The T-Distribution

Degree of Freedom (df) or (v)

Refers to the maximum number of logically independent values, which are values that have the freedom to vary, in the data sample.

X1	X2	X3	X4	X5	Mean
3	8	5	4	10	<u>6</u>

 $D_f = N - 1$ where: $D_f = degrees of freedom$ N = sample size

t-Distribution:

- The T distribution, also known as the Student's t-distribution, is a type of probability distribution that is similar to the normal distribution with its bell shape but has heavier tails.
- T distributions have a greater chance for extreme values than normal distributions, hence the fatter tails.

t-Distribution:

t-Distribution:

➢ Recall that, if X₁, X₂, ..., X_n is a random sample of size n from a normal distribution with mean µ and variance σ², i.e. N(µ, σ), then

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$$

We can apply this result only when σ² is known!
If σ² is unknown, we replace the population variance σ² with the sample variance S²

$$S^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}$$

to have the following statistic

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}}$$

If X₁, X₂, ..., X_n is a random sample of size n from a normal distribution with mean μ and variance σ², i.e. N(μ, σ), then the statistic

$$T = \frac{X - \mu}{S / \sqrt{n}}$$

➤ has a t-distribution with $\nu = n - 1$ degrees of freedom (df), and we write

►
$$T \sim t(v)$$
 or $T \sim t(n-1)$.

Note:

- t-distribution is a continuous distribution.
- The shape of t-distribution is similar to the shape of the standard normal distribution.

• t^{α} = The t-value above which we find an area

equal to α , that is $P(T > t_{\alpha}) = \alpha$

• Since the curve of the pdf of $T \sim t(v)$ is symmetric about 0, we have

$$t_{1-\alpha} = -t_{\alpha}$$

• Values of t_{α} are tabulated

Critical Values of the t-distribution (t_{α})

	α							
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	
13	0.259	0.537	0.870	1.079	1.350	1.771	2.160	
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	
8	0.253	0.524	0.842	1.036	1.282	1.645	1.960	

Critical Values of the t-distribution (t_{α})

	α							
v	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005	
1	15.895	21.205	31.821	42.434	63.657	127.322	636.590	
2	4.849	5.643	6.965	8.073	9.925	14.089	31.598	
3	3.482	3.896	4.541	5.047	5.841	7.453	12.924	
4	2.999	3.298	3.747	4.088	4.604	5.598	8.610	
5	2.757	3.003	3.365	3.634	4.032	4.773	6.869	
6	2.612	2.829	3.143	3.372	3.707	4.317	5.959	
7	2.517	2.715	2.998	3.203	3.499	4.029	5.408	
8	2.449	2.634	2.896	3.085	3.355	3.833	5.041	
9	2.398	2.574	2.821	2.998	3.250	3.690	4.781	
10	2.359	2.527	2.764	2.932	3.169	3.581	4.587	
11	2.328	2.491	2.718	2.879	3.106	3.497	4.437	
12	2.303	2.461	2.681	2.836	3.055	3.428	4.318	
13	2.282	2.436	2.650	2.801	3.012	3.372	4.221	
14	2.264	2.415	2.624	2.771	2.977	3.326	4.140	
15	2.249	2.397	2.602	2.746	2.947	3.286	4.073	
16	2.235	2.382	2.583	2.724	2.921	3.252	4.015	
17	2.224	2.368	2.567	2.706	2.898	3.222	3.965	
18	2.214	2.356	2.552	2.689	2.878	3.197	3.922	
19	2.205	2.346	2.539	2.674	2.861	3.174	3.883	
20	2.197	2.336	2.528	2.661	2.845	3.153	3.850	
21	2.189	2.328	2.518	2.649	2.831	3.135	3.819	
22	2.183	2.320	2.508	2.639	2.819	3.119	3.792	
23	2.177	2.313	2.500	2.629	2.807	3.104	3.768	
24	2.172	2.307	2.492	2.620	2.797	3.091	3.745	
25	2.167	2.301	2.485	2.612	2.787	3.078	3.725	
26	2.162	2.296	2.479	2.605	2.779	3.067	3.707	
27	2.158	2.291	2.473	2.598	2.771	3.057	3.690	
28	2.154	2.286	2.467	2.592	2.763	3.047	3.674	
29	2.150	2.282	2.462	2.586	2.756	3.038	3.659	
30	2.147	2.278	2.457	2.581	2.750	3.030	3.646	
40	2.125	2.250	2.423	2.542	2.704	2.971	3.551	
60	2.099	2.223	2.390	2.504	2.660	2.915	3.460	
120	2.076	2.196	2.358	2.468	2.617	2.860	3.373	
~	2.054	2.170	2.326	2.432	2.576	2.807	3.291	

Find the t-value with $\nu = 14$ (df) that leaves an area of:

(a) 0.95 to the left.

(b) 0.95 to the right.

Critical Values of the t-distribution (t_{α})

	α							
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	
1	0.325	0.727	1.376	1.963	3.078	014	12.706	
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	
13	0.259	0.537	0.870	1.079	1.350		2.160	
14	0.258	0.537	0.868	1.076	1.345	→(1.761)	2.145	
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	
~	0.253	0.524	0.842	1.036	1.282	1.645	1.960	

 $\nu = 14 (df); T \sim t(14)$ (a) The t-value that leaves an area of 0.95 to the left is $t_{0.05} = 1.761$

(b) The t-value that leaves an area of 0.95 to the right is

$$t_{0.95} = -t_{1-0.95} = -t_{0.05} = -1.761$$

For $\nu = 10$ degrees of freedom (df), find $t_{0.10}$ and $t_{0.85}$.

Solution:

$$t_{0.10} = 1.372$$

 $t_{0.85} = -t_{1-0.85} = -t_{0.15} = -1.093$ ($t_{0.15} = 1.093$)

