

#### Lecture 1:

Chapter 1: Digital Systems and Binary Numbers

Mirvat Al-Qutt, Ph.D Computer Systems Department , FCIS, Ain Shams University

# Agenda

- What's this course about?
- Course Arrangement:
  - Study Materials
  - Teaching Methods
  - Lab Activities,
  - Grading and Assessment
  - Syllabus (Planned)
  - Instructor Contact

# Logistics

- Lectures
  - Tell & Show you digital logic design concepts
- Tutorial and Lab
  - Exercises and Practical matters
- Assignments
  - Weekly Assignment

# What is this course about? What is Logic Design ?

#### What is design?

Given a problem specification, come up with a systematic way of finding the solution, that involves choosing appropriate components while meeting some of the design constraints such as size, cost, power, beauty, elegance, etc.

#### What is logic design?

- Determining the collection of digital logic components and the interconnections between them to perform a specified control and/or data manipulation and/or communication functions
- The design may need to be optimized and/or transformed to meet design constraints

# What is this course about? What is Logic Design ?

#### Why study Logic Design

- First step to understand computer architectures from both hardware and computations perspectives
- It is the base of all modern computing/ control devices

#### It makes all the following possible

- Microprocessors
- Storage so inexpensive and dense
- Wireless networking
- New materials

# Study Materials

- I. Notes/slides
- 2. Tutorial / Lab Sheets
- 3. Textbook
  - Digital Design [5th Edition] (M. Morris Mano and Michael Ciletti), <u>Download</u> <u>PDF From Here</u>.

# **Teaching Methods**

- Interactive Lecture
- Discussions
- Problem Based learning
- Assignments
- Experimental learning: Lab Activities devoted to practice Digital Design concepts through a series of hands-on

# Grading and Assessment

| Assessment                            | Marks |
|---------------------------------------|-------|
| Final Written Exam                    | 50    |
| Midterm                               | 15    |
| Quizzes                               | 5     |
| Lab Activities ,Assignments and Tasks | 10    |
| Practical Exam                        | 20    |

# Syllabus

- I. Digital Systems and Binary Numbers
- 2. Boolean Algebra and Logic Gates
- 3. Gate Level Minimization
- 4. Combinational Logic
- 5. Synchronous Sequential Logic
- 6. Registers and Counters

#### Contact

- Mirvat Al-Qutt, Ph.D.
- Email: mmalqutt@cis.asu.edu.eg

#### Outlines

- I.I Digital Systems
- I.2 Binary Numbers
- I.3 Number-base Conversions
- I.4 Octal and Hexadecimal Numbers
- I.9 Binary Logic

#### Digital Systems

- One characteristic of digital systems is their ability to represent and manipulate discrete elements of information
  - I0 decimal digits {0,1,2,3,...,9}
  - 26 letters of alphabet {A, B, C, ...,Z}
  - 64 squares of chessboard

# Analog and Digital Signal

- Discrete quantities of information either emerge from the nature of the data being processed or may be quantized from a continuous process.
- Analog system
  - The physical quantities or signals may vary continuously over a specified range.
- Digital system
  - The physical quantities or signals can assume only discrete values.



Digital signal

# Why Digital Systems ?

#### A World Transformed: What Are the Top 30 Innovations of the Last 30 Years?

PC/laptop computers

- Mobile phones
- 🔶 4. E-mail
  - 5. DNA testing and sequencing/Human genome mapping
  - 6. Magnetic Resonance Imaging (MRI)
  - Microprocessors
  - 8. Fiber optics
  - 9. Office software (spreadsheets, word processors)
  - 10. Non-invasive laser/robotic surgery (laparoscopy)
- 11. Open source software and services (e.g., Linux, Wikipedia)
- 12. Light emitting diodes
- 13. Liquid crystal display (LCD)
- 14. GPS systems
- 15. Online shopping/ecommerce/auctions (e.g., eBay)
- Media file compression (jpeg, mpeg, mp3)
  - 17. Microfinance
- 18. Photovoltaic Solar Energy
  - 19. Large scale wind turbines
- 20. Social networking via the Internet
- ➡ 21. Graphic user interface (GUI)
- ⇒ 22. Digital photography/videography
- ➡ 23. RFID and applications (e.g., EZ Pass)
  - 24. Genetically modified plants
  - 25. Bio fuels
- ➡ 26. Bar codes and scanners
  - 27. ATMs
  - 28. Stents
  - 29. SRAM flash memory
    - 30. Anti retroviral treatment for AIDS

