
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 1



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 2

Database System Concepts and 

Architecture



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 3

Outline

◼ Data Models and Their Categories

◼ History of Data Models

◼ Schemas, Instances, and States

◼ Three-Schema Architecture

◼ Data Independence

◼ DBMS Languages and Interfaces

◼ Database System Utilities and Tools

◼ Centralized and Client-Server Architectures

◼ Classification of DBMSs



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 4

Data Models

◼ Data Model:

◼ A set of concepts to describe the structure of a database, 

the operations for manipulating these structures, and 

certain constraints that the database should obey.

◼ Data Model Structure and Constraints:

◼ Constructs are used to define the database structure

◼ Constructs typically include elements (and their data 

types) as well as groups of elements (e.g. entity, record, 

table), and relationships among such groups

◼ Constraints specify some restrictions on valid data; these 

constraints must be enforced at all times



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 5

Data Models (continued)

◼ Data Model Operations:

◼ These operations are used for specifying database 

retrievals and updates by referring to the 

constructs of the data model.

◼ Operations on the data model may include basic 

model operations (e.g. generic insert, delete, 

update) and user-defined operations (e.g. 

compute_student_gpa, update_inventory)



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 6

Categories of Data Models

◼ Conceptual (high-level, semantic) data models:

◼ Provide concepts that are close to the way many users
perceive data. 

◼ (Also called entity-based or object-based data models.)

◼ Physical (low-level, internal) data models:

◼ Provide concepts that describe details of how data is 
stored in the computer. These are usually specified in an 
ad-hoc manner through DBMS design and administration 
manuals

◼ Implementation (representational) data models:

◼ Provide concepts that fall between the above two, used by 
many commercial DBMS implementations (e.g. relational 
data models used in many commercial systems).



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 7

Historical Development of Database 

Technology

◼ Early Database Applications:

◼ The Hierarchical and Network Models were introduced in 

mid 1960s and dominated during the seventies.

◼ A bulk of the worldwide database processing still occurs 

using these models, particularly, the hierarchical model.

◼ Relational Model based Systems:

◼ Relational model was originally introduced in 1970, was 

heavily researched and experimented within IBM Research 

and several universities.

◼ Relational DBMS Products emerged in the early 1980s.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 8

Historical Development of Database 

Technology (continued)

◼ Object-oriented and emerging applications:

◼ Object-Oriented Database Management Systems 

(OODBMSs) were introduced in late 1980s and early 1990s 

to cater to the need of complex data processing in CAD and 

other applications.

◼ Their use has not taken off much.

◼ Many relational DBMSs have incorporated object database 

concepts, leading to a new category called object-relational 

DBMSs (ORDBMSs)

◼ Extended relational systems add further capabilities (e.g. for 

multimedia data, XML, and other data types)



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 9

Extending Database Capabilities

◼ New functionality is being added to DBMSs in the following 
areas:

◼ Scientific Applications

◼ XML (eXtensible Markup Language)

◼ Image Storage and Management

◼ Audio and Video Data Management

◼ Data Warehousing and Data Mining

◼ Spatial Data Management

◼ Time Series and Historical Data Management

◼ The above gives rise to new research and development in
incorporating new data types, complex data structures, new
operations and storage and indexing schemes in database systems.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ More complex data structures were needed for modeling the 

application than the simple relational representation.

◼ New data types were needed in addition to the basic numeric and 

character string types.

◼ New operations and query language constructs were necessary to 

manipulate the new data types.

◼ New storage and indexing structures were needed for efficient 

searching on the new data types.

Slide 1- 10



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 11

Schemas versus Instances

◼ Database Schema:

◼ The description of a database.

◼ Includes descriptions of the database structure, 
data types, and the constraints on the database.

◼ Schema Diagram:

◼ An illustrative display of (most aspects of) a 
database schema.

◼ Schema Construct:

◼ A component of the schema or an object within 
the schema, e.g., STUDENT, COURSE.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 12

Schemas versus Instances

◼ Database State:

◼ The actual data stored in a database at a 

particular moment in time. This includes the 

collection of all the data in the database.

◼ Also called database instance (or occurrence or 

snapshot).

◼ The term instance is also applied to individual 

database components, e.g. record instance, table 

instance, entity instance



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 13

Database Schema 

vs. Database State

◼ Empty Database State (with no data):

◼ When we define a new database, we specify its 

database schema only to the DBMS.

◼ Initial Database State:

◼ Refers to the database state when it is initially 

loaded with the initial data into the system.

