""""""

Database

sttems

e ——

Chapter 14

Fundamentals of

D_at_abase

S: Sdiy

Elmasri ' Navathe

PEARSON

.//___\\.
Addison
Wesley

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example

s Real Example:

= The idea behind an ordered index is similar to that behind
the index used in a textbook, which lists important terms
at the end of the book in alphabetical order along with a
list of page numbers where the term appears in the book.

= We can search the book index for a certain term In the
textbook to find a list of addresses—page numbers in this
case—and use these addresses to locate the specified
pages first and then search for the term on each specified
page.

= The alternative, if no other guidance is given, would be to
sift slowly through the whole textbook word by word to
find the term we are interested in; this corresponds to doing
a linear search, which scans the whole file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 3

Indexes

» Indexes are additional auxiliary access structures, used to speed up
the retrieval of records in response to certain search conditions.

= The index structures are additional files on disk that provide
secondary access paths, which provide alternative ways to access
the records without affecting the physical placement of records in
the primary data file on disk.

= Any field of the file can be used to create an index, and multiple
Indexes on different fields—as well as indexes on multiple fields—can
be constructed on the same file.

= One form of an index is a file of entries <field value, pointer to
record>, which is ordered by field value

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S' [de 14- 4

= The values in the index are ordered so that we can do a
binary search on the index. If both the data file and the
Index file are ordered, and since the index file iIs
typlcally much smaller than the data file, searching the
iIndex rch is a better option.

i1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16 17 18
[ale|lc]ole]rls[uf[r[s[x|[i[m|[n]ofr|alr]

Binary Search - Find 'G" in sorted list A-R

1 2 E 4 5 & 7 i 11 12 13 14 15 1& 17 18

[alefclofelelecfun]i|sfx|i|m[n]jofr[alRr]

Copyri Linear Search - Find "G’ in sorted list A-R Slide 14-5

Index Types

m Types of Single-level Ordered Indexes
= Primary Indexes
= Clustering Indexes
= Secondary Indexes

s Multilevel Indexes

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 6

Primary Index

= Aprimary index is specified on the ordering key field of an ordered
file of records.

= An ordering key field is used to physically order the file records on
disk, and every record has a unique value for that field.

= Aprimary index is an ordered file whose records are of fixed length
with two fields:

= The first field is of the same data type as the ordering key field—called
the primary key—of the data file

= The second field is a pointer to a disk block (a block address). There is
one index entry (or index record) in the index file for each block in
the data file.
= Each index entry has the value of the primary key field for the first
record in a block and a pointer to that block as its two field
values. We will refer to the two field values of index entry i as <K(i),
P(i)>.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe S' [de 14- 7

Primary index on the ordering key field

Figure 14.1 Data file
Primary index on the ordering key field of (Primary
the file shown in Figure 13.7. key field)
Name Ssn |Birth_date | Job | Salary | Sex
—* | Aaron, Ed
Abbot, Diane

Acosta, Marc ‘ | | | ‘

— | Adams, John

Adams, Robin
Akers, Jan [| | |]
Index file
(<K(i), P(i)> entries) * | Alexander, Ed
Alfred, Bob
Block anchor
primary key Block Allen, Sam [| | |]
value pointer
Aaron, Ed | Allen, Troy
Adams, John Anders, Keith
Alexander, Ed .
Allen, Troy Anderson, Rob [| | | 1
Anderson, Zach '——‘—b
Arnold, Mack Anderson, Zach
M Angel, Joe
Archer, Sue ‘ | | | ‘
. ——————# | Arnold, Mack
. Arnold, Steven

Atkins, Timothy | | [1 \

— | Wong, James
Wood, Donald

Wong, James

Wright, Pam — Woods, Manny { | | | 1
—‘—b Wright, Pam

Wyatt, Charles

Zimmer, Byron [| | | J

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 8

s Thetotal number of entries in the index is the same as
the number of disk blocks in the ordered data file.

s Thefirst record in each block of the data file is called
the anchor record of the block, or simply the block
anchor.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 9

= The index file for a primary index occupies a much
smaller space than does the data file, for two reasons:

s First, there are fewer index entries than there are records
In the data file.

= Second, each index entry is typically smaller in size than
a data record because it has only two fields; consequently,
more index entries than data records can fit in one block.

s Therefore, a binary search on the index file requires
fewer block accesses than a binary search on the
data file.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 10

Example illustrates the saving in block accesses that
IS attainable when a primary index is used to search for
a record.

s Suppose that we have an ordered file with r = 30,000
records stored on a disk with block size B = 1024 bytes.

= File records are of fixed size and are unspanned, with
record length R = 100 bytes.

= The blocking factor for the file would be
bfr = l(B/R)J = l(1024/100)J = 10 records per block.

= The number of blocks needed for the file is
b = | (/o) | =1 (30000710 | = 3000 blocks.

= A binary search on the data file would need
approximately

[Iogzb]: [(IogZBOOO)] = 12 block accesses.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 11

Now suppose that the ordering key field of the file isV =9
bytes long, a block pointer is P = 6 bytes long, and we
have constructed a primary index for the file.

