
Object Oriented Programming (OOP)

Lecture3: Methods and Strings

Prepared by:

Mohamed Mabrouk

Those slides are based on slides by:

Dr. Sherin Mousa and Dr. Sally Saad

Lecture Outline

• Methods

• Method types

• Static/final/abstract methods

• Overloading

• Parameter passing

• Constructors

• Strings

• Conversion between strings and numbers

• String equality

2

Methods

3

Method Types

• Instance methods

• Class methods

• Constructors

• Main method

4

Method Declaration

• Method declaration has two parts:

• Method header

• Method body

• Method header defines method’s name,

parameters, return type, etc.

• Method body is the actual body of the

method that defines its logic
5

Method Header

• Method header has the following structure:

<Modifier> ReturnType MethodName(ParamList)

• Types of modifiers are:

• Access modifier can be private, protected, or public.
It is optional and if not provided à package local

• static à for the whole class and not for a specific

object.

Can only access static fields and methods of the class

6

Method Header

• Types of modifiers are:

• final à cannot be overridden in child classes (prevents

inheritance)

• abstract à MUST BE OVERRIDEN.

Has an empty body in parent class but not in child
classes

7

Access Modifiers

• Access modifiers are:

• private à Visible only within the same class and
invisible outside it

• None à default visibility. Visible within the same class and
all classes within the same package

• protected à Visible within the class and all its
subclasses, i.e. inherited classes

• public à Visible anywhere. Be careful when
declaring a member as public as it can be modified
from outside

8

Access Modifiers

• protected int add(int num1, int num2){}

• protected à access modifier

• intà return type

• addà method name

• int num1, int num2 à parameter list

9

Static Members

• static means that it belongs to the class and not

to a specific instance

• static methods can access its parameters, local

variables and also other static members

• Can be called via class name not object name,
e.g. Student.display()

• An object can also access static members

• main MUST be declared static

10

Static Member Example

• Implement an instance counter

à count the number of objects

created of a specific class

11

Method Call
• To call a method use the dot (.) using either class or

object to which the method belongs

reference.method(arguments);

• Static methods:

• From outside use class name or object reference to call
the method

• From inside the class the reference has to be omitted

• Non-static methods

• From outside use object reference to call the
method

• From inside the class the reference has to be omitted 12

Method Call Example

13

class TestClass{
public static void method1(){
}

public static void method2(){
}

}

Method Call Example

14

class TestClass{
public static void method1(){
}

public static void method2(){
}

}
--
TestClass.methdo1();

TestClass obj = new TestClass();
Obj.method2();

Method Overloading

• More than one method with same name but with
different parameter types or different number of
parameters

• Return type CANNOT be used to overload a
method

• For instance:
int add(int num1, int num2){}

int add(int num1, int num2, int num3){}

int add(float num1, float num2){}

15

Method Parameters

• Parameters are placeholders for values that the

method should work on

• Can be primitive types, e.g. int and float, or they

can be objects of other classes, e.g. Student, or

arrays

• Can have the same name as class fields

• Always passed by value (no passing by reference in

Java)

16

Method Parameters

• If the parameter is an object à it is the object

reference is passed (TRICKY)

• When the method returns, the passed-in reference
still references the same object

• The object's fields can be changed in the method

17

Parameter Passing example

18

public static void main(String[] args){

Student stud = new Student();

stud.setName("A");

System.out.println(stud.getName());

changeName(stud);

System.out.println(stud.getName());

}

public static void changeName(Student student){

student.setName("B");

}

Parameter Passing example

19

public static void main(String[] args){

Student stud = new Student();

stud.setName("A");

System.out.println(stud.getName());

changeName(stud);

System.out.println(stud.getName());

}

public static void changeName(Student student){

student = new Student();

student.setName("B");

}

Method Parameters

• The object fields can be changed in methods à will

impact the passed object

• The object itself cannot refer to a new memory
address à After method call it will retain its original

address

20

this Keyword

• Refers to the object from which it is called

• Can be used in case of members are SHADOWED

by method/constructor parameters

21

public class Student {

String name;

float marks;

public Student(String name, float marks){

this.name = name;

this.marks = marks;

}

}

this Keyword

• Can also be used to call another constructor

22

public class Student {

String name;

float marks;

public Student(String name, float marks){

this.name = name;

this.marks = marks;

}

public Student(String name){

this(name, 0.0F);

}

}

this Keyword

• Can also be used to call another constructor

23

public class Student {

String name;

float marks;

public Student(String name, float marks){

this.name = name;

this.marks = marks;

}

public Student(String name){

this(name, 0.0F);

}

}

main Method

• Main method should be:
public static void main(String[] args)

• Why public?

