

5th Edition

Elmasri / Navathe

Summary of notation for ER diagrams

Relationships of Higher Degree

- Relationship types of degree 2 are called **binary**
- Relationship types of degree 3 are called ternary and of degree n are called n-ary
- In general, an n-ary relationship is not equivalent to n binary relationships
- Constraints are harder to specify for higherdegree relationships (n > 2) than for binary relationships

Discussion of n-ary relationships (n > 2)

- In general, 3 binary relationships can represent different information than a single ternary relationship (see Figure 3.17a and b on next slide)
- If needed, the binary and n-ary relationships can all be included in the schema design (see Figure 3.17a and b, where all relationships convey different meanings)
- In some cases, a ternary relationship can be represented as a weak entity if the data model allows a weak entity type to have multiple identifying relationships (and hence multiple owner entity types) (see Figure 3.17c)
 - Some database design tools are based on variations of the ER model that permit only binary relationships

Example of a ternary relationship

Figure 3.17

Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships not equivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

Discussion of n-ary relationships (n > 2)

- If a particular binary relationship can be derived from a higher-degree relationship at all times, then it is redundant
- For example, the TAUGHT_DURING binary relationship in Figure 3.18 (see next slide) can be derived from the ternary relationship OFFERS (based on the meaning of the relationships)
- Although in general three binary relationships cannot replace a ternary relationship, they may do so under certain additional constraints. In our example, if the CAN_TEACH relationship is 1:1 (an instructor can teach one course, and a course can be taught by only one instructor), then the ternary relationship OFFERS can be left out because it can be inferred from the three binary relationships CAN_TEACH, TAUGHT_DURING, and OFFERED_DURING.
- The schema designer must analyze the meaning of each specific situation to decide which of the binary and ternary relationship types are needed.

Another example of a ternary relationship

Chapter 7

Relational Database Design by ER--to-Relational Mapping

macri (Navat

Chapter Outline

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

FIGURE 7.2 Result of mapping the COMPANY ER schema into a relational schema.

Slide 7-12

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types.
 - For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E.
 - Choose one of the key attributes of E as the primary key for R.
 - If the chosen key of E is composite, the set of simple attributes that form it will together form the primary key of R.
- Example: We create the relations EMPLOYEE, DEPARTMENT, and PROJECT in the relational schema corresponding to the regular entities in the ER diagram.
 - SSN, DNUMBER, and PNUMBER are the primary keys for the relations EMPLOYEE, DEPARTMENT, and PROJECT as shown.

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

(a) EMPLOYEE

Fname	Minit	Lname	<u>Ssn</u>	Bdate	Address	Sex	Salary

DEPARTMENT

Dname Dnumber

PROJECT

ER-to-Relational Mapping Algorithm (contd.)

Step 2: Mapping of Weak Entity Types

- For each weak entity type W in the ER schema with owner entity type E, create a relation R & include all simple attributes (or simple components of composite attributes) of W as attributes of R.
- Also, include as foreign key attributes of R the primary key attribute(s) of the relation(s) that correspond to the owner entity type(s).
- The primary key of R is the combination of the primary key(s) of the owner(s) and the partial key of the weak entity type W, if any.
- **Example:** Create the relation DEPENDENT in this step to correspond to the weak entity type DEPENDENT.
 - Include the primary key SSN of the EMPLOYEE relation as a foreign key attribute of DEPENDENT (renamed to ESSN).
 - The primary key of the DEPENDENT relation is the combination {ESSN, DEPENDENT_NAME} because DEPENDENT_NAME is the partial key of DEPENDENT. Slide 7-16

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

(b) DEPENDENT

Essn Dependent_name Sex	Bdate	Relationship
-------------------------	-------	--------------

ER-to-Relational Mapping Algorithm (contd.)

Step 3: Mapping of Binary 1:1 Relation Types

- For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that correspond to the entity types participating in R.
- There are three possible approaches:
 - 1. Foreign Key approach: Choose one of the relations-say S-and include a foreign key in S the primary key of T. It is better to choose an entity type with total participation in R in the role of S.
 - Example: 1:1 relation MANAGES is mapped by choosing the participating entity type DEPARTMENT to serve in the role of S, because its participation in the MANAGES relationship type is total.
 - 2. Merged relation option: An alternate mapping of a 1:1 relationship type is possible by merging the two entity types and the relationship into a single relation. This may be appropriate when both participations are total.
 - 3. Cross-reference or relationship relation option: The third alternative is to set up a third relation R for the purpose of cross-referencing the primary keys of the two relations S and T representing the entity types.

