Object Oriented Programming (OOP)

Lecture2: Java Syntax; Contirol Structures,
Classes, and Objects

Prepared by:
Mohamed Mabrouk

Those slides are based on slides by:
Dr. Sherin Mousa and Dr. Sally Saad

Lecture Outline

- Branching: if, and switch

- Loops: for, foreach, while, and do-while
- Loop Control: break, and continue

- Arrays

- Classes and Objects

- Constructors

- UML

- Packages

- Encapsulation and access modifiers

felgleigligle

Branching: if-else

if(condition){
Statement 1
Statement 2

Statement n
} else {

Statement 1
Statement 2

Statement n

}

Branching: if-else

- There can be many if-else control stfructures
- Always enclose if or else body in braces

Branching: if-else

public static boolean isNegative(int num){
if(num < 0){
return true;
} else {
return false;

}

Loops: for

for (inti=0;i< 10; i++) {
Statement 1
Statement 2

.S'TOOTemenT N

Loops: foreach

. IS used fo fraverse an array or a collection in Java
. easier to use than simple for loop
- No loop variable

int[] arr = new int[10];

for (int item:arr) {
System.out.printIn(item);

}

Loops: while and do-while

inti=0;

while(i<10){
Statement 1
Statement 2

.S"r.o’remen’r N

i++;

}

Loops: while and do-while

inti=0;

do {
Statement 1
Statement 2

.S"r.o’remen’r N

i++;
} while(i<10);

Loop Control

Loop Control

- break can be used o end a loop
- continue Is used to jump to the loop start

- Limit the number of break/continue statement to
1 perloop

Loop Control

- What is the outpute

inti=0;
while(i<10) {
if(i ==

System.out.printIn("i="+1);
i++;

}

Loop Control

- What is the outpute

inti=-1;
while(i<10) {
i++;
if(i==
continue;
}
System.out.printin(" i =" +i);

}

AIrays

. Is simply a collection of items of the same type
- Has a fixed size

- Can hold any type, including simple types, e.g. int
and float, or complex types, e.g. Student or Car

- Only holds references, I.e. does not hold the actual
objects

- If any of position is noft initialized, it is NULL

AIrays

float[] arr = new float[10];

- Creates a non-initialized array
float[] arr = new float[]{1.2F, 3.4F, 5.6F, 7.8F};

- Creates an initialized array with the values specified

- Foreach loops can be also used to iterate overt ifs
members

Classes & Objects

Classes & Objects

. A class constitutes the blueprint of a specific type,
e.g. Car or Student

. Contains data members (fields) and methods to
work on these data members

. Defines various levels of hiding to protect its own
fields and methods

- Can be used to create hierarchy, i.e. levels of
Inheritance among classes

- May also contain inner classes

Classes & Objects

- An object is an insftance of a specific class

. |t reserves memory in the system

- Can be used do the real job of the class it
represents

. Can be instantiated using keyword new
- If not instantiated it will be NULL

Basic Class Syntax

modifier class Classname {
modifier data-type field;;

modifier data-type field,;

modifier (parameters) {

}

modifier (parameters) {

}

modifier Return-Type method, (parameters) {
//statements

}

modifier Return-Type method, (parameters) {

//statements

Example Class

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}

public float addMarks(float m){
marks += m;
return marks;

}

}

Example Class

lass Student {

Access String name;
Modifiers float marks;

Student(String n, float m){

name = n;
marks = m;

}
float addMarks(float m){

marks +=m;
return marks;

}
}

Example Class

public clas

String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}

public float addMarks(float m){
marks += m;
return marks;

}

}

Example Class

public class Student {

String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}

public float addMarks(float m){
marks += m;
return marks;

}

}

Example Class

public class Student {
String name;
float marks;

Constructor

publicString n, float m){
name = n;
marks = m;
}
public float addMarks(float m){
marks += m;
return marks;
}
}

Example Class

public class Student {
String name;
float marks;

public Student(String n, float m){
name = n;
marks = m;

}

public floatjaddMarks(float m

marks += m;
return marks;

}
}

Methods

Classes & Objects

- new keyword can be used o instantiate an object

of a class, e.g.
Student stud = new Student (“John Smith”,
19) ;

- Dot operator can be used to access fields and
methods, e.qg.
stud.addMarks (10.5) ;

Constructors

- Each class MUST have at least one consfructor
- Can be many constructors in the same class

- Have no return type
- Must have the exact same name of the class

Construc

TOrS

. If none is defined - compiler creates one with no
parameters called default constructor

- default constructor

. Initializes fields with their default values - zero for
numeric types, and false for booleans, and null for

object references

- Calls t

ne constructor of the parent class implicitly

- TO cAl
super

parent class constructor you can use
()

Unifled Modeling Language (UML)

Unifled Modeling Language (UML)