The size of each index entry is
Ri = (9 + 6) = 15 bytes
So the blocking factor for the index is
ofri = LB/RiY] = |(1024/15)] = 68 entries per block.

The total number of index entries ri is equal to the
number of blocks in the data file, which is 3000.

The number of index blocks is hence
bi = | (rifofriy | = [(3000/68) | = 45 blocks.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 12

To perform a binary search on the index file
would need

[(Iogzbi)] = [(Iogz45)] = 6 block accesses.

To search for a record using the index, we need
one additional block access to the data file for
atotal of 6 + 1 = 7 block accesses.

An improvement over binary search on the data
file, which required 12 disk block accesses.

This Is compared to an average linear search
cost on data file of: (b/2)= 3000/2= 1500 block
accesses.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 13

Types of Single-Level Indexes

= Primary Index
= Defined on an ordered data file
= The data file i1s ordered on a key field

= Includes one index entry for each block in the data
file; the index entry has the key field value for the
first record in the block, which is called the block

anchor
= A similar scheme can use the last record in a block.

Slide 14- 14

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Indexes can also be characterized as
dense or sparse

s Indexes can also be characterized as dense or sparse

= Adense index has an index entry for every search key
value (and hence every record) in the data file.

= Asparse (or nondense) index, on the other hand, has
Index entries for only some of the search values

= IS primary index dense or sparse”?

= A sparse index has fewer entries than the number of
records in the file.

= Thus, a primary index is a nondense (sparse) index,
since it includes an entry for each disk block of the data file
and the keys of its anchor record rather than for every
search value (or every record).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 16

Clustering Index

m If file records are physically ordered on a non key field (the
ordering field is not a key field)—which does not have a distinct
value for each record—that field is called the clustering field and
the data file is called a clustered file.

= Another type of index, called a clustering index, can be used, to
speed up retrieval of all the records that have the same value for
the clustering field.
m Aclustering index is also an ordered file with two fields:
= The first field is of the same type as the clustering field of the data file.
= The second field is a disk block pointer.

= There is one entry in the clustering index for each distinct value of
the clustering field.

= |t contains the value and a pointer to the first block in the data file
that has a record with that value for its clustering field.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 17

A Clustering Index Example

DATA FILE
u F I G U R E 14 . 2 (CLUFS"TE'EEI;K)ING
A Cl usterl ng |ndex DEPTNU:/IBER NAME SSN JOB BIRTHDATE SALARY
on the !
DEPTNUMBER >
ordering non-key — i
fleld Of an (<K(0), P()> entries) 2
EMPLOYEE file. CUSTERNG Blook j
: y :
3 o :
4 « |
=
8 O\ 5
8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 18

Another Clustering Index Exam

-
1_ NULL pointer

)
‘.\}_J

NULL pointer

NULL pointer

!
‘.\}_J

!
.\”_J

NULL pointer

P
| NULL pointer

L NULL pointer

Figure 14.3 . Data rile
L X (Clustering
Clustering index with a field)
separate block cluster Dept_number | Name | Ssn | Job |Birth_date | Salary
for each group of 1
records that share the 1
same value for the 1
clustering field.
Block pointer
 — 2
2
Block pointer
e 3
3
3
Index file 8 "
(<K(), P())> entries) Block pointer _*——
Lo 3]
Clustering Block Block pointer
field value pointer
1 — 4
2 . 4
3
4 P Block pointer
: 1 L.
6 5
8 5
5
5
Block pointer
6
6
6
6
Block pointer e———
J
L]
Block pointer —
8
8
8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Block pointer

lNULLpoimer Sllde 14- 19

Types of Single-Level Indexes

s Clustering Index
» Defined on an ordered data file

= The data file is ordered on a non-key field unlike primary
iIndex, which requires that the ordering field of the data file
have a distinct value for each record.

= Includes one index entry for each distinct value of the
field; the index entry points to the first data block that
contains records with that field value.

= Dense or spars?
» Itis another example of nondense (sparse) index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 20

Types of Single-Level Indexes

s Secondary Index

= A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

= The secondary index may be on a field which is a candidate
key and has a unique value in every record, or a non-key
with duplicate values.

= The index is an ordered file with two fields.

» The first field is of the same data type as some non-ordering
field of the data file that is an indexing field.

= The second field is either a block pointer or a record pointer.

= There can be many secondary indexes (and hence, indexing
fields) for the same file.

= Dense or sparse?

= Includes one entry for each record in the data file; hence, it
Is a dense index

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 21

How many indexes?

= Notice that a file can have at most one physical
ordering field, so it can have at most one primary
Index or one clustering index, but not both.

= A secondary index can be specified on any non-
ordering field of a file. A data file can have several
secondary indexes in addition to its primary access
method.

= The secondary index may be created on a field that is a
candidate key and has a unique value in every record,
or on a non-key field with duplicate values.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 22

Secondary Index Access Structure on
a Key (Unique) Field

= In this case there Is one index entry for each
record in the data file, which contains the value
of the field for the record and a pointer either to
the block in which the record Is stored or to
the record itself.

s Hence, such an index Is dense.

