
Database Management Systems
Dr. Huda Amin

Email: huda_amin@cis.asu.edu.eg

Slide 1- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Marks Distribution

◼ Final 50

◼ Mid Term 15

◼ Year Work 10

◼ Quiz 5

◼ Practical 20

◼ Total 100

Slide 1- 2

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 3

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Course Contents

◼ Introduction to Database and Database Users

◼ DBMS data models, DBMS as a software architecture

◼ Entity-Relationship (ER) Model

◼ Enhanced ERD

◼ Relational Data Model

◼ Mapping of an ER schema into a relational schema

◼ Database Normalization

◼ Relational Algebra

◼ Indexing Structures for Files

◼ Algorithms for Query Processing and Optimization

Slide 1- 4

Chapter 1

Introduction: Databases and

Database Users

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Databases and database systems are an

essential component of life in modern society:

◼ Most of us encounter several activities every day

that involve some interaction with a database.

◼ Databases play a critical role in almost all areas

where computers are used

◼ including business, electronic commerce,

engineering, medicine, genetics, law and

education.

Slide 1- 6

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 7

Outline

◼ Types of Databases and Database Applications

◼ Basic Definitions

◼ Example of a Database (UNIVERSITY)

◼ Typical DBMS Functionality

◼ Main Characteristics of the Database Approach

◼ Database Users

◼ Advantages of Using the Database Approach

◼ When not to use a DBMS

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Types of Databases and Database Applications

◼ Traditional database applications stores textual or numeric

information.

◼ Multimedia databases stores images, audio clips, and video streams

digitally.

◼ Geographic information systems (GIS) can store and analyze

maps, weather data, and satellite images.

◼ Data warehouses and online analytical processing (OLAP)

systems are used to Extract and analyze useful business information

from very large databases to support decision making.

◼ Real-time database is a database system which uses real-time

processing to handle workloads whose state is constantly changing.

For example, a stock market changes very rapidly and is dynamic.

◼ What else? At least 3 more examples

Slide 1- 8

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 9

Basic Definitions

◼ Database:

◼ A collection of related data.

◼ Data:

◼ Known facts that can be recorded and have an implicit meaning.

◼ Example!

◼ Mini-world:

◼ represents some aspect of the real world. For example, student
grades and transcripts at a university.

◼ In order for a database to be accurate and reliable at all times, it
must be a true reflection of the mini- world that it represents;
therefore, changes must be reflected in the database as soon as
possible.

◼ Transaction

◼ It is an executing program or process that includes one or more
database accesses, such as reading or updating of database
records.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

A database can be of any size and

complexity.

For example:

◼ The list of names and addresses referred to
earlier may consist of only a few hundred
records, each with a simple structure.

◼ On the other hand, the computerized catalog of a
large library may contain half a million entries
organized under different categories—by primary
author’s last name, by subject, by book title—with
each category organized alphabetically.

Slide 1- 10

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ A database of even greater size and complexity is maintained by the
Internal Revenue Service (IRS) to monitor tax forms filed by U.S.
taxpayers. If we assume that there are 100 million taxpayers and
each taxpayer files an average of five forms with approximately 400
characters of information per form, we would have a database of 100
× 106 × 400 × 5 characters (bytes) of information. If the IRS keeps
the past three returns of each taxpayer in addition to the current
return, we would have a database of 8× 1011 bytes (800 gigabytes).
This huge amount of information must be organized and managed so
that users can search for, retrieve, and update the data as needed.

Slide 1- 11

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ An example of a large commercial database is Amazon.com. It
contains data for over 20 million books, CDs, videos, DVDs, games,
electronics, apparel, and other items. The database occupies over 2
terabytes (a terabyte is 1012 bytes worth of storage) and is stored on
200 different computers (called servers). About 15 million visitors
access Amazon.com each day and use the database to make
purchases. The database is continually updated as new books and
other items are added to the inventory and stock quantities are
updated as purchases are transacted. About 100 people are
responsible for keeping the Amazon database up-to-date. [2010]

• 59 million active customers

• More than 42 terabytes of data

• More Examples!

Slide 1- 12

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 13

Basic Definitions

◼ Database Management System (DBMS):

◼ A software package/ system to facilitate the creation and
maintenance of a computerized database.

◼ Database System:

◼ The DBMS software together with the database itself.
Sometimes, the applications are also included.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 14

Simplified Database System Environment

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 15

Example of a Database

(with a Conceptual Data Model)

◼ Mini-world for the example:

◼ Part of a UNIVERSITY environment.