◼ Valid State:

◼ A state that satisfies the structure and constraints 

of the database.
◼ DBMS responsibility: stores the descriptions of the schema 

constructs and constraints (meta-data)—in the DBMS catalog so 

that it can refer to the schema whenever it needs to.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 14

Database Schema 

vs. Database State (continued)

◼ Distinction

◼ The database schema changes very infrequently. 

◼ The database state changes every time the 

database is updated. 

◼ Schema is also called intension.

◼ State is also called extension.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 15

Example of a Database Schema



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 16

Example of a database state



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 17

Three-Schema Architecture

◼ Proposed to support DBMS characteristics of:

◼ Program-data independence.

◼ Support of multiple views of the data.

◼ Not explicitly used in commercial DBMS products, but has 

been useful in explaining database system organization

◼ The goal of the three-schema architecture is to separate 

the user applications from the physical database



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 18

Three-Schema Architecture

◼ Defines DBMS schemas at three levels:

◼ Internal schema at the internal level to describe physical 

storage structures and access paths (e.g indexes). 

◼ Typically uses a physical data model.

◼ Conceptual schema at the conceptual level to describe the 

structure and constraints for the whole database for a 

community of users. 

◼ Uses a conceptual or an implementation data model.

◼ External schemas at the external level to describe the 

various user views. 

◼ Usually uses the same data model as the conceptual schema.

◼ Each external schema describes the part of the database that 

a particular user group is interested in and hides the rest of the 

database from that user group.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 19

The three-schema architecture



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 20

Three-Schema Architecture

◼ Mappings among schema levels are needed to 

transform requests and data. 

◼ Programs refer to an external schema, and are 

mapped by the DBMS to the internal schema for 

execution.

◼ Data extracted from the internal DBMS level is 

reformatted to match the user’s external view (e.g. 

formatting the results of an SQL query for display 

in a Web page)



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 21

Data Independence

◼ Logical Data Independence: 

◼ The capacity to change the conceptual schema 
without having to change the external schemas 
and their associated application programs.

◼ Physical Data Independence:

◼ The capacity to change the internal schema 
without having to change the conceptual schema.

◼ For example, the internal schema may be changed 
when certain file structures are reorganized or new 
indexes are created to improve database 
performance



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 22

Data Independence (continued)

◼ When a schema at a lower level is changed, only the 

mappings between this schema and higher-level 

schemas need to be changed in a DBMS that fully 

supports data independence.

◼ The higher-level schemas themselves are unchanged.

◼ Hence, the application programs need not be changed 

since they refer to the external schemas.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 24

DBMS Languages

◼ Data Definition Language (DDL)

◼ Data Manipulation Language (DML)

◼ High-Level or Non-procedural Languages: These 

include the relational language SQL

◼ May be used in a standalone way or may be 

embedded in a programming language

◼ Low Level or Procedural Languages:

◼ These must be embedded in a programming 

language



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 25

DBMS Languages

◼ Data Definition Language (DDL): 

◼ Used by the DBA and database designers to 
specify the conceptual schema of a database.

◼ In many DBMSs, the DDL is also used to define 
internal and external schemas (views).

◼ In some DBMSs, separate storage definition 
language (SDL) and view definition language 
(VDL) are used to define internal and external 
schemas.

◼ SDL is typically realized via DBMS commands 
provided to the DBA and database designers



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 26

DBMS Languages

◼ Data Manipulation Language (DML):

◼ Used to specify database retrievals and updates

◼ DML commands (data sublanguage) can be 

embedded in a general-purpose programming 

language (host language), such as COBOL, C, 

C++, or Java.

◼ A library of functions can also be provided to access 

the DBMS from a programming language

◼ Alternatively, stand-alone DML commands can be 

applied directly (called a query language).



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 27

Types of DML

◼ High Level or Non-procedural Language:

◼ For example, the SQL relational language

◼ Are “set”-oriented and specify what data to retrieve 

rather than how to retrieve it. 

◼ Also called declarative languages.

◼ Low Level or Procedural Language:

◼ Retrieve data one record-at-a-time; 

◼ Constructs such as looping are needed to retrieve 

multiple records, along with positioning pointers.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 28

DBMS Interfaces

◼ Stand-alone query language interfaces

◼ Example: Entering SQL queries at the DBMS 

interactive SQL interface (e.g. SQL*Plus in ORACLE)

◼ Programmer interfaces for embedding DML in 

programming languages

◼ User-friendly interfaces

◼ Menu-based, forms-based, graphics-based, etc.