Of these 30 innovations , 10 are directly related to advances in Digital Logic and Solid State Circuits;

Another 8 are the indirect results of ICs.



Published: February 18, 2009 in Knowledge@Wharton

#### **Binary** Digital Signal

Binary digital systems, the variable takes on discrete values.

- Two level, or binary values are the most prevalent values.
- Binary values are represented abstractly by:
  - Digits 0 and 1
  - False (F) and True (T)
  - Low (L) and High (H)
  - On and Off



# Decimal Number System ( base 10 )

- For solid and deep understanding of binary numbers we recall our understanding of decimal number system with more analysis.
- Example: 7392
  7 3 9 2
  - 7000
  - 0 3 0 0
  - 0 0 9 0

- **7\*I0**<sup>3</sup>
- + 3\*10<sup>2</sup>
- + 9\*10<sup>1</sup>

The power of 10 is implied by the digit (coefficient) position

 $0 \quad 0 \quad 2 \quad + 3 \times 10^{0}$ 



#### **Decimal** Number System

- For solid and deep understanding of binary numbers we recall our understanding of decimal number system with more analysis.
- Example: 1853



#### **Decimal** Number System

- Base (also called radix) = 10
  - I0 digits { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }
  - I0 possible digits ranges from (0 to r-I)



Digit Position

Integer & fraction

Digit Weight
 Weight = (Base=10) Position

| 10 <sup>2</sup> | <b>10</b> <sup>1</sup> | 10 <sup>0</sup> | - | <b>10</b> -1 | <b>10</b> -2 |
|-----------------|------------------------|-----------------|---|--------------|--------------|
| 100             | 10                     | 1               | - | 0.1          | 0.01         |

Weights

Magnitude

 Sum of "Digit Value x Weight"

 Formal Notation (...)<sub>10</sub>

 500 10 2 . 0.5 0.04
 d<sub>2</sub>\*B<sup>2</sup>+d<sub>1</sub>\*B<sup>1</sup>+d<sub>0</sub>\*B<sup>0</sup>+d<sub>-1</sub>\*B<sup>-1</sup>+d<sub>-2</sub>\*B<sup>-2</sup>
 (512.54)10

#### Binary Number System (Base 2)

- Base (also called radix) = 2
  - 2 digits { 0, 1 )
  - 2 possible digits ranges from (0 to r-l)



Digit Position

Integer & fraction

Digit Weight
 Weight = (Base=2) Position

| 24 | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> | <b>2</b> -1 | <b>2</b> -2 |
|----|-----------------------|-----------------------|-----------------------|-----------------------|-------------|-------------|
| 16 | 8                     | 4                     | 2                     | 1                     | 0.5         | 0.25        |

Weights

- Magnitude ( Decimal Equivalent )
  - Sum of "Digit x Weight"

Formal Notation (...)<sub>2</sub>

16\*1 + 8\*1+4\*0+ 2\*1+1\*0+1\*0.5+1\*0.25=(26.75)<sub>10</sub>

#### Base - 5 Number System

- Base (also called radix) = 5
  - 5 digits { 0, 1,2,3,4)
  - 5 possible digits ranges from (0 to r-1)



