping/ecommerce/auctions (e.g., eBay)
\Rightarrow 16. Media file compression (jpeg, mpeg, mp3)
17. Microfinance
18. Photovoltaic Solar Energy
19. Large scale wind turbines
\Rightarrow 20. Social networking via the Internet
\Rightarrow 21. Graphic user interface (GUI)
22. Digital photography/videography
23. RFID and applications (e.g., EZ Pass)
24. Genetically modified plants
25. Bio fuels
\Rightarrow 26. Bar codes and scanners
27. ATMs
28. Stents
29. SRAM flash memory
30. Anti retroviral treatment for AIDS

Binary Digital Signal

- Binary digital systems, the variable takes on discrete values.
- Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
- Digits 0 and I
, False (F) and True (T)
, Low (L) and High (H)
- On and Off

Binary digital signal

Decimal Number System (base 10)

- For solid and deep understanding of binary numbers we recall our understanding of decimal number system with more analysis.
- Example: 7392

7	3	9	2
7	0	0	0
0	3	0	0
0	0	9	0
0	0	0	2

7* 10^{3}
$+3 * 10^{2}$
$+9 * 10^{1}$
$+3 * 10^{0}$

The power of 10 is implied by the digit (coefficient) position

Decimal Number System

- For solid and deep understanding of binary numbers we recall our understanding of decimal number system with more analysis.
- Example: 1853

Decimal Number System

- Base (also called radix) $=10$
> $I 0$ digits $\{0, I, 2,3,4,5,6,7,8,9\}$
> 10 possible digits ranges from (0 to $\mathrm{r}-\mathrm{I}$)

- Digit Position

5	1	2	.	5	4

- Integer \& fraction
- Digit Weight
, Weight $=(\text { Base }=10)^{\text {Position }}$

10^{2}	10^{1}	10^{0}	.	10^{-1}	10^{-2}
100	10	1	.	0.1	0.01
Weights					

Magnitude

500	10	2	.	0.5	0.04

, Sum of "Digit Value x Weight"
$d_{2}{ }^{*} B^{2}+d_{1}{ }^{*} B^{1}+d_{0}{ }^{*} B^{0}+d_{-1}{ }^{*} B^{-1}+d_{-2}{ }^{*} B^{-2}$

- Formal Notation (... $)_{10}$
(512.54) 10

Binary Number System (Base 2)

- Base (also called radix) $=2$
, 2 digits \{ 0,1)
- 2 possible digits ranges from (0 to $r-1$)
- Digit Position

1	1	0	1	0	.	1	1

- Integer \& fraction
- Digit Weight

Weight $=(\text { Base }=2)^{\text {Position }}$

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	.	2^{-1}	2^{-2}
16	8	4	2	1	.	0.5	0.25
Weights							

- Magnitude (Decimal Equivalent)
- Sum of "Digit x Weight"
- Formal Notation (... $)_{2}$

$$
\begin{gathered}
16^{*} 1+8^{*} 1+4^{*} 0+2^{*} 1+1^{*} 0+1^{*} 0.5+1^{*} 0.25 \\
=(26.75)_{10}
\end{gathered}
$$

Base - 5 Number System

- Base (also called radix) $=5$
- 5 digits $\{0,1,2,3,4$)
, 5 possible digits ranges from (0 to $r-l$)
- Digit Position

- Integer \& fraction
- Digit Weight
- Weight $=(\text { Base }=5)^{\text {Position }}$

5^{3}	5^{2}	5^{1}	5^{0}	.	5^{-1}
125	25	5	1	.	0.2

Weights

- Magnitude (Decimal Equivalent)
" Sum of "Digit x Weight"
, Formal Notation (...) $)_{5}$

$$
\begin{gathered}
125^{*} 4+25^{*} 0+5^{*} 2+1^{*} 1+2^{*} 0.2 \\
=(511.4)_{10}
\end{gathered}
$$

Base - 8(Octal) Number System

- Base (also called radix) =8
- 8 digits \{ $0,1,2,3,4,5,6,7$)
- 8 possible digits ranges from (0 to $r-I$)
- Digit Position

1	2	7	.	4

, Integer \& fraction

- Digit Weight
- Weight $=(\text { Base })^{\text {Position }}$

8^{2}	8^{1}	8^{0}	\cdot	8^{-1}
64	8	1	.	0.125
Weights				

- Magnitude (Decimal Equivalent)
- Sum of "Digit x Weight"
- Formal Notation (... $)_{8}$

$$
\begin{gathered}
64 * 1+8 * 2+1 * 7+0.125^{*} 4 \\
=(87.5)_{10}
\end{gathered}
$$

Base - 16 (Hexadecimal) Number System

- Base (also called radix) $=16$
- 16 digits $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F)$
> 16 possible digits ranges from (0 to $r-I$)
* The letters of the alphabet are used to supplement the 10 decimal digits when the base of the number is greater than 10.
- Digit Position
- Integer \& fraction