= The entries are ordered so we can perform a
binary search.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 23

Example of a Dense Secondary Index

Figure 14.4

A dense secondary index (with
block pointers) on a nonordering
key field of a file.

Index file Data file
(<K(i), P(i)> entries) Indexing field
(secondary
key field)
] Index Blpck ——————— 9
field value pointer > 5
- - 13
2 : 8
s | .
5 i 5
i >
; - - 8
P 17
41;777777 > 21
9 : - 11
10 - 16
11 o~ 2
12 1
13 — - 24
14 o - 10
15 > 20
16 f]
[
17 i - 4
18 of - 23
19 - 18
20 . 14
21
22 - - 12
23 -||; == 7
24 19
22

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 24

= A secondary index usually needs more storage space
and longer search time than does a primary index,
because of its larger number of entries.

= However, the improvement in search time for an
arbitrary record is much greater for a secondary index
than for a primary index, since we would have to do a
linear search on the data file if the secondary index
did not exist. For a primary index, we could still use a
binary search on the main file, even if the index did not
exist

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 25

Example 2 illustrates the improvement in
number of blocks accessed.

s Consider the file of Example 1 with r = 30,000 fixed-length

records of size R = 100 bytes stored on a disk with block
size B = 1024 bytes. The file has b = 3000 blocks, as
calculated in Example 1.

s Suppose we want to search for a record with a specific
value for the secondary key—a non-ordering key field of
the file that is V = 9 bytes long.

= Without the secondary index, to do a linear search on
the file would require

b/2 = 3000/2 = 1500 block accesses on the average.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 26

Suppose that we construct a secondary index on that
non-ordering key field of the file.

As in Example 1, a block pointer is P = 6 bytes long, so
each index entry is Ri = (9 + 6) = 15 bytes
and the blocking factor for the index is

ofri = L(B/Ri)] = [(1024/15)] = 68 entries per block.

In a dense secondary index such as this, the total
number of index entries ri is equal to the number of
records in the data file, which is 30,000.

The number of blocks needed for the index is hence
bi = | (ri /bfriy| = | (30000/68) | = 442 blocks.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 27

= ADbinary search on this secondary index needs
T [(Iogai)] = [(I092442)] = 9 block accesses.

s To search for a record using the index, we need an
additional block access to the data file for a total of 9 +
1 =10 block accesses

= A vast improvement over the 1500 block accesses
needed on the average for a linear search, but slightly
worse than the 7 block accesses required for the primary
Index. This difference arose because the primary index

was non-dense and hence shorter, with only 45 blocks
In length.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 28

Properties of Index Types

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYPE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX)
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no®
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records® or Dense or No
(nonkey) Number of distinct index field values® Nondense

“Yes if every distinct value of the ordering field starts a new block; no otherwise.
bFor option 1.
For options 2 and 3.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sllde 14- 29

Multi-Level Indexes

s Because a single-level index is an ordered file, we can
create a primary index to the index itself;
= In this case, the original index file is called the first-level

Index and the index to the index Is called the second-
level index.

s We can repeat the process, creating a third, fourth, ...,
top level until all entries of the top level fit in one disk
block

= A multi-level index can be created for any type of first-
level index (primary, secondary, clustering) as long as the
first-level index consists of more than one disk block

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 30

A Two-level Primary Index

Two-level index Data file
First (base) Primary
level key field
- 2 — 2
8 *— 5
15 —
24 o 8
12
15
21
24
Second (top) 29
level
2 4|—> 35 —>» 35
35 -~ 39 ~— 36
55 44
85 51 o 89
41
44
46
51
52
| 55 — 55
63 o 58
7 -
80 P 63
66
71
78
> 80
»[85 | F—L v
85
89
Figure 14.6

A two-level primary index resembling ISAM (Index Sequential Access Method) organization.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 31

Example 3 illustrates the improvement in number of
blocks accessed when a multilevel index is used to
search for a record.

s Suppose that the dense secondary index of Example 2
IS converted into a multilevel index. We calculated the
Index blocking factor bfri = 68 index entries per block,
which is also the fan-out fo for the multilevel index;

= The number of first level blocks

bl = [(ri /fo)] = [(3000/68)] = 442 blocks was also calculated.
= The number of second-level blocks will be

b2 =l (b1/f0)| = | (442/68)| = 7 blocks,
= and the number of third-level blocks will be

« b3 =l mw2so)l =l (7/68)| = 1 block.

= Hence, the third level is the top level of the index, and
t=3.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 32

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Sl Ide 14- 33

Example 3 illustrates the improvement in number of
blocks accessed when a multilevel index is used to
search for a record.

= To access a record by searching the multilevel
Index, we must access one block at each level
plus one block from the data file,

m Sowe needt+ 1=3(no. of levels) + 1 = 4 block
accesses. Compare this to Example 2, where 10
block accesses were needed when a single-level
iIndex and binary search were used.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 14- 34