- Digit Position
   Integer & fraction
- Digit Weight
   Weight = (Base=5) Position

| <b>5</b> <sup>3</sup> | <b>5</b> <sup>2</sup> | 5 <sup>1</sup> | 5 <sup>0</sup> | - | <b>5</b> -1 |
|-----------------------|-----------------------|----------------|----------------|---|-------------|
| 125                   | 25                    | 5              | 1              | - | 0.2         |

Weights

- Magnitude ( Decimal Equivalent )
  - Sum of "Digit x Weight"
- Formal Notation (...)<sub>5</sub>

125\*4 + 25\*0+5\*2+1\*1+2\*0.2

#### Base – 8(**Octal**) Number System

- Base (also called radix) = 8
  - 8 digits { 0, 1,2,3,4,5,6,7)
  - 8 possible digits ranges from (0 to r-1)
- Digit Position

- Integer & fraction
- Digit Weight
   Weight = (Base) Position

| <b>8</b> <sup>2</sup> | 8 <sup>1</sup> | 8 <sup>0</sup> | - | 8 <sup>-1</sup> |  |  |  |
|-----------------------|----------------|----------------|---|-----------------|--|--|--|
| 64                    | 8              | 1              | - | 0.125           |  |  |  |
| Mainhte               |                |                |   |                 |  |  |  |

Weights

- Magnitude ( Decimal Equivalent )
  - Sum of "Digit x Weight"
- Formal Notation (...)<sub>8</sub>

64\*1 + 8\*2+1\*7+0.125\*4

=(87.5)<sub>10</sub>

#### Base – 16 (Hexadecimal) Number System

- Base (also called radix) = 16
  - I6 digits { 0, 1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
  - I 6 possible digits ranges from (0 to r-1)
  - The letters of the alphabet are used to supplement the 10 decimal digits when the base of the number is greater than 10.
     B 6 5
- Digit Position
  - Integer & fraction

16<sup>3</sup> 16<sup>2</sup> 16<sup>1</sup> 16<sup>0</sup>

- Digit Weight
  - Weight = (Base=16) Position
- Magnitude ( Decimal Equivalent )
  - Sum of "Digit x Weight"

 $16^{3} * B + 16^{2} * 6 + 16^{1} * 5 + 16^{0} * F$   $16^{3} * (11) + 16^{2} * 6 + 16^{1} * 5 + 16^{0} * (15)$ =(46,687)<sub>10</sub>

Formal Notation (...)<sub>16</sub>

## **Hexadecimal System**

The hexadecimal system is used commonly by designers to represent long strings of bits in the addresses, instructions, and data in digital systems.

For example



More about Binary System

- The digits in a binary number are called **bits**.
- When a bit is equal to 0, it does not contribute to the sum during the conversion.
- Therefore, the conversion from binary to decimal can be obtained by adding only the numbers with powers of two corresponding to the bits that are equal to 1

| <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 16                    | 8                     | 4                     | 2                     | 1                     |

#### More about Binary System

#### The conversion from binary to decimal

- I. Write binary number
- 2. Write place heading
- 3. Ignore zeros
- 4. Sum up headings mapped to I's only



#### More about Binary System (units)

- In computer work,
- 2<sup>10</sup> is referred to as K (kilo), <u>4K = 2<sup>12</sup> = 4,096</u>
- >  $2^{20}$  as M (mega), and  $16M = 2^{24} = 16,777,216$
- 2<sup>30</sup> as G (giga), 4G = 2<sup>32</sup> bytes
- ▶ **2<sup>40</sup>** as T (**tera**).
- Computer capacity is usually given in bytes. A byte is equal to eight bits and can accommodate

#### More about Binary System (units)

Computer capacity is usually given in bytes. A byte is equal to eight bits and can accommodate

| Unit            | Bytes                                               |
|-----------------|-----------------------------------------------------|
| 1 Bit           | 0,1                                                 |
| 1 Byte          | 8 bits                                              |
| 1 Kilobyte (Kb) | 2 <sup>10</sup> = 1024 bytes                        |
| 1 Megabyte (Mb) | 2 <sup>20</sup> = 1,048,576 bytes (1024 Kb)         |
| 1 Gigabyte (Gb) | 2 <sup>30</sup> = 1,073,741,824 bytes (1024 Mb)     |
| 1 Terabyte (Tb) | 2 <sup>40</sup> = 1,099,511,627,776 bytes (1024 Gb) |

