Digital Logic Design

V&

Lecture S:
Chapter 4: Combinational Logic

Mirvat Al-Qutt, Ph.D

Computer Systems Department , FCIS,
Ain Shams University

NAND-Only Implementation

NAND gate is a universal gate
Can implement any digital system using NAND gate only

' >:>— (x y)’

NAND §

Universal gate : we can implement all logic Operations with
NAND Gates ONLY

NAND-Only Implementation

NAND gate is a universal gate
Can implement any digital system using NAND gate only

(x y)'
P e

Universal gate : we can implement all logic Operations with
NAND Gates ONLY

AND v

NAND-Only Implementation

NAND gate is a universal gate
Can implement any digital system using NAND gate only

X AT = K
) 1

OR :I)3— (X'y') =x +y
y [>07

Universal gate : we can implement all logic Operations with
NAND Gates ONLY

NAND-Only Implementation

NAND gate is a universal gate
Can implement any digital system using NAND gate only

x (xx)
Inverter x'
X

Universal gate : we can implement all logic Operations with
NAND Gates ONLY

NAND-Only Implementation
NAND gate is a universal gate

Can implement any digital system

Inverter ~ (x¥x) ¥
X —
x_
AND v b

Xy

OR

o
e
} (x'y)Y =x+y
o

Figure 3.18 Logic Operations with NAND Gates

NAND Gate
Two graphic symbols for a NAND gate

X

(a) AND-invert

X
ﬁ';;;g{:::::}———————.r'+—y’+—:'=={xy:V

(b) Invert-OR

By applying
DeMorgan’s Theorem

Two-level NAND-Only Implementation

» Two-level logic A=
NAND-NAND = sum of products
Example: F =AB+CD
F = ((AB)' (CD)")' =AB+CD

C —

o

Three ways to implement F = AB + CD C —

00,

%_ F
(b)

i
NAND-Only Implementation . } F

Two-level NAND-Only Implementation
Example: implement F(x,y, z) = }.,(1,2,3,4,5,7)

Vv
o
A,

ya
X

0

00 01 11 10
m, m, 1, ",
0 1 1 =
n, Me m, Mg
1 1 1
\‘\"\.
N
L
(a)

F=xy'"+x'y+z

p-

——— x'y

Do
Yy —

e F
z 4[>o_

(b)
y' —}
=D
2

()

Two-level NAND-Only Implementation

The procedure
Simplified in the form ofFum of products;\

A NAND gate for each product term;the inputs to each
NAND gate are the literals of the term (the first level);

A single NAND gate for the second sum term (the second
level);

A term with a single literal requires an inverter in the first
level.

Multilevel NAND Circuits

Boolean function implementation

AND-OR logic — NAND-NAND logic
AND — NAND + inverter
OR:inverter + OR = NAND

C
D %—@LI_
B\
B 7;
¢ -~

(a) AND-OR gates
C
D }—D—‘—
Y
A j—rl:j)i .
B
1)

(b) NAND gates

Figure 3.22 Implementing F = A(CD + B) + BC”

NAND-Only Implementation

SRS

(a) AND-OR gates

o

B

(b) NAND gates

Figure 3.23 Implementing F = (AB"+AB)(C+ D))

NOR-Only Implementation

NOR gate is a universal gate
Can implement any digital system using NOR gate only

X ,
NOR y:>c (x +y)

Universal gate : we can implement all logic Operations with
NOR Gates ONLY

NOR-Only Implementation

NOR gate is a universal gate
Can implement any digital system using NOR gate only

. (x +y)
OR ijC {>C Xty

Universal gate : we can implement all logic Operations with
NOR Gates ONLY

NOR-Only Implementation

NOR gate is a universal gate
Can implement any digital system using NOR gate only

A = (Rag)

AND (x" +y') =xy

y [>o——

Universal gate : we can implement all logic Operations with
NOR Gates ONLY

NOR-Only Implementation

NOR gate is a universal gate
Can implement any digital system using NOR gate only

Inverter i :DC (x +x) =y

Universal gate : we can implement all logic Operations with
NOR Gates ONLY

NOR-Only Implementation

NOR gate is a universal gate

Inverter

X
X

OR

AND

y

(x + x)' =y

X

y

T>
p—
pra—

Doi,tdry

(x"+y") =xy

Figure 3.24 Logic Operation with NOR Gates

NOR-Only Implementation
Two graphic symbols for a NOR gate

(a) OR-invert

Ryt =

(x+y+2) =Xy'Z

By applying

x—C¢ DeMorgan’s Theorem
y—o ¥y = (et y +2)
7—o0

(b) Invert-AND

Figure 3.25 Two Graphic Symbols for NOR Gate

NOR-Only Implementation
Two graphic symbols for a NOR gate

Example: F = (A + B)(C + D)E ;1 :DFO%

> o
.lA_ F
D

Figure 3.26 Implementing F = (A + B)(C + D)E

NOR-Only Implementation

Example: F = (AB’+AB)(C+D) Q\\

R f\—j;\D D,F@

=
v

Figure 3.27 Implementing F = (AB’+A B)(C + D) with NOR gates

Exclusive-OR Function

Exclusive-OR (XOR) x®y = xy'+x'y

Exclusive-NOR (XNOR) | (x®y)' = (x Oy)= xy + x'y’

Some identities xD0 = x
xPl = x'
xbx=0
x®x' = |
x®y' = (xDy)’
x'®y = (xDy)'

