
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 1



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 14

Indexing Structures for Files



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example

◼ Real Example:

◼ The idea behind an ordered index is similar to that behind

the index used in a textbook, which lists important terms

at the end of the book in alphabetical order along with a

list of page numbers where the term appears in the book.

◼ We can search the book index for a certain term in the

textbook to find a list of addresses—page numbers in this

case—and use these addresses to locate the specified

pages first and then search for the term on each specified

page.

◼ The alternative, if no other guidance is given, would be to

sift slowly through the whole textbook word by word to

find the term we are interested in; this corresponds to doing

a linear search, which scans the whole file.
Slide 14- 3



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Indexes

◼ Indexes are additional auxiliary access structures, used to speed up

the retrieval of records in response to certain search conditions.

◼ The index structures are additional files on disk that provide

secondary access paths, which provide alternative ways to access

the records without affecting the physical placement of records in

the primary data file on disk.

◼ Any field of the file can be used to create an index, and multiple

indexes on different fields—as well as indexes on multiple fields—can

be constructed on the same file.

◼ One form of an index is a file of entries <field value, pointer to

record>, which is ordered by field value

Slide 14- 4



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ The values in the index are ordered so that we can do a

binary search on the index. If both the data file and the

index file are ordered, and since the index file is

typically much smaller than the data file, searching the

index using a binary search is a better option.

Slide 14- 5



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Index Types

◼ Types of Single-level Ordered Indexes

◼ Primary Indexes

◼ Clustering Indexes

◼ Secondary Indexes

◼ Multilevel Indexes

Slide 14- 6



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Primary Index

◼ A primary index is specified on the ordering key field of an ordered 

file of records.

◼ An ordering key field is used to physically order the file records on 

disk, and every record has a unique value for that field.

◼ A primary index is an ordered file whose records are of fixed length 

with two fields:

◼ The first field is of the same data type as the ordering key field—called 

the primary key—of the data file

◼ The second field is a pointer to a disk block (a block address). There is 

one index entry (or index record) in the index file for each block in 

the data file. 

◼ Each index entry has the value of the primary key field for the first 

record in a block and a pointer to that block as its two field 

values. We will refer to the two field values of index entry i as <K(i), 

P(i)>.

Slide 14- 7



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 8

Primary index on the ordering key field



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ The total number of entries in the index is the same as 

the number of disk blocks in the ordered data file. 

◼ The first record in each block of the data file is called 

the anchor record of the block, or simply the block 

anchor.

Slide 14- 9



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ The index file for a primary index occupies a much 

smaller space than does the data file, for two reasons:

◼ First, there are fewer index entries than there are records 

in the data file. 

◼ Second, each index entry is typically smaller in size than 

a data record because it has only two fields; consequently, 

more index entries than data records can fit in one block. 

◼ Therefore, a binary search on the index file requires 

fewer block accesses than a binary search on the 

data file. 

Slide 14- 10



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example illustrates the saving in block accesses that 

is attainable when a primary index is used to search for 

a record.

◼ Suppose that we have an ordered file with r = 30,000

records stored on a disk with block size B = 1024 bytes.

◼ File records are of fixed size and are unspanned, with

record length R = 100 bytes.

◼ The blocking factor for the file would be

bfr = ⎣(B/R)⎦ = ⎣(1024/100)⎦ = 10 records per block.

◼ The number of blocks needed for the file is

b = ⎡(r/bfr)⎤ = ⎡(30000/10)⎤ = 3000 blocks.

◼ A binary search on the data file would need

approximately

⎡log2b⎤= ⎡(log23000)⎤ = 12 block accesses.

Slide 14- 11



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Now suppose that the ordering key field of the file is V = 9

bytes long, a block pointer is P = 6 bytes long, and we

have constructed a primary index for the file.

◼ The size of each index entry is

Ri = (9 + 6) = 15 bytes

◼ So the blocking factor for the index is

bfri = ⎣(B/Ri)⎦ = ⎣(1024/15)⎦ = 68 entries per block.