Option 1: It is better to choose an entity type with total participation

EMP		DEPT			
<u>SSN</u>		DNO	StartDate	DNO	Dname
1234		5	1-1-2000	1	HR
2345		Null	Null	5	Sales
		Null	Null	U	Calob
9898		1	1-1-2005		
		Null	Null		

OR

<u>SSN</u>	
1234	
2345	
0808	

<u>DNO</u>	Dname	MSSN	StartDate
1	HR	9898	1-1-2005
5	Sales	1234	1-1-2000

t B. Navathe

Option 2: When both participations are total

ID Name Username Passwrod

Cross-reference or relationship relation option

EMP

<u>SSN</u>	
1234	
2345	
9898	

DEPT

DNO	Dname
1	HR
5	Sales

DEPTMANAGER

001			
	<u>SSN</u>	<u>DNO</u>	StartDate
	1234	1	1-1-2000
Ç	9898	5	1-1-2005

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

FIGURE 7.2 Result of mapping the COMPANY ER schema into a relational schema.

ER-to-Relational Mapping Algorithm (contd.)

- Step 4: Mapping of Binary 1:N Relationship Types.
 - For each regular binary 1:N relationship type R, identify the relation S that represent the participating entity type at the N-side of the relationship type.
 - Include as foreign key in S the primary key of the relation T that represents the other entity type participating in R.
 - Include any simple attributes of the 1:N relation type as attributes of S.
- Example: 1:N relationship types WORKS_FOR, CONTROLS, and SUPERVISION in the figure.
 - For WORKS_FOR we include the primary key DNUMBER of the DEPARTMENT relation as foreign key in the EMPLOYEE relation and call it DNO.

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

FIGURE 7.2 Result of mapping the COMPANY ER schema into a relational schema.

Slide 7-27

ER-to-Relational Mapping Algorithm (contd.)

- Step 5: Mapping of Binary M:N Relationship Types.
 - For each regular binary M:N relationship type R, create a new relation S to represent R.
 - Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types; their combination will form the primary key of S.
 - Also include any simple attributes of the M:N relationship type (or simple components of composite attributes) as attributes of S.
- Example: The M:N relationship type WORKS_ON from the ER diagram is mapped by creating a relation WORKS_ON in the relational database schema.
 - The primary keys of the PROJECT and EMPLOYEE relations are included as foreign keys in WORKS_ON and renamed PNO and ESSN, respectively.
 - Attribute HOURS in WORKS_ON represents the HOURS attribute of the relation type. The primary key of the WORKS_ON relation is the combination of the foreign key attributes {ESSN, PNO}.

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

FIGURE 7.2 Result of mapping the COMPANY ER schema into a relational schema.

Slide 7-30

ER-to-Relational Mapping Algorithm (contd.)

Step 6: Mapping of Multivalued attributes.

- For each multivalued attribute A, create a new relation R.
- This relation R will include an attribute corresponding to A, plus the primary key attribute K-as a foreign key in R-of the relation that represents the entity type of relationship type that has A as an attribute.
- The primary key of R is the combination of A and K. If the multivalued attribute is composite, we include its simple components.

Example: The relation DEPT_LOCATIONS is created.

- The attribute DLOCATION represents the multivalued attribute LOCATIONS of DEPARTMENT, while DNUMBER-as foreign keyrepresents the primary key of the DEPARTMENT relation.
- The primary key of R is the combination of {DNUMBER, DLOCATION}.

FIGURE 7.1 The ER conceptual schema diagram for the COMPANY database.

FIGURE 7.2 Result of mapping the COMPANY ER schema into a relational schema.

Slide 7-33

ER-to-Relational Mapping Algorithm (contd.)

Step 7: Mapping of N-ary Relationship Types.

- For each n-ary relationship type R, where n>2, create a new relationship S to represent R.
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types.
- Also include any simple attributes of the n-ary relationship type (or simple components of composite attributes) as attributes of S.
- Example: The relationship type SUPPY in the ER on the next slide.
 - This can be mapped to the relation SUPPLY shown in the relational schema, whose primary key is the combination of the three foreign keys {SNAME, PARTNO, PROJNAME}

FIGURE 4.11 Ternary relationship types. (a) The SUPPLY relationship.

FIGURE 7.3 Mapping the *n*-ary relationship type SUPPLY from Figure 4.11a.

Summary of Mapping constructs and constraints

Table 7.1 Correspondence between ER and Relational Models

ER Model

Entity type 1:1 or 1:N relationship type M:N relationship type *n*-ary relationship type Simple attribute Composite attribute Multivalued attribute Value set Key attribute

Relational Model

"Entity" relation Foreign key (or "relationship" relation) "Relationship" relation and two foreign keys "Relationship" relation and n foreign keys Attribute Set of simple component attributes Relation and foreign key Domain Primary (or secondary) key

Chapter Summary

ER-to-Relational Mapping Algorithm

- Step 1: Mapping of Regular Entity Types
- Step 2: Mapping of Weak Entity Types
- Step 3: Mapping of Binary 1:1 Relation Types
- Step 4: Mapping of Binary 1:N Relationship Types.
- Step 5: Mapping of Binary M:N Relationship Types.
- Step 6: Mapping of Multivalued attributes.
- Step 7: Mapping of N-ary Relationship Types.