
Object Oriented Programming (OOP)

Lecture2: Java Syntax; Control Structures,
Classes, and Objects

Prepared by:
Mohamed Mabrouk

Those slides are based on slides by:
Dr. Sherin Mousa and Dr. Sally Saad

Lecture Outline
• Branching: if, and switch
• Loops: for, foreach, while, and do-while
• Loop Control: break, and continue
• Arrays
• Classes and Objects
• Constructors
• UML
• Packages
• Encapsulation and access modifiers

2

Branching

3

Branching: if-else

4

if(condition){
Statement 1
Statement 2
…
Statement n
} else {
Statement 1
Statement 2
…
Statement n
}

Branching: if-else

• There can be many if-else control structures
• Always enclose if or else body in braces

5

Branching: if-else

6

public static boolean isNegative(int num){
if(num < 0){

return true;
} else {

return false;
}

}

Loops

7

Loops: for

8

for (int i = 0; i < 10; i++) {
Statement 1
Statement 2
…
Statement n

}

Loops: foreach

• is used to traverse an array or a collection in Java
• easier to use than simple for loop
• No loop variable

9

int[] arr = new int[10];

for (int item:arr) {
System.out.println(item);

}

Loops: while and do-while

10

int i = 0;
while(i<10){

Statement 1
Statement 2
…
Statement n

i++;
}

Loops: while and do-while

11

int i = 0;
do {

Statement 1
Statement 2
…
Statement n

i++;
} while(i<10);

Loop Control

12

Loop Control

• break can be used to end a loop
• continue is used to jump to the loop start
• Limit the number of break/continue statement to

1 per loop

13

Loop Control

• What is the output?

14

int i = 0;
while(i<10) {

if(i == 5) {
break;

}
System.out.println(" i = " + i);
i++;

}

Loop Control

• What is the output?

15

int i = -1;
while(i<10) {

i++;
if(i == 5) {

continue;
}
System.out.println(" i = " + i);

}

Arrays

16

Arrays

17

• Is simply a collection of items of the same type
• Has a fixed size
• Can hold any type, including simple types, e.g. int

and float, or complex types, e.g. Student or Car
• Only holds references, i.e. does not hold the actual

objects
• If any of position is not initialized, it is NULL

Arrays

• Creates a non-initialized array

• Creates an initialized array with the values specified
• Foreach loops can be also used to iterate overt its

members
18

float[] arr = new float[10];

float[] arr = new float[]{1.2F, 3.4F, 5.6F, 7.8F};

Classes & Objects

19

Classes & Objects
• A class constitutes the blueprint of a specific type,

e.g. Car or Student
• Contains data members (fields) and methods to

work on these data members
• Defines various levels of hiding to protect its own

fields and methods
• Can be used to create hierarchy, i.e. levels of

inheritance among classes
• May also contain inner classes 20

Classes & Objects

• An object is an instance of a specific class
• It reserves memory in the system
• Can be used do the real job of the class it

represents
• Can be instantiated using keyword new
• If not instantiated it will be NULL

21

Basic Class Syntax
modifier class Classname {

modifier data-type field1;
...
modifier data-type fieldn;

modifier Constructor1(parameters) {
}

modifier Constructorn(parameters) {
}

modifier Return-Type method1(parameters) {
//statements

}
...

modifier Return-Type methodn(parameters) {
//statements

}
}

22

Example Class

23

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}
public float addMarks(float m){

marks += m;
return marks;

}
}

Example Class

24

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}
public float addMarks(float m){

marks += m;
return marks;

}
}

Access
Modifiers

Example Class

25

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}
public float addMarks(float m){

marks += m;
return marks;

}
}

Class
Name

Example Class

26

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}
public float addMarks(float m){

marks += m;
return marks;

}
}

Fields

Example Class

27

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}
public float addMarks(float m){

marks += m;
return marks;

}
}

Constructor

Example Class

28

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}
public float addMarks(float m){

marks += m;
return marks;

}
}

Methods

Classes & Objects

• new keyword can be used to instantiate an object
of a class, e.g.
Student stud = new Student(“John Smith”,
75);

• Dot operator can be used to access fields and
methods, e.g.
stud.addMarks(10.5);

29

Constructors

• Each class MUST have at least one constructor
• Can be many constructors in the same class
• Have no return type
• Must have the exact same name of the class

30

Constructors

• If none is defined à compiler creates one with no
parameters called default constructor

• default constructor
• initializes fields with their default values à zero for

numeric types, and false for booleans, and null for
object references

• Calls the constructor of the parent class implicitly
• To call parent class constructor you can use
super();

31

Unified Modeling Language (UML)

32

Unified Modeling Language (UML)