◼ The total number of index entries ri is equal to the

number of blocks in the data file, which is 3000.

◼ The number of index blocks is hence

bi = ⎡(ri/bfri)⎤ = ⎡(3000/68)⎤ = 45 blocks.

Slide 14- 12



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ To perform a binary search on the index file

would need

⎡(log2bi)⎤ = ⎡(log245)⎤ = 6 block accesses.

◼ To search for a record using the index, we need

one additional block access to the data file for

a total of 6 + 1 = 7 block accesses.

◼ An improvement over binary search on the data

file, which required 12 disk block accesses.

◼ This is compared to an average linear search

cost on data file of: (b/2)= 3000/2= 1500 block

accesses.
Slide 14- 13



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 14

Types of Single-Level Indexes

◼ Primary Index

◼ Defined on an ordered data file

◼ The data file is ordered on a key field

◼ Includes one index entry for each block in the data 

file; the index entry has the key field value for the 

first record in the block, which is called the block 

anchor

◼ A similar scheme can use the last record in a block.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 16

Indexes can also be characterized as 

dense or sparse 

◼ Indexes can also be characterized as dense or sparse 

◼ A dense index has an index entry for every search key 

value (and hence every record) in the data file. 

◼ A sparse (or nondense) index, on the other hand, has 

index entries for only some of the search values 

◼ Is primary index dense or sparse?

◼ A sparse index has fewer entries than the number of 

records in the file.

◼ Thus, a primary index is a nondense (sparse) index, 

since it includes an entry for each disk block of the data file 

and the keys of its anchor record rather than for every 

search value (or every record).



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Clustering Index

◼ If file records are physically ordered on a non key field (the

ordering field is not a key field)—which does not have a distinct

value for each record—that field is called the clustering field and

the data file is called a clustered file.

◼ Another type of index, called a clustering index, can be used, to

speed up retrieval of all the records that have the same value for

the clustering field.

◼ A clustering index is also an ordered file with two fields:

◼ The first field is of the same type as the clustering field of the data file.

◼ The second field is a disk block pointer.

◼ There is one entry in the clustering index for each distinct value of

the clustering field.

◼ It contains the value and a pointer to the first block in the data file

that has a record with that value for its clustering field.

Slide 14- 17



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 18

A Clustering Index Example

◼ FIGURE 14.2
A clustering index 
on the 
DEPTNUMBER 
ordering non-key 
field of an 
EMPLOYEE file.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 19

Another Clustering Index Example



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 20

Types of Single-Level Indexes

◼ Clustering Index

◼ Defined on an ordered data file

◼ The data file is ordered on a non-key field unlike primary 

index, which requires that the ordering field of the data file 

have a distinct value for each record.

◼ Includes one index entry for each distinct value of the 

field; the index entry points to the first data block that 

contains records with that field value.

◼ Dense or spars?

◼ It is another example of nondense (sparse) index



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 21

Types of Single-Level Indexes

◼ Secondary Index
◼ A secondary index provides a secondary means of

accessing a file for which some primary access already
exists.

◼ The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

◼ The index is an ordered file with two fields.
◼ The first field is of the same data type as some non-ordering

field of the data file that is an indexing field.

◼ The second field is either a block pointer or a record pointer.

◼ There can be many secondary indexes (and hence, indexing
fields) for the same file.

◼ Dense or sparse?
◼ Includes one entry for each record in the data file; hence, it

is a dense index



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

How many indexes?

◼ Notice that a file can have at most one physical

ordering field, so it can have at most one primary

index or one clustering index, but not both.

◼ A secondary index can be specified on any non-

ordering field of a file. A data file can have several

secondary indexes in addition to its primary access

method.

◼ The secondary index may be created on a field that is a

candidate key and has a unique value in every record,

or on a non-key field with duplicate values.

Slide 14- 22



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Secondary Index Access Structure on 

a Key (Unique) Field

◼ In this case there is one index entry for each

record in the data file, which contains the value

of the field for the record and a pointer either to

the block in which the record is stored or to

the record itself.