B	6	5	F
16^{3}	16^{2}	16^{1}	16^{0}

- Digit Weight

Weight $=(\text { Base }=16)^{\text {Position }}$

- Magnitude (Decimal Equivalent)
, Sum of "Digit x Weight"

$$
\begin{gathered}
16^{3} \text { *B }+16^{2} \text { *6 + } 16^{1 * 5+16^{0} * F} \begin{array}{c}
16^{3} *(11)+16^{2} * 6+16^{1} * 5+16^{0} *(15) \\
=(46,687)_{10}
\end{array}
\end{gathered}
$$

Formal Notation (...) $)_{16}$

Hexadecimal System

* The hexadecimal system is used commonly by designers to represent long strings of bits in the addresses, instructions, and data in digital systems.
- For example

$\mathrm{I} * \mathbf{2}^{\mathbf{3}}$	$\mathbf{0} * \mathbf{2}^{\mathbf{2}}$	$\mathrm{I} * \mathbf{2}^{\mathrm{I}}$	$\mathrm{I} * \mathbf{2}^{\mathbf{0}}$
$\mathbf{8} \mathbf{4} \mathbf{0} \mathbf{0} \mathbf{+ 2 + 1}=\mathrm{II}=\mathbf{B}$			

1011	0110	0101	1111

More about Binary System

- The digits in a binary number are called bits.

- When a bit is equal to $\mathbf{0}$, it does not contribute to the sum during the conversion.

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
16	8	4	2	1

- Therefore, the conversion from binary to decimal can be

$$
16+8+2=(26)_{10}
$$

obtained by adding only the numbers with powers of two corresponding to the bits that are equal to I

More about Binary System

- The conversion from binary to decimal

1. Write binary number
2. Write place heading
3. Ignore zeros
4. Sum up headings mapped to I's only

128	64	32	16	8	4	2	1
0	1	0	1	1	1	0	1
$=>64+16+8+4+1=93$							

More about Binary System (units)

- In computer work,
- $\mathbf{2}^{10}$ is referred to as K (kilo), $4 \mathrm{~K}=2^{12}=4,096$
- $\mathbf{2 0}^{20}$ as M (mega), and $16 \mathrm{M}=2^{24}=16,777,216$
- $\mathbf{2}^{30}$ as G (giga), $4 \mathrm{G}=2^{32}$ bytes
- 2^{40} as T (tera).
- Computer capacity is usually given in bytes. A byte is equal to eight bits and can accommodate

More about Binary System (units)

- Computer capacity is usually given in bytes. A byte is equal to eight bits and can accommodate

Unit	Bytes
1 Bit	0,1
1 Byte	8 bits
1 Kilobyte (Kb)	$2^{10}=1024$ bytes
1 Megabyte (Mb)	$2^{20}=1,048,576$ bytes $(1024 \mathrm{~Kb})$
1 Gigabyte (Gb)	$2^{30}=1,073,741,824$ bytes $(1024 \mathrm{Mb})$
1 Terabyte (Tb)	$2^{40}=1,099,511,627,776$ bytes $(1024 \mathrm{~Gb})$

More about Binary System (Range)

* These measurements are used to determine the lower and upper limits of the range numbers possible with a given amount of bits (vise versa)

128	64	32	16	8	4	2	1
0	1	0	1	1	1	0	1

Unit Range
$=>64+16+8+4+1=93$
1 Bit
0 to $2^{1}-1$ (0 to 1)
8 bits (1 Byte) $\quad 0$ to $2^{8}-1$ (0 to 255)
16 bits (2 bytes) $\quad 0$ to $2^{16}-1$ (0 to 65,535)
24 bits (3 bytes) 0 to $2^{24}-1$ (0 to $16,777,215$)
32 bits (4 bytes) 0 to $2^{32}-1$ (0 to $4,294,967,295$)

Number Base Conversions

Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)

Take the remainder (either 0 or I) as a coefficient
Take the quotient and repeat the division

Example: (13) 10

Quotient Remainder

Answer: $(13)_{10}=(1101)_{2}$
MSB LSB

Decimal (Fraction) to Binary Conversion

Multiply the number by the 'Base' (=2)
Take the integer (either 0 or I) as a coefficient
Take the resultant fraction and repeat the division

Example: (0.625) $\mathbf{1 0}$

$$
\begin{array}{llll}
& \text { Integer } & \text { Fraction } & \text { Coefficient } \\
\mathbf{0 . 6 2 5} * \mathbf{2}=1 & 1 & \mathbf{a}_{\mathbf{- 1}}=\mathbf{1} \\
\mathbf{0 . 2 5} * \mathbf{2}=\mathbf{0} & . & \mathbf{a}_{-\mathbf{2}}=\mathbf{0} \\
\mathbf{0 . 5} * \mathbf{2}=\mathbf{1} \cdot & \mathbf{a}_{-3}=\mathbf{1}
\end{array}
$$