◼ Some mini-world entities:

◼ STUDENTs

◼ COURSEs

◼ SECTIONs (of COURSEs)

◼ (academic) DEPARTMENTs

◼ INSTRUCTORs

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 16

Example of a Database

(with a Conceptual Data Model)

◼ Some mini-world relationships:

◼ SECTIONs are of specific COURSEs

◼ STUDENTs take SECTIONs

◼ COURSEs have prerequisite COURSEs

◼ INSTRUCTORs teach SECTIONs

◼ COURSEs are offered by DEPARTMENTs

◼ STUDENTs major in DEPARTMENTs

◼ Note: The above entities and relationships are typically expressed in a

conceptual data model, such as the ENTITY-RELATIONSHIP data model

(see Chapters 3, 4)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 17

Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 18

Typical DBMS Functionality

◼ Define a particular database in terms of its data types,

structures, and constraints

◼ Construct or Load the initial database contents on a

secondary storage medium

◼ Manipulating the database:

◼ Retrieval: Querying, generating reports

◼ Modification: Insertions, deletions and updates to its content

◼ Accessing the database through Web applications

◼ Processing and Sharing by a set of concurrent users and

application programs – yet, keeping all data valid and

consistent

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 19

Typical DBMS Functionality

◼ Other features:

◼ Protection or Security measures to prevent

unauthorized access

◼ “Active” processing to take internal actions on data

◼ Presentation and Visualization of data

◼ Maintaining the database and associated

programs over the lifetime of the database

application

◼ Called database, software, and system

maintenance

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Main Characteristics of the Database

Approach

◼ Database approach vs. file processing approach!
◼ Inconsistency

◼ Redundancy

◼ Waste storage

◼ Much effort to maintain updates

Slide 1- 20

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ In traditional file processing, each user defines and implements the

files needed for a specific software application as part of

programming the application.

◼ For example, one user, the grade reporting office, may keep files on

students and their grades. Programs to print a student’s transcript and

to enter new grades are implemented as part of the application. A

second user, the accounting office, may keep track of students’ fees

and their payments. Although both users are interested in data about

students, each user maintains separate files—and programs to

manipulate these files—because each requires some data not

available from the other user’s files.

◼ This redundancy in defining and storing data results in wasted

storage space and in redundant efforts to maintain common up-

to-date data.

Slide 1- 21

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ In the database approach, a single repository

maintains data that is defined once and then

accessed by various users.

◼ In file systems, each application is free to name

data elements independently. In contrast, in a

database, the names or labels of data are

defined once, and used repeatedly by queries,

transactions, and applications.

Slide 1- 22

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Main Characteristics of the Database

Approach (continued)

◼ Self-describing nature of a database system:

◼ A DBMS catalog stores the description of a particular

database (e.g. data structures, types, and constraints)

◼ The description is called meta-data.

◼ This allows the DBMS software to work with different

database applications.

Slide 1- 23

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 24

Example of a simplified database catalog

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 25

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Main Characteristics of the Database

Approach (continued)

◼ Insulation between programs and data:

◼ Called program-data independence.

◼ Allows changing data structures and storage

organization without having to change the DBMS

access programs.

◼ Data Abstraction:

◼ A data model is used to hide storage details and

present the users with a conceptual view of the

database.

◼ Programs refer to the data model constructs rather

than data storage details.

Slide 1- 26

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ In traditional file processing, the structure of data files is embedded in

the application programs, so any changes to the structure of a file

may require changing all programs that access that file.

◼ For example, a file access program may be written in such a way that

it can access only STUDENT records of the structure shown in Figure

1.4. If we want to add another piece of data to each STUDENT

record, say the Birth_date, such a program will no longer work and

must be changed. By contrast, in a DBMS environment, we only

need to change the description of STUDENT records in the

catalog (Figure 1.3) to reflect the inclusion of the new data item

Birth_date; no programs are changed. The next time a DBMS

program refers to the catalog, the new structure of STUDENT records

will be accessed and used.

Slide 1- 27

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 28

Main Characteristics of the Database

Approach (continued)

◼ Support of multiple views of the data:

◼ Each user may see a different view of the

database, which describes only the data of

interest to that user.

◼ A view may be a subset of the database or it may

contain virtual data that is derived from the

database files but is not explicitly stored.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ For example, one user of the database of Figure 1.2 may be interested only

in accessing and printing the transcript of each student; the view for this user

is shown in Figure 1.5(a).

◼ A second user, who is interested only in checking that students have taken all

the prerequisites of each course for which they register, may require the view

shown in Figure 1.5(b).

Slide 1- 29

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 30

Main Characteristics of the Database

Approach (continued)

◼ Sharing of data and multi-user transaction

processing:

◼ Allowing a set of concurrent users to retrieve from and to

update the database.

◼ Concurrency control within the DBMS guarantees that each

transaction is correctly executed or aborted

◼ For example, when several reservation agents try to assign a seat on

an airline flight, the DBMS should ensure that each seat can be

accessed by only one agent at a time for assignment to a passenger.

