STATISTICAL ANALYSIS LECTURE 08

Dr. Mahmoud Mounir

mahmoud.mounir@cis.asu.edu.eg

Sampling Distribution of the Difference between Two Sample Means

Sampling Distribution of Means

Result:

If $X_1, X_2, ..., X_n$ is a random sample of size *n*taken from a normal distribution with mean μ and variance σ^2 , i.e. $N(\mu, \sigma^2)$, then the sample mean \overline{X} has a normal distribution with mean

$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

and variance

$$Var(\overline{X}) = \sigma_{\overline{X}}^2 = \frac{\sigma^2}{n}$$

Theorem: (Central Limit Theorem) If $X_1, X_2, ..., X_n$ is a random sample of size *n* from any distribution (population) with mean μ and finite variance σ^2 , then, if the sample size *n* is large, the random variable

$$Z = \frac{X - \mu}{\sigma / \sqrt{n}}$$

is approximately standard normal random variable, i.e., $Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1) \text{ approximately.}$

Sampling Distribution of the Difference between Two Means

Suppose that we have two populations:

- 1-st population with mean μ_1 and variance σ_1^2
- 2-nd population with mean μ_2 and variance σ_2^2
- We are interested in comparing μ_1 and μ_2 , or equivalently, making inferences about $\mu_1 \mu_2$.
- We <u>independently</u> select a random sample of size n_1 from the 1st population and another random sample of size n_2 from the 2-nd population:
- Let \overline{X}_1 be the sample mean of the 1-st sample.
- Let \overline{X}_2 be the sample mean of the 2-nd sample.
- The sampling distribution of $\overline{X}_1 \overline{X}_2$ is used to make inferences

about $\mu_1 - \mu_2$.

Theorem

If n_1 and n_2 are large, then the sampling distribution of $\overline{X}_1 - \overline{X}_2$ is approximately normal with mean $E(\overline{X}_1 - \overline{X}_2) = \mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2$

and variance

$$Var(\overline{X}_1 - \overline{X}_2) = \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

SD
$$(\bar{x}_1 - \bar{x}_2) = \sqrt{\sigma^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

$$\overline{X}_{1} - \overline{X}_{2} \sim N(\mu_{1} - \mu_{2}, \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}})$$

$$\Leftrightarrow$$

$$Z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1)$$

$$\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\sigma_{\overline{X}_1 - \overline{X}_2}^2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} \neq \sqrt{\frac{\sigma_1^2}{n_1}} + \sqrt{\frac{\sigma_2^2}{n_2}} = \frac{\sigma_1}{\sqrt{n_1}} + \frac{\sigma_2}{\sqrt{n_2}}$$

Example (1)

The television picture tubes of manufacturer \underline{A} have a mean lifetime of 6.5 years and standard deviation of 0.9 year, while those of manufacturer \underline{B} have a mean lifetime of 6 years and standard deviation of 0.8 year. What is the probability that a random sample of 36 tubes from manufacturer A will have a mean lifetime that is at least 1 year more than the mean lifetime of a random sample of $\underline{49}$ tubes from manufacturer B?

Solution:

Population 1	Population 2
$\mu_1 = 6.5$	$\mu_2 = 6.0$
$\sigma_1 = 0.9$	$\sigma_2 = 0.8$
$n_1 = 36$	$n_2 = 49$

We need to find the probability that the mean lifetime of manufacturer *A* is at least 1 year more than the mean lifetime of manufacturer *B* which is $P(\overline{X}_1 \ge \overline{X}_2 + 1)$

The sampling distribution of $\overline{X}_1 - \overline{X}_2$ is $\overline{X}_1 - \overline{X}_2 \sim N(\mu_1 - \mu_2, \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}})$ $E(\overline{X}_1 - \overline{X}_2) = \mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2 = 6.5 - 6.0 = 0.5$ $Var(\overline{X}_1 - \overline{X}_2) = \sigma_{\overline{X}_1 - \overline{X}_2}^2 = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} = \frac{(0.9)^2}{36} + \frac{(0.8)^2}{49} = 0.03556$ $\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}} = \sqrt{0.03556} = 0.189$ $\overline{X}_1 - \overline{X}_2 \sim N(0.5, 0.189)$

$$Z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

 $P(\overline{X}_1 \ge \overline{X}_2 + 1) = P(\overline{X}_1 - \overline{X}_2 \ge 1)$

Example (2)

Suppose it has been established that for a certain type of client that average length of a home visit by a public health nurse is 45 <u>minutes</u> with a <u>standard deviation of 15 minutes</u>, and that for a second type of client the average visit is 30 minuets long with a standard deviation of 20 minutes. If a nurse randomly visits 35 clients from the first and $\underline{40}$ from the second population, what is the probability that the average length of home visit will differ between the two groups by 20 or more minutes?

Solution:

$$z_{\bar{x}_1 - \bar{x}_2} = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sigma_{\bar{x}_1 - \bar{x}_2}}$$
$$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Sample (1)	$\mu_1 = 45$	<i>σ</i> ₁ = 15	<i>n</i> ₁ = 35
Sample (2)	$\mu_2 = 30$	$\sigma_2 = 20$	$n_2 = 40$

$\mu_1 = 45$	$\sigma_1 = 15$	$n_1 = 35$	
$\mu_2 = 30$	$\sigma_2 = 20$	$n_2 = 40$	
$(\bar{x}_1 - \bar{x}_2) = 20$	$\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$ $= \sqrt{\frac{15^2}{35} + \frac{20^2}{40}} = \sqrt{\frac{115}{7}}$ $= 4.053$	$\begin{aligned} & z_{\bar{x}_1 - \bar{x}_2} \\ &= \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sigma_{\bar{x}_1 - \bar{x}_2}} \\ &= \frac{20 - 15}{4.053} = 1.23 \end{aligned}$	
$P((\bar{x}_1 - \bar{x}_2) \ge 20) = P(z_{\bar{x}_1 - \bar{x}_2} \ge 1.23)$			
$= 1 - P(z_{\bar{x}_1 - \bar{x}_2} < 1.23)$			
= 1 - 0.8907 = 0.1093			