Answer: $\quad(0.625)_{10}=\left(0 . a_{-1} a_{-2} a_{-3}\right)_{2}=(0.101)_{2}$
MSB
LSB

Decimal to Octal Conversion

Example: (175) $\mathbf{1 0}_{10}$
Quotient Remainder Coefficient

$175 / 8=$	$2 \\|$	$\mathbf{7}$	$a_{0}=7$
$21 / 8=$	2	5	$a_{1}=5$
$2 / 8=$	0	2	$a_{2}=2$

Answer: $\quad(175)_{10}=\left(a_{2} a_{1} a_{0}\right)_{8}=(257)_{8}$
Example: $(\mathbf{0 . 3 1 2 5})_{10}$

$\mathbf{0 . 3 1 2 5 * 8}$	Integer	Fraction	Coefficient
$\mathbf{0 . 5} * \mathbf{8}=\mathbf{4}$.	$\mathbf{a}_{-1}=\mathbf{2}$	
$\mathbf{a}_{-2}=\mathbf{4}$			

Answer: $\quad(0.3 \mid 25)_{10}=\left(0 . a_{-1} a_{-2} a_{-3}\right)_{8}=(0.24)_{8}$

Decimal to Hexadecimal Conversion

Example: (175) $\mathbf{1 0}_{10}$

$$
\begin{array}{rlrr}
& \text { Quotient } & \text { Remainder } & \text { Coefficient } \\
175 / 16= & 10 & \mid 5=F & a_{0}=F \\
10 / 16= & 0 & 10=\mathbf{A} & a_{1}=A
\end{array}
$$

Answer: $(175)_{10}=\left(a_{1} a_{0}\right)_{16}=(A F)_{16}$
Example: (0.3 I 25) $)_{10}$

$$
0.3125 * 16=\begin{gathered}
\text { Integer }
\end{gathered} \quad \text { Fraction } \begin{gathered}
\text { Coefficient } \\
\hline
\end{gathered}
$$

Answer: $\quad(0.3 \mid 25)_{10}=\left(0 . a_{-1}\right)_{16}=(0.5)_{16}$

Try it yourself

Convert 4I decimal to binary

The arithmetic process can be manipulated more conveniently as follows:

Integer	Remainder
41	
20	1
10	0
5	0
2	1
1	0
0	1

Try it yourself

Convert I53 decimal to octal

153	
19	1
2	3
0	$2=(231)_{8}$

Try it yourself

Convert 0.6875 decimal to binary

	Integer		Fraction	Coefficient
$0.6875 \times 2=$	1	+	0.3750	$a_{-1}=1$
$0.3750 \times 2=$	0	+	0.7500	$a_{-2}=0$
$0.7500 \times 2=$	1	+	0.5000	$a_{-3}=1$
$0.5000 \times 2=$	1	+	0.0000	$a_{-4}=1$

Therefore, the answer is $(0.6875)_{10}=\left(0 . a_{-1} a_{-2} a_{-3} a_{-4}\right)_{2}=(0.1011)_{2}$.

Try it yourself

Convert 0.5 I 3 to octal

Convert (0.513) ${ }_{10}$ to octal.

$$
\begin{aligned}
& 0.513 \times 8=4.104 \\
& 0.104 \times 8=0.832 \\
& 0.832 \times 8=6.656 \\
& 0.656 \times 8=5.248 \\
& 0.248 \times 8=1.984 \\
& 0.984 \times 8=7.872
\end{aligned}
$$

The answer, to seven significant figures, is obtained from the integer part of the products:

$$
(0.513)_{10}=(0.406517 \ldots)_{8}
$$

Number Base Conversions

Binary - Octal Conversion

$8=2^{3}$

- Each group of 3 bits represents an octal digit

Example:

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Binary - Octal Conversion

$8=2^{3}$

- Each group of 3 bits represents an octal digit

Example:
Assume Zeros

Octal	Binary
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Works both ways (Binary to Octal \& Octal to Binary)

Binary - Hexadecimal Conversion

- $16=2^{4}$
- Each group of 4 bits represents a hexadecimal digit

Example:
Assume Zeros

Hex	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
B	1011
C	1100
D	1101
E	1110
F	1111

Works both ways (Binary to Hex \& Hex to Binary)

Octal - Hexadecimal Conversion

Convert to Binary as an intermediate step

Example:

Works both ways (Octal to Hex \& Hex to Octal)

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	B
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Try it yourself

- Convert (0IIOIOII.IIIIOO) binary to octal

01	101	011	.	111	100
1	5	3	.	7	4

Convert (0|IOIOII.IIIIO0) binary to Hexadecimal

0110	1011	.	1111	00

6	B	.	F	0

Try it yourself

Convert (673.12) octal to binary

6	7	3	.	1	2
110	111	011	.	001	010

Convert (306.D) Hexadecimal to binary