• Object oriented modeling language
• Convenient way of visualizing classes, objects, and

relationships among system classes
• Is not bound to a specific language, i.e. not necessary

Java
• Helps getting an overview on the system and its

inherent structure and hierarchy

33

Class Diagram
• Describes the classes of the system and the

relationships among them
• Describes attributes (fields), and operations (methods)

of the class
• Represented in UML by a rectangle, usually divided into

three sections
1. Class name
2. Attributes (fields)
3. Operations (methods)

34

Class Diagram

35

Person

+ name
address
- birthDate

+ getName()
+ getAddress()
+ getBirthDate()
+ display()

Class Diagram

• Class name: Person
• Attributes: name, address, and birthdate
• Operations: getName(), getAddress(), getBirthDate(),

and display()
• + denotes public members
• # denotes protected members
• - denotes private members

36

UML Relationships

• Several relationship types can be encoded in UML
• A relationship is represented as lines with arrows
• Different arrowheads have different meanings
• Example relationship types are inheritance and

association
• Inheritance represents a hierarchy between classes
• Association represents relationships between objects

37

Class Diagram

38

Person

Student

- marks

+ getMarks()

Employee

- salary

+ getSalary()

Instantiation

• To instantiate class you can use new operator
• For instance, Student stud = new Student();
Student[] students = new Student[10];

• That creates the array only without the inner content
• To create the actual Students, you should do the following:
for(int i=0; i<10; i++){
students[i] = new Student();
}

39

Practice

• Create a UML diagram to represent Course
• Define attributes and methods of class Course
• Create a UML diagram to represent Professor
• Define attributes and methods of class

Professor
• What is the relationship between Course and

Professor
• What are other classes you can think of for the

entire system 40

Packages

• Is a container for related classes, e.g. java.util and
java.io

• The package name normally looks like
domain.subdomain.subsubdomain……

• For instance: org.apache.commons
• Try to always group your classes into packages and

subpackages
• At the top of the class you can find the name of the

package to which it belongs:
package org.apache.commons;

41

Class Access Modifiers

• Allowed class access modifiers are public or none à
no private or protected (except for inner classes)

• If none à it is called package-local, i.e. it is visible only
within the same package

• Non-public classes are meant for internal use only à
cannot be utilized by any external user

42

Field Access Modifiers
• Field declaration has the form:
Access-modifier <static><final> datatype
fieldname;

• Access modifier: private, protected, public, and
none

• static means that it is for the entire class and not for a
specific object

• final means that its value CAN NEVER BE CHANGED

43

Field Access Modifiers

• private à visible within the same class only
• None/package-local à visible within the same class

and classes withing the same package
• protected à visible within the same class, all child

classes, and classes withing the same package
• public à visible anywhere

44

Field Access Modifiers

• private à visible within the same class only
• None/package-local à visible within the same class

and classes withing the same package
• protected à visible within the same class, all child

classes, and classes withing the same package
• public à visible anywhere

45

Field Access Modifiers

46

Person Class

47

public class Person {
private String name;
String address;
public Person(String name, String address) {

this.name = name;
this.address = address;

}

public String getName() {
return name;

}
public String getAddress() {

return address;
}

}

Employee Class

48

public class Employee extends Person{
public Employee(String name, String address) {

super(name, address);
}

public String getName(){
return name;

}
}

Employee Class

49

public class Employee extends Person{
public Employee(String name, String address) {

super(name, address);
}

public String getName(){
return name;

}
}

name is
invisible as it
has private

access

static Modifier

• Means that this field/method is not specific to an object
• It is for the entire class
• Can be accessed via class name, e.g.
Student.countOfStudents, or via object name, e.g.
stud.countOfStudents

• Non-static can ONLY be accessed via object name

50

Person Class

51

public class Person {
public static int globalId;
public int localId;
private String name;
private String address;

public Person(String name, String address) {
this.name = name; this.address = address;

}
}

Person Class

52

public class Person {
public static int globalId;
public int localId;
private String name;
private String address;

public Person(String name, String address) {
this.name = name; this.address = address;

}
}

Main Class

53

public static void main(String[] args){
Person p1 = new Person("X", "Cairo");
p1.localId++;
p1.globalId++;

}

Main Class

54

public static void main(String[] args){
Person p1 = new Person("X", "Cairo");
p1.localId++;
p1.globalId++;

Person p2 = new Person("Y", "Alex");
p2.localId++;
p2.globalId++;

}

final Modifier
• When used with field à the value of the field can never

be modified once set
• Similar to const in C++
• final field must be initialized when declared or in the

constructor
• For instance,
public final int baseSalary = 1000;

• Can also be applied to methods and classes à to be
discussed later 55

Thank You!

56

