Functions

- Let A and B be nonempty sets. A function f from A to $B(f: A \rightarrow B)$ is an assignment of exactly one element of B to each element of A.

We write $f(a)=b$ if b is the unique element of B assigned by the function f to the element a of A.

- If f is a function from A to B, we say that A is the domain of f and B is the codomain of f.
- If $f(a)=b$, we say that b is the image of a and a is a preimage of b.
- The range, or image, of f is the set of all images of elements of A. Also, if f is a function from A to B, we say that f maps A to B.

Examples

- Let $f: Z \rightarrow \boldsymbol{Z}$ and $f(x)=x^{2}$
$f(x)$ is function from Z to Z. because x^{2} is defined for any integer number and well defined due to that the square of any integer number is unique.
- Let $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$
a. $f(x)=1 / x$
$f(x)$ is not function from R to R. because $f(0)$ not defined.
b. $f(x)=\sqrt{x}$
$f(x)$ is not function from R to R. because $f(-1)$ not defined. In fact \sqrt{x} is not defined for any negative real number.
c. $f(x)= \pm \sqrt{x^{2}+1}$
$f(x)$ is not function from R to R. because it is not well defined. i.e some elements in the domain assigned to more than one element in the codomain.
d. $f(x)=x+1$
$f(x)$ is function from R to R.

Well defined function

- The function $f: A \rightarrow B$ is said to be well defined if and only if $\forall a \forall b(a=b \rightarrow f(a)=f(b))$, or equivalently (contrapositive) $\forall a \forall b(f(a) \neq f(b) \rightarrow a \neq b)$.
- The $f: Z \rightarrow \boldsymbol{Z} ; f(x)=x^{2}$ is well defined

Since if $x=y$ then we can conclude that $x^{2}=y^{2}$. Therefore $f(x)=f(y)$.

- The $f: \boldsymbol{R} \rightarrow \boldsymbol{R} ; f(x)=x+1$ is well defined

Since if $x=y$ then $x+1=y+1$. therefore $f(x)=f(y)$.

one-to-one function (injective)

- The function $f: A \rightarrow B$ is said to be one-to-one (injective) function if and only if $\forall a \forall b(f(a)=f(b) \rightarrow a=b)$ or equivalently (contrapositive) $\forall a \forall b(a \neq b \rightarrow f(a) \neq f(b))$, where the universe of discourse is the domain of the function.
- Suppose that $f: A \rightarrow B$.
- To show that f is injective Show that if $f(x)=f(y)$ for arbitrary $x, y \in A$, then $x=y$.
- To show that f is not injective Find particular elements $x, y \in A$ such that $x=y$ and $f(x)=f(y)$.

Onto function(surjective)

- A function f is onto (surjective) if $\forall y \exists x(f(x)=y)$, where the domain for x is the domain of the function and the domain for y is the codomain of the function.
- Suppose that $f: A \rightarrow B$.
- To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x)=y$.
- To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.
(a) One-to-0ne, not onto
(b) Onto,
not one-to-min

(c) One-to-0ne,
(d) Neither one-to-0ne
(e) Not a function and onto

nor onto

Determine whether each of these functions is an injection from \boldsymbol{R} to \boldsymbol{R}.
a) $f(x)=2 x+1$
Let $f(x)=f(y) ; x, y \in \boldsymbol{R}$
$\therefore 2 x+1=2 y+1$
$\therefore 2 x=2 y$
$\therefore x=y$
b) $f(x)=x^{2}+1$

Not 1-1 since $f(-1)=f(1)=2$ and $-1 \neq 1$.
c) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Not 1-1 since $f(-1)=f(1)=2 / 3$ and $-1 \neq 1$.
d) $f(x)=x^{3}$

Let $f(x)=f(y) ; x, y \in R$
$\therefore x^{3}=y^{3}$
$\therefore x=y$

Determine whether each of these functions is a surjection from \boldsymbol{R} to \boldsymbol{R}.
a) $f(x)=2 x+1$

Let $y=f(x)$

$$
\therefore y=2 x+1
$$

$$
\therefore 2 x=y-1
$$

$$
\therefore x=(y-1) / 2
$$

b) $f(x)=x^{2}+1$

Not onto since if $y=0$ then we can not find a preimage x (in the domain).
c) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Not onto since if $y=-1$ then we can not find a preimage x (in the domain).
d) $f(x)=x^{3}$
Let $y=f(x)$
$\therefore y=x^{3}$
$\therefore x=\sqrt[3]{y}$

Since the cubic root is defined for all real number therefore we can get a preimage for ally (in the codomain).

- The function f is a one-to-one correspondence, if it is both one-to-one and onto. We also say that a function is bijective.

Determine whether each of these functions is a bijection from \mathbf{R} to \mathbf{R}.
a) $f(x)=2 x+1$

The function is bijection.
b) $f(x)=x^{2}+1$

Not bijection due to its not 1-1.(or not onto)
c) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Not bijection due to its not onto.(or not 1-1)
d) $f(x)=x^{3}$

The function is bijection.

Increasing and decreasing functions

- A function f is increasing if $\forall x \forall y(x<y \rightarrow f(x) \leq f(y))$, strictly increasing if $\forall x \forall y(x<y \rightarrow f(x)<f(y))$,
- decreasing if $\forall x \forall y(x<y \rightarrow f(x) \geq f(y))$, and strictly decreasing if $\forall x \forall y(x<y \rightarrow f(x)>f(y))$, where the universe of discourse is the domain of f.

Composition of two functions

- Let g be a function from the set A to the set B and let f be a function from the set B to the set C.
- The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by $(f \circ g)(a)=f(g(a))$.

Let f and g be the functions from the set of integers to the set of integers defined by $f(x)=2 x+3$ and $g(x)=3 x+2$. What is the composition of f and g ? What is the composition of g and f ?

Solution:
Both the compositions $f \circ g$ and $g \circ f$ are defined. Moreover, $(f \circ g)(x)=f(g(x))=f(3 x+2)=2(3 x+2)+3=6 x+7$ and
$(g \circ f)(x)=g(f(x))=g(2 x+3)=3(2 x+3)+2=6 x+11$.

- The identity function is the function assigned the element to it self is donated by $I(x)=x$.
- The inverse function of $f: A \rightarrow B$ is the function that assigns to an element b belonging to B the unique element a in A such that $f(a)=$ b. The inverse function of f is denoted by f^{-1}. Hence, $f^{-1}(b)=a$ when $f(a)=b$.
- The composition of the functions f and f^{-1} donate the identity function, i.e $f \circ f^{-1}(x)=f^{-1} \circ f(x)=I(x)=x$.
- The function has inverse at whole codomain if and only if it is one-toone and onto.(one-to-one correspondence / bijective)

Find the inverse of the following function if possible ; $f: R \rightarrow R$
a) $f(x)=2 x+1$

The function is bijection, therefore it has inverse.
Find inverse is same as finding preimage x (of domain) for the element y (of co-domain). Like check that the function is onto.
Let $y=f(x)$
$\therefore y=2 x+1$
$\therefore 2 x=y-1$
$\therefore x=(y-1) / 2$
$\therefore f^{-1}(x)=(x-1) / 2$
b) $f(x)=x^{2}+1$

Not bijection , therefore has no inverse.
c) $f(x)=\left(x^{2}+1\right) /\left(x^{2}+2\right)$

Not bijection , therefore has no inverse.
d) $f(x)=x^{3}$

The function is bijection, therefore it has inverse.
Let $y=f(x)$
$\therefore y=x^{3}$
$\therefore x=\sqrt[3]{y}$
$\therefore f^{-1}(x)=\sqrt[3]{x}$