◼ Hence, such an index is dense.

◼ The entries are ordered so we can perform a

binary search.

Slide 14- 23



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 24

Example of a Dense Secondary Index



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ A secondary index usually needs more storage space

and longer search time than does a primary index,

because of its larger number of entries.

◼ However, the improvement in search time for an

arbitrary record is much greater for a secondary index

than for a primary index, since we would have to do a

linear search on the data file if the secondary index

did not exist. For a primary index, we could still use a

binary search on the main file, even if the index did not

exist

Slide 14- 25



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example 2 illustrates the improvement in 

number of blocks accessed. 

◼ Consider the file of Example 1 with r = 30,000 fixed-length

records of size R = 100 bytes stored on a disk with block

size B = 1024 bytes. The file has b = 3000 blocks, as

calculated in Example 1.

◼ Suppose we want to search for a record with a specific

value for the secondary key—a non-ordering key field of

the file that is V = 9 bytes long.

◼ Without the secondary index, to do a linear search on

the file would require

b/2 = 3000/2 = 1500 block accesses on the average.

Slide 14- 26



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Suppose that we construct a secondary index on that

non-ordering key field of the file.

◼ As in Example 1, a block pointer is P = 6 bytes long, so

each index entry is Ri = (9 + 6) = 15 bytes

◼ and the blocking factor for the index is

bfri = ⎣(B/Ri)⎦ = ⎣(1024/15)⎦ = 68 entries per block.

◼ In a dense secondary index such as this, the total

number of index entries ri is equal to the number of

records in the data file, which is 30,000.

◼ The number of blocks needed for the index is hence

bi = ⎡(ri /bfri)⎤ = ⎡(30000/68)⎤ = 442 blocks.

Slide 14- 27



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ A binary search on this secondary index needs

◼ ⎡(log2bi)⎤ = ⎡(log2442)⎤ = 9 block accesses.

◼ To search for a record using the index, we need an

additional block access to the data file for a total of 9 +

1 = 10 block accesses

◼ A vast improvement over the 1500 block accesses

needed on the average for a linear search, but slightly

worse than the 7 block accesses required for the primary

index. This difference arose because the primary index

was non-dense and hence shorter, with only 45 blocks

in length.

Slide 14- 28



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 29

Properties of Index Types



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 30

Multi-Level Indexes 

◼ Because a single-level index is an ordered file, we can 

create a primary index to the index itself;

◼ In this case, the original index file is called the first-level 

index and the index to the index is called the second-

level index.

◼ We can repeat the process, creating a third, fourth, ..., 

top level until all entries of the top level fit in one disk 

block

◼ A multi-level index can be created for any type of first-

level index (primary, secondary, clustering) as long as the 

first-level index consists of more than one disk block



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 31

A Two-level Primary Index



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example 3 illustrates the improvement in number of 

blocks accessed when a multilevel index is used to 

search for a record.

◼ Suppose that the dense secondary index of Example 2

is converted into a multilevel index. We calculated the

index blocking factor bfri = 68 index entries per block,

which is also the fan-out fo for the multilevel index;

◼ The number of first level blocks

b1 = ⎡(ri /fo)⎤ = ⎡(3000/68)⎤ = 442 blocks was also calculated.

◼ The number of second-level blocks will be

b2 = ⎡(b1/fo)⎤ = ⎡(442/68)⎤ = 7 blocks,

◼ and the number of third-level blocks will be

◼ b3 = ⎡(b2/fo)⎤ = ⎡(7/68)⎤ = 1 block.

◼ Hence, the third level is the top level of the index, and

t = 3.

Slide 14- 32



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 33



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example 3 illustrates the improvement in number of 

blocks accessed when a multilevel index is used to 

search for a record.

◼ To access a record by searching the multilevel

index, we must access one block at each level

plus one block from the data file,

◼ So we need t + 1 = 3 (no. of levels) + 1 = 4 block

accesses. Compare this to Example 2, where 10

block accesses were needed when a single-level

index and binary search were used.

Slide 14- 34