• Why static?

• Why String[] args?

24

main Method

• Main method should be:
public static void main(String[] args)

• Why public? à Can be accessed from outside

• Why static?

• Why String[] args?

25

main Method

• Main method should be:
public static void main(String[] args)

• Why public? à Can be accessed from outside

• Why static? à No instantiation required

• Why String[] args?

26

main Method

• Main method should be:
public static void main(String[] args)

• Why public? à Can be accessed from outside

• Why static? à No instantiation required

• Why String[] args? à Pass parameters to the

program

27

main Method

• Can be used to pass parameters to the program

28

Public class Greetings {
public static void main(String[] args){

String name = args[0];
System.out.println("Hello ” + name);

}
}

main Method

• Can be used to pass parameters to the program

29

Public class Greetings {
public static void main(String[] args){

String name = args[0];
System.out.println("Hello ” + name);

}
}

• java Greetings Mohamed

main Method

• All parameters should be strings

• Can be converted to integers or floats, etc.

30

Destroying Objects

• When an object is eligible for garbage collection à
it is deleted by garbage collector

• The object is eligible for garbage collection in case:

• A reference to it is set to NULL

• The reference to the object is made to refer to
another object

• How to force garbage collector to work à
System.gc

• DO NOT CALL IT YOURSELF
31

Strings

32

Strings

• Is a sequence of characters
String str = “Hello”;

• Is it a primitive type or a reference type?

• Strings are immutable

33

Strings

• Is a sequence of characters
String str = “Hello”;

• Is it a primitive type or a reference type?

• Strings are immutable à what does that mean?

34

Strings

• Is a sequence of characters
String str = “Hello”;

• Is it a primitive type or a reference type?

• Strings are immutable à what does that mean?

• Immutable means that its value cannot be
changed

35

Strings

• Is a sequence of characters
String str = “Hello”;

• Is it a primitive type or a reference type?

• Strings are immutable à what does that mean?

• Immutable means that its value cannot be
changed à What happens if its value has

changed?

36

Strings

37

public static void main(String[] args){
String str = “Hello”;
char[] chars = { ‘H’, ‘i’ } ;

String s1 = new String();
}

Strings

38

public static void main(String[] args){
String str = “Hello”;
char[] chars = { ‘H’, ‘i’ } ;

String s1 = new String();
String s2 = new String(str);

}

Strings

39

public static void main(String[] args){
String str = “Hello”;
char[] chars = { ‘H’, ‘i’ } ;

String s1 = new String();
String s2 = new String(str);
String s3 = new String(chars);

}

Conversion to String

• To convert any object to string you should override
method toString()

• Many standard Java classes already override
toString()

• That enables printing any object to the screen as a
string

40

String Comparison

• Can ‘==‘ be used for comparing strings?

41

String Comparison

• ‘==‘ Operator CANNOT be used to compare

strings

• It compares object references, i.e. their addresses

• To compare string contents equals() method

can be used

• <, <=, >, and >= cannot be used to compare

strings

42

String Comparison

• To compare strings compareTo() methods can

be used

• It returns -1, 0, or 1

• -1 if s1 < s2

• 0 if s1 = s2

• 1 if s1 > s2

43

String Comparison

44

public static void main(String[] args){
String s1 = “Hello”;
String s2 = “Hi”;
int val = s1.compareTo(s2);
System.out.println(val);

}

Useful String Methods
• String class has many methods. To name a few:

• substring: returns substring starting at position and ends at
anther position

• indexOf: finds a substring if exists and returns its position, and -1 if
not found

• lastIndexOf: finds a substring if exists and returns its position but
from end, and -1 if not found

• replace: replaces a substring in the string with another substring

• split: splits a string with a specific separator(s)

• startsWith: checks if a string starts with the given substring

• endsWith: checks if a string ends with the given substring 45

Thank You!

46