◼ Recovery subsystem ensures each completed transaction

has its effect permanently recorded in the database

◼ OLTP (Online Transaction Processing) is a major part of

database applications. This allows hundreds of concurrent

transactions to execute per second.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ The isolation property ensures that each

transaction appears to execute in isolation from

other transactions, even though hundreds of

transactions may be executing concurrently. The

atomicity property ensures that either all the

database operations in a transaction are

executed or none are.

Slide 1- 31

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 32

Database Users

◼ Users may be divided into

◼ Those who actually use and control the database

content, and those who design, develop and

maintain database applications (called “Actors on

the Scene”), and

◼ Those who design and develop the DBMS

software and related tools, and the computer

systems operators (called “Workers Behind the

Scene”).

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 33

Database Users

◼ Actors on the scene

◼ Database administrators:

◼ Responsible for authorizing access to the database,

for coordinating and monitoring its use, acquiring

software and hardware resources, controlling its use

and monitoring efficiency of operations.

◼ Database Designers:

◼ Responsible to define the content, the structure, the

constraints, and functions or transactions against

the database. They must communicate with the

end-users and understand their needs.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 34

Categories of End-users

◼ Actors on the scene (continued)

◼ End-users: They use the data for queries, reports
and some of them update the database content.
End-users can be categorized into:

◼ Casual: access database occasionally when
needed

◼ Naïve or Parametric: they make up a large section
of the end-user population.

◼ They use previously well-defined functions in the form of
“canned transactions” against the database.

◼ Examples are bank-tellers or reservation clerks who do
this activity for an entire shift of operations.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 35

Categories of End-users (continued)

◼ Sophisticated:

◼ These include business analysts, scientists, engineers,

others thoroughly familiar with the system capabilities.

◼ Many use tools in the form of software packages that work

closely with the stored database.

◼ Stand-alone:

◼ Mostly maintain personal databases using ready-to-use

packaged applications.

◼ An example is a tax program user that creates its own

internal database.

◼ Another example is a user that maintains an address

book.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ A typical DBMS provides multiple facilities to access a

database.

◼ Naive end users need to learn very little about the facilities

provided by the DBMS; they simply have to understand the

user interfaces of the standard transactions designed and

implemented for their use.

◼ Casual users learn only a few facilities that they may use

repeatedly.

◼ Sophisticated users try to learn most of the DBMS

facilities in order to achieve their complex requirements.

◼ Standalone users typically become very proficient in using

a specific software package.

Slide 1- 36

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 37

Advantages of Using the Database

Approach

◼ Controlling redundancy in data storage and in

development and maintenance efforts.

◼ Sharing of data among multiple users.

◼ Restricting unauthorized access to data.
◼ Unauthorized access: For example, financial data is often considered

confidential, and only authorized persons are allowed to access such

data. some users may only be permitted to retrieve data, whereas others

are allowed to retrieve and update.

◼ Providing Storage Structures (e.g. indexes) for

efficient Query Processing.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 38

Advantages of Using the Database

Approach (continued)

◼ Providing backup and recovery services.

◼ For example, if the computer system fails in the middle of a complex

update transaction, the recovery subsystem is responsible for making

sure that the database is restored to the state it was in before the

transaction started executing.

◼ Providing multiple interfaces to different classes of users.

◼ Representing complex relationships among data.

◼ Enforcing integrity constraints on the database.

◼ The simplest type of integrity constraint involves specifying a data type for

each data item. more complex type of constraint that frequently occurs

involves specifying that a record in one file must be related to records in

other files.

◼ Another type of constraint specifies uniqueness on data item values

constraints business rules

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 39

Additional Implications of Using the

Database Approach

◼ Potential for enforcing standards:

◼ This is very crucial for the success of database applications in

large organizations. Standards refer to data item names, display

formats, screens, report structures, meta-data (description of

data), Web page layouts, etc.

◼ Reduced application development time:

◼ Incremental time to add each new application is reduced.

◼ Flexibility to change data structures:

◼ Database structure may evolve as new requirements are defined.

◼ Availability of current information:

◼ Extremely important for on-line transaction systems such as

airline, hotel, car reservations.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 1- 40

When not to use a DBMS

◼ Main inhibitors (costs) of using a DBMS:

◼ High initial investment and possible need for additional

hardware.

◼ Overhead for providing generality, security, concurrency

control, recovery, and integrity functions.

◼ When a DBMS may be unnecessary:

◼ If the database and applications are simple, well defined,

and not expected to change.

◼ If there are embedded systems with limited storage

capacity, where a general-purpose DBMS would not fit

◼ If access to data by multiple users is not required.

Thanks for Listening

Slide 1- 41