#### More about Binary System (Range)

These measurements are used to determine the lower and upper limits of the range numbers possible with a given amount of bits (vise versa)

|                   |                                  | 0   | 1     | 0      | 1     | 1     | 1   | 0  | 1             |
|-------------------|----------------------------------|-----|-------|--------|-------|-------|-----|----|---------------|
| Unit              | Range                            |     | => 64 | 4 + 16 | 5 + 8 | + 4 + | 1 = | 93 | Binary number |
| 1 Bit             | 0 to 21 - 1 (0 to 1)             |     |       |        |       |       |     |    |               |
| 8 bits (1 Byte)   | 0 to 2 <sup>8</sup> - 1 (0 to 25 | 55) |       |        |       |       |     |    |               |
| 16 bits (2 bytes) | 0 to 2 <sup>16</sup> - 1 (0 to 6 | 5,5 | 35)   | )      |       |       |     |    |               |
| 24 bits (3 bytes) | 0 to 2 <sup>24</sup> - 1 (0 to 1 | 6,  | 777   | , 2    | 15)   | )     |     |    |               |
| 32 bits (4 bytes) | 0 to 2 <sup>32</sup> - 1 (0 to 4 | ,29 | 4,9   | 67     | ,29   | 5)    |     |    |               |

128 64 32 16 8 4

1

#### **Number Base Conversions**



#### Decimal (Integer) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

#### Example: (13)<sub>10</sub>



#### Decimal (Fraction) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

```
Example: (0.625)<sub>10</sub>
```





#### **Decimal to Octal Conversion**

#### Example: (175)<sub>10</sub>



Example: (0.3 | 25)<sub>10</sub>



# **Decimal to Hexadecimal Conversion**

Example:  $(175)_{10}$ 

QuotientRemainderCoefficient|75 / |6 = |0||5=F| $a_0 = F$ |0 / |6 = |0||0=A| $a_1 = A$ 

Answer:  $(175)_{10} = (a_1 a_0)_{16} = (AF)_{16}$ 

Example: (0.3125)<sub>10</sub>

 Integer
 Fraction
 Coefficient

 0.3|25 \* |6 = 5 .
  $a_{-1} = 5$ 

Answer:  $(0.3125)_{10} = (0.a_{-1})_{16} = (0.5)_{16}$ 

Convert 41 decimal to binary

The arithmetic process can be manipulated more conveniently as follows:

| Integer | Remaind | ler             |
|---------|---------|-----------------|
| 41      |         |                 |
| 20      | 1       |                 |
| 10      | 0       |                 |
| 5       | 0       |                 |
| 2       | 1       |                 |
| 1       | 0       |                 |
| 0       | 1       | 101001 = answer |

Convert 153 decimal to octal

Convert 0.6875 decimal to binary

|                     | Integer |   | Fraction | Coefficient  |
|---------------------|---------|---|----------|--------------|
| $0.6875 \times 2 =$ | 1       | + | 0.3750   | $a_{-1} = 1$ |
| $0.3750 \times 2 =$ | 0       | + | 0.7500   | $a_{-2} = 0$ |
| $0.7500 \times 2 =$ | 1       | + | 0.5000   | $a_{-3} = 1$ |
| $0.5000 \times 2 =$ | 1       | + | 0.0000   | $a_{-4} = 1$ |

Therefore, the answer is  $(0.6875)_{10} = (0. a_{-1} a_{-2} a_{-3} a_{-4})_2 = (0.1011)_2$ .

Convert 0.513 to octal

Convert  $(0.513)_{10}$  to octal.

