Functions

• Let A and B be nonempty sets. A *function* f from A to B $(f : A \rightarrow B)$ is an assignment of exactly one element of B to each element of A.

We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

- If f is a function from A to B, we say that A is the *domain* of f and B is the *codomain* of f.
- If f (a) = b, we say that b is the *image* of a and a is a preimage of b.
- The *range*, or *image*, of *f* is the set of all images of elements of *A*. Also, if *f* is a function from *A* to *B*, we say that *f* maps *A* to *B*.

Examples

• Let $f: \mathbb{Z} \to \mathbb{Z}$ and $f(x) = x^2$

f (*x*) is function from Z to Z. because x^2 is defined for any integer number and well defined due to that the square of any integer number is unique.

• Let $f : \mathbf{R} \to \mathbf{R}$

 $a.\,f(x)=1/x$

f (x) is not function from R to R. because f(0) not defined.

 $b. f(x) = \sqrt{x}$

f (x) is not function from R to R. because f(-1) not defined. In fact \sqrt{x} is not defined for any negative real number.

 $c.f(x) = \pm \sqrt{x^2 + 1}$

f (x) is not function from R to R. because it is not well defined. i.e some elements in the domain assigned to more than one element in the codomain.

d. f(x) = x + 1

f (x) is function from R to R.

Well defined function

- The function $f:A \rightarrow B$ is said to be well defined if and only if $\forall a \ \forall b \ (a = b \rightarrow f \ (a) = f \ (b))$, or equivalently (contrapositive) $\forall a \ \forall b \ (f \ (a) \neq f \ (b) \rightarrow a \neq b)$.
- The $f: \mathbb{Z} \to \mathbb{Z}$; $f(x) = x^2$ is well defined

Since if x = y then we can conclude that $x^2 = y^2$. Therefore f(x) = f(y).

• The $f : \mathbf{R} \rightarrow \mathbf{R}$; f(x) = x + 1 is well defined

Since if x = y then x+1 = y+1. therefore f(x) = f(y).

one-to-one function (*injective*)

- The function f:A →B is said to be one-to-one (*injective*) function if and only if ∀a ∀b (f (a) = f (b) → a = b) or equivalently (contrapositive) ∀a ∀b (a ≠ b → f (a) ≠ f (b)), where the universe of discourse is the domain of the function.
- Suppose that $f : A \rightarrow B$.
- To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$, then x = y.
- To show that f is not injective Find particular elements $x, y \in A$ such that x = y and f(x) = f(y).

Onto function(*surjective*)

- A function f is onto (surjective) if ∀y ∃x (f (x) = y), where the domain for x is the domain of the function and the domain for y is the codomain of the function.
- Suppose that $f : A \rightarrow B$.
- To show that f is surjective Consider an arbitrary element y ∈ B and find an element x ∈ A such that f (x) = y.
- To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Determine whether each of these functions is an injection from **R** to **R**.

 $\therefore x = y$

a) f(x) = 2x + 1Let f(x) = f(y); $x, y \in \mathbf{R}$ $\therefore 2x + 1 = 2y + 1$ $\therefore 2x = 2y$ $\therefore x = y$ **b)** $f(x) = x^2 + 1$ Not 1-1 since f(-1) = f(1)=2 and $-1 \neq 1$. c) $f(x) = (x^2 + 1)/(x^2 + 2)$ Not 1-1 since f(-1) = f(1)=2/3 and $-1 \neq 1$. **d)** $f(x) = x^3$ $\therefore x^3 = y^3$ Let f(x) = f(y); $x, y \in \mathbf{R}$

Determine whether each of these functions is a surjection from **R** to **R**.

a) f(x) = 2x + 1Let y = f(x) $\therefore y = 2x + 1$ $\therefore 2x = y - 1$ $\therefore x = (y - 1)/2$ b) $f(x) = x^2 + 1$

Not onto since if y = 0 then we can not find a preimage x (in the domain). c) $f(x) = (x^2 + 1)/(x^2 + 2)$

Not onto since if y = -1 then we can not find a preimage x (in the domain). **d)** $f(x) = x^3$

Let
$$y = f(x)$$
 $\therefore y = x^3$ $\therefore x = \sqrt[3]{y}$

Since the cubic root is defined for all real number therefore we can get a preimage for all y (in the codomain).

• The function *f* is a *one-to-one correspondence*, if it is both one-to-one and onto. We also say that a function is *bijective*.

Determine whether each of these functions is a bijection from **R** to **R**.

a) f(x) = 2x + 1

The function is bijection.

b) $f(x) = x^2 + 1$

Not bijection due to its not 1-1.(or not onto)

c) $f(x) = (x^2 + 1)/(x^2 + 2)$

Not bijection due to its not onto.(or not 1-1)

d) $f(x) = x^3$

The function is bijection.

Increasing and decreasing functions

- A function f is increasing if $\forall x \ \forall y \ (x < y \rightarrow f \ (x) \le f \ (y))$, strictly increasing if $\forall x \ \forall y \ (x < y \rightarrow f \ (x) < f \ (y))$,
- decreasing if $\forall x \ \forall y \ (x < y \rightarrow f \ (x) \ge f \ (y))$, and strictly decreasing if $\forall x \ \forall y \ (x < y \rightarrow f \ (x) > f \ (y))$, where the universe of discourse is the domain of *f*.

Composition of two functions

- Let g be a function from the set A to the set B and let f be a function from the set B to the set C.
- The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by $(f \circ g)(a) = f(g(a))$.

Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

Solution:

Both the compositions $f \circ g$ and $g \circ f$ are defined. Moreover,

$$(f \circ g)(x) = f(g(x)) = f(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

and

$$(g \circ f)(x) = g(f(x)) = g(2x + 3) = 3(2x + 3) + 2 = 6x + 11.$$

- The *identity function* is the function assigned the element to it self is donated by I(x) = x.
- The *inverse function* of *f:A* → *B* is the function that assigns to an element *b* belonging to *B* the unique element *a* in *A* such that *f* (*a*) = *b*. The inverse function of *f* is denoted by *f*⁻¹. Hence, *f*⁻¹(*b*) = *a* when *f*(*a*) = *b*.
- The composition of the functions f and f^{-1} donate the identity function, i.e $f \circ f^{-1}(x) = f^{-1} \circ f(x) = I(x) = x$.
- The function has inverse at whole codomain if and only if it is one-toone and onto.(one-to-one correspondence / bijective)

Find the inverse of the following function if possible ; $f: R \rightarrow R$

a) f(x) = 2x + 1

The function is bijection, therefore it has inverse.

Find inverse is same as finding preimage x (of domain) for the element y (of co-domain). Like check that the function is onto.

Let
$$y = f(x)$$
 $\therefore y = 2x + 1$ $\therefore 2x = y - 1$ $\therefore x = (y - 1)/2$
b) $f(x) = x^2 + 1$
Not bijection, therefore has no inverse.
c) $f(x) = (x^2 + 1)/(x^2 + 2)$
Not bijection, therefore has no inverse.
d) $f(x) = x^3$
The function is bijection, therefore it has inverse.

Let y = f(x) $\therefore y = x^3$ $\therefore x = \sqrt[3]{y}$ $\therefore f^{-1}(x) = \sqrt[3]{x}$