◼ Interfaces for the DBA:

◼ Creating user accounts, granting authorizations

◼ Setting system parameters

◼ Changing schemas or access paths



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 29

DBMS Programming Language Interfaces

◼ Programmer interfaces for embedding DML in a 

programming languages:

◼ Embedded Approach: e.g embedded SQL (for C, 

C++, etc.), SQLJ (for Java)

◼ Procedure Call Approach: e.g. JDBC for Java, 

ODBC for other programming languages

◼ Database Programming Language Approach: 

e.g. ORACLE has PL/SQL, a programming 

language based on SQL; language incorporates 

SQL and its data types as integral components



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 30

Database System Utilities

◼ To perform certain functions such as:

◼ Loading data stored in files into a database. Includes 

data conversion tools.

◼ Backing up the database periodically on tape.

◼ Report generation utilities.

◼ Performance monitoring utilities.

◼ Other functions, such as sorting, user monitoring, data 

compression, etc.

◼ Data dictionary / repository:

◼ Used to store schema descriptions and other information such 

as design decisions, application program descriptions, user 

information, usage standards, etc



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 31

Typical DBMS Component Modules



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 32

Centralized and 

Client-Server DBMS Architectures 

◼ Centralized DBMS:

◼ Combines everything into single system including-

DBMS software, hardware, application programs, 

and user interface processing software.

◼ User can still connect through a remote terminal –

however, all processing is done at centralized site.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 33

A Physical Centralized Architecture



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 34

Basic 2-tier Client-Server Architectures

◼ Specialized Servers with Specialized functions

◼ Print server

◼ File server

◼ DBMS server

◼ Web server

◼ Email server

◼ Clients can access the specialized servers as 

needed



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 35

Logical two-tier client server architecture



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 36

Clients

◼ Provide appropriate interfaces through a client 

software module to access and utilize the various 

server resources. 

◼ Clients may be diskless machines or PCs or 

Workstations with disks with only the client 

software installed.

◼ Connected to the servers via some form of a 

network.

◼ (LAN: local area network, wireless network, etc.)



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 37

DBMS Server

◼ Provides database query and transaction services to the 
clients

◼ Relational DBMS servers are often called SQL servers, 
query servers, or transaction servers

◼ Applications running on clients utilize an Application 
Program Interface (API) to access server databases via 
standard interface such as:

◼ ODBC: Open Database Connectivity standard

◼ JDBC: for Java programming access

◼ Client and server must install appropriate client module 
and server module software for ODBC or JDBC



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 39

Three Tier Client-Server Architecture

◼ Common for Web applications

◼ Intermediate Layer called Application Server or Web 

Server: 

◼ Stores the web connectivity software and the business 

logic part of the application used to access the 

corresponding data from the database server

◼ Acts like a conduit for sending partially processed data 

between the database server and the client.

◼ Three-tier Architecture Can Enhance Security: 

◼ Database server only accessible via middle tier

◼ Clients cannot directly access database server



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 40

Three-tier client-server architecture



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 41

Classification of DBMSs

◼ Based on the data model used

◼ Traditional: Relational, Network, Hierarchical.

◼ Emerging: Object-oriented, Object-relational.

◼ Other classifications

◼ Single-user (typically used with personal 
computers)
vs. multi-user (most DBMSs).

◼ Centralized (uses a single computer with one 
database) 
vs. distributed (uses multiple computers, multiple 
databases) 



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 42

Variations of Distributed DBMSs 

(DDBMSs)

◼ Homogeneous DDBMS

◼ Heterogeneous DDBMS

◼ Distributed Database Systems have now come to 

be known as client-server based database 

systems because:

◼ They do not support a totally distributed 

environment, but rather a set of database servers 

supporting a set of clients.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 43

Cost considerations for DBMSs

◼ Cost Range: from free open-source systems to 
configurations costing millions of dollars

◼ Examples of free relational DBMSs: MySQL, PostgreSQL, 
others

◼ Commercial DBMS offer additional specialized modules, 
e.g. time-series module, spatial data module, document 
module, XML module

◼ These offer additional specialized functionality when 
purchased separately

◼ Sometimes called cartridges (e.g., in Oracle) or blades

◼ Different licensing options: site license, maximum number 
of concurrent users (seat license), single user, etc.



Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 2- 44

Summary

◼ Data Models and Their Categories

◼ History of Data Models

◼ Schemas, Instances, and States

◼ Three-Schema Architecture

◼ Data Independence

◼ DBMS Languages and Interfaces

◼ Database System Utilities and Tools

◼ Centralized and Client-Server Architectures

◼ Classification of DBMSs