 $0.513 \times 8 = 4.104$   $0.104 \times 8 = 0.832$   $0.832 \times 8 = 6.656$   $0.656 \times 8 = 5.248$   $0.248 \times 8 = 1.984$  $0.984 \times 8 = 7.872$ 

The answer, to seven significant figures, is obtained from the integer part of the products:

 $(0.513)_{10} = (0.406517...)_8$ 

#### **Number Base Conversions**



# **Binary - Octal Conversion**

▶ 8 = 2<sup>3</sup>

 Each group of 3 bits represents an octal digit

**Example:** 



| Octal | Binary |
|-------|--------|
| 0     | 000    |
| 1     | 001    |
| 2     | 010    |
| 3     | 011    |
| 4     | 100    |
| 5     | 101    |
| 6     | 110    |
| 7     | 111    |

# **Binary - Octal Conversion**

| $8 = 2^{3}$                        | Octal | Binary |
|------------------------------------|-------|--------|
| Each group of 3 bits represents an | 0     | 000    |
| octal digit                        | 1     | 001    |
| Example: Assume Zeros              | 2     | 010    |
|                                    | 3     | 011    |
|                                    | 4     | 100    |
|                                    | 5     | 101    |
|                                    | 6     | 110    |
| <b>\ - \ - \ 8</b>                 | 7     | 111    |

Works both ways (Binary to Octal & Octal to Binary)

#### **Binary - Hexadecimal Conversion**

▶ 16 = 2<sup>4</sup>

 Each group of 4 bits represents a hexadecimal digit



| Hex | Binary  |
|-----|---------|
| 0   | 0000    |
| 1   | 0001    |
| 2   | 0010    |
| 3   | 0011    |
| 4   | 0100    |
| 5   | 0101    |
| 6   | 0110    |
| 7   | 0111    |
| 8   | 1000    |
| 9   | 1001    |
| А   | 1010    |
| В   | 1011    |
| С   | 1 1 0 0 |
| D   | 1 1 0 1 |
| E   | 1110    |
| F   | 1111    |

Works both ways (Binary to Hex & Hex to Binary)

#### **Octal - Hexadecimal Conversion**

Convert to Binary as an intermediate step

**Example:** 



Works both ways (Octal to Hex & Hex to Octal)

#### Decimal, Binary, Octal and Hexadecimal

| Decimal | Binary Octal |    | Hex |
|---------|--------------|----|-----|
| 00      | 0000         | 00 | 0   |
| 01      | 0001         | 01 | I   |
| 02      | 0010         | 02 | 2   |
| 03      | 0011         | 03 | 3   |
| 04      | 0100         | 04 | 4   |
| 05      | 05 0101      |    | 5   |
| 06      | 0110         | 06 | 6   |
| 07      | 0111         | 07 | 7   |
| 08      | 1000         | 10 | 8   |
| 09      | 1001         | 11 | 9   |
| 10      | 1010         | 12 | А   |
| 11      | 11 1011 13   |    | В   |
| 12      | 12 1100 14   |    | С   |
| 13      | 1101         | 15 | D   |
| 14      | 1110         | 16 | E   |
| 15      | 1111         | 17 | F   |

#### Convert (01101011.111100) binary to octal

| 01 | 101 | 011 | - | 111 | 100 |
|----|-----|-----|---|-----|-----|
| 1  | 5   | 3   | - | 7   | 4   |

#### Convert (01101011.111100) binary to Hexadecimal

| 0110 | 1011 | - | 1111 | 00 |
|------|------|---|------|----|
| 6    | В    | - | F    | 0  |

#### Convert (673.12) octal to binary

| 6   | 7   | 3   | - | 1   | 2   |
|-----|-----|-----|---|-----|-----|
| 110 | 111 | 011 | - | 001 | 010 |

#### Convert (306.D) Hexadecimal to binary

| 3    | 0    | 6    | - | D    |
|------|------|------|---|------|
| 0011 | 0000 | 0110 | - | 1101 |