- Object oriented modeling language

. Convenient way of visualizing classes, objects, and
relationships among system classes

- Is not bound to a specific language, i.e. not necessary
Java

- Helps getting an overview on the system and its
Inherent structure and hierarchy

Class Diagram

- Describes the classes of the system and the
relationships among them

- Describes attributes (fields), and operations (methods)

of the class

- Represented in UML by a rectangle, usually divided into
three sections

1. Class name
2. Attributes (fields)
3. Operations (methods)

Diagram

+ name
address
- birthDate

+ getName()
+ getAddress()
+ getBirthDate()

+ display()

Class Diagram

- Class name: Person
- Aftributes: name, address, and birthdate

- Operations: getName(), getAddress(), getBirthDate(),
and display()

. + denotes public members
- # denotes protected members
. - denotes private members

UML Relationships

- Several relationship types can be encoded in UML
. A relationship is represented as lines with arrows
- Different arrowheads have different meanings

- Example relationship types are inheritance and
association

- Inheritance represents a hierarchy between classes
- Association represents relationships between objects

Diagram

Student Employee

+ getMarks() + getSalary()

Instantiation

- To Instantiate class you can use new operator

- Forinstance, Student stud = new Student () ;
Student[] students = new Student[10];

- That creates the array only without the inner content

- To create the actual Students, you should do the following:
for(int 1=0,; 1<10; 1++) {
students[1] = new Student () ;

}

Practice

- Create a UML diagram to represent Course
- Define attributes and methods of class Course
- Create a UML diagram fo represent Professor

- Define attributes and methods of class
Professor

- What is the relationship between Course and
Professor

- What are other classes you can think of for the
enfire system

Packages

- Is a container for related classes, e.g. java.util and
Jjava.1io

- The package name normally looks like
domain.subdomailn. subsubdomain
- Forinstance: org.apache.commons

- Try to always group your classes intfo packages and
subpackages

- At the top of the class you can find the name of the
package to which it belongs:
package org.apache.commons;

Class Access Modifiers

. Allowed class access modifiers are public or none -
NO private Of protected (except for inner classes)

- If none =2 it is called package-local, i.e. it is visible only
within the same package

- Non-public classes are meant for infernal use only -2
cannot be utilized by any external user

Field Access Modifiers

- Field declaration has the form:
Access—-modifier <static><final> datatype

fieldname;

- Access modifier: private, protected, public, and
none

- static means that it is for the enftire class and noft for a
specific object

- final means that its value CAN NEVER BE CHANGED

Field Access Modifiers

- private =2 Visible within the same class only

- None/package-local -2 Visible within the same class
and classes withing the same package

- protected -2 visible within the same class, all child
classes, and classes withing the same package

- public -2 visible anywhere

Field Access Modifiers

- private =2 Visible within the same class only

- None/package-local - visible within the same class
and classes withing the same package

- protected -2 Vvisible within the same class, all child
classes, and classes withing the same package

- public -2 visible anywhere

Field Access Modifiers

Most Restrictive Least Restrictive

Inside class

Same Package Class
Same Package Sub-Class
Other Package Class

Other Package Sub-Class

Same rules apply for inner classes too, they are also treated as outer class properties

Person Class

public class Person {
private String name;
String address;
public Person(String name, String address) {
this.name = name;
this.address = address;

}

public String getName() {
return name;

}
public String getAddress() {

return address;

}

Employee Class

public class Employee extends Person{
public Employee(String name, String address) {
super(name, address);

}

public String getName(){
return name;

}

Employee Class

public class Employee extends Person{
public Employee(String name, String address) {

name is
super(name, address);

invisible as it
} has private

access
public String getName(){

returndiame;)
}

static Modifier

- Means that this field/method is not specific 1o an object
- |t is for the entire class

- Can be accessed via class name, e.g.
Student.countOfStudents, Or via object name, e.g.

stud.countOfStudents
- Non-static can ONLY be accessed via object name

Person Class

public class Person {
public static int globalld,
public int localld;
private String name;
private String address;

public Person(String name, String address) {
this.name = name; this.address = address;

}

Person Class

public class Person {
publit globalld,
public int localld;
private String name;
private String address;

public Person(String name, String address) {
this.name = name; this.address = address;

}

Main Class

public static void main(String[] args){
Person pl = new Person("X", "Cairo");

plQocalldd+;
p1Qloballi++;

Main Class

public static void main(String[] args){
Person pl = new Person("X", "Cairo");
pl.localld++;
pl.globalld++;

Person p2 = new Person("Y", "Alex");
p2(ocalldd+;
p2@lobally++;

final Modifier

- When used with field 2 the value of the field can never
be modified once set

. Similar to const in C++

- final field must be initialized when declared or in the
constructor

- For instance,
public final i1nt baseSalary = 1000;

- Can also be applied to methods and classes - to be
discussed later

Thank Youl