Commutative A®B = BOA

Associative (A®B) ©C = A® (BDC) = A®BDC

Exclusive-OR Implementations

Implementations

I

x @y =xy'+x'y

x®Dy

| >

(a) With AND-OR-NOT gates

XDy = (xty)x + (x'+y)y

T

D

Uy

(b) With NAND gates

| O]

1l Qo]
Odd Function »
ABBOC = (AB'+A'B)C' +(AB+A'B')C o 11
= AB'C'+A'BC'+ABC+A'B'C =3(1,2,4,7) t|o
B BC B
A 00 01 11 10 5 00 01 11 10

iy, "y "y 1ty my i, 1y m,

0 1 0 1
/P\ 4/ \\ /\
1y s \ 214 ", n, 1N ez \ "y
491 \/ A4l \/ N1

C C

(a) Odd function F= A@ B® C (b) Even function F = (A©® B® C)’
XOR is a odd function XINOR is a even
— an odd number of I's, function — an even
then F = |. number of |'s, then F = 1I.

IS N

XOR and XNOR

Logic diagram of odd and even functions

D o

C C

(a) 3-input odd function (b) 3-input even function

Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

Four-variable Exclusive-OR function
ADBECOD = (AB'+A'B)®(CD'+C'D) =
(AB'+A'B)(CD+C'D")+(AB+A'B')(CD'+C'D)

C C
CD . . . CD . " .
AB 00 01 11 10 AB 00 01 11 10
MIG ”11 }113 ”12 !?TO H 1 !??3 !Hz
00 /\ /1 00| 1 \ /4-\
Y, N i m 1 m W
my, mg 114 m 4 5 7 6
o1l 1/ | 01 I \1

m m m m
My, s s my, 12 13 15 14

11 1 y 1| 1 /,\
) mg 419/\\ my, 140 d A 9 mg \\m A
| 1,/ N 10 \/ N

" "

D D
(a) Odd function F=ADBDLCD D (b) Even function F= (A B®& CD D)’

Exclusive-OR Function Example
One Common Application of XOR is

Parity Generation and Checking

Sender Receiver

YORL 0|

3 Data bits 4 Data bits
| 0 | 0 0|0/ I [L0) I ErrorData Corruption
0 0 | | OO0 I ™ 0 No Error Data Received Correctly

Even Parity Gg%erator Even Parity Checking

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Sender
3 Data bits
| 0 | |
0 0 | 0

Odd Parity Generator

Receiver

4 Data bits

0

0

0

0

0

| Error Data Corruption

0 No Error Data Received Correctly

Odd Parity Checking

Even Parity Generation and Checking

Parity Generation and Checking
A parity bit: P = x®y®z
Parity check: C = x®y®z®P

C=1:0ne bit error or an odd number of data bit error

C=0: correct or an even # of data bit error

>

,_/ P
Z a—
P

(a) 3-bit even parity generator (b) 4-bit even parity checker

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Table 3.4
Even-Parity-Generator Truth Table
Three-Bit Message Parity Bit
X_ Yy - y P
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Parity Generation and Checking

Table 3.5

Even-Parity-Checker Truth Table

Four Bits Parity Error
Received Check

X y z P C

0 0 0 0 0

0 0 0 | 1

0 0 I 0 I

0 0 | 1 0

0 1 0 0 1

0 1 0 1 0

0 1 1 0 0

0 1 1 1 1

1 0 0 0 1

1 0 0 1 0

1 0 I 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 | 0 |

1 1 | 1 0

Combinational Logic

Logic circuits for digital systems may be
combinational or sequential.

A combinational circuit consists of input variables,
logic gates, and output variables.

— > >
— binat; | —>
Combinationa 5

ninputs — > m outputs

circuit

Fig. 4-1 Block Diagram of Combinational Circuit

Combinational Logic

Combinational circuits:

Consist of logic gates only

Outputs are determined from the present values of inputs

Sequential circuits:

Consist of logic gates and storage elements

Outputs are a function of the inputs and the state of the
storage elements

Depend not only on present inputs, but also on past values

Combinational Logic

A combinational circuit consists of:
Input variables
Logic gates
Output variables

Transform binary information from the given input data to
a required output data.

— > I
—_— . . —————— 3
Combinational >

ninputs — m outputs

circuit

Fig. 4-1 Block Diagram of Combinational Circuit

-

B
C—
FIGURE 4.2
Logic diagram for analysis example

Combinational Logic

There are 2" possible binary input combinations for n input
variable

Only one possible output value for each possible input
combination
Can be specified with a truth table, m Boolean functions, one for

each output variable , Each output function is expressed in
terms of n input variables

— >
— >
. Combinational
ninputs — > . — > moutputs
circuit
—_— S .

Fig. 4-1 Block Diagram of Combinational Circuit

Analysis Procedure

The “analysis” is the reverse of “design”.

Analysis: determine the function that the circuit implements
Often start with a given logic diagram

First step: make sure that circuit is combinational and not

sequential.
Without feedback paths or memory elements

Second step: obtain the output Boolean functions or the
truth table

Analysis Procedure

To obtain the output Boolean functions from a logic
diagram, proceed as follows: (do it backward)

* Label all gate outputs that are a function of input h
variables with arbitrary symbols. Determine the Boolean
| functions for each gate output.)

* Label the gates that are a function of input variables and h
previously labeled gates with other arbitrary symbols.

2 Find the Boolean functions for these gates.)
N
* Repeat the process outlined in step 2 until the outputs of
3 the circuit are obtained.
J

* By repeated substitution of previously defined functions, h
obtain the output Boolean functions in terms of input
4 variables.

Analysis Procedure - Example
oUl 11\

4 T;
éj' :j // ‘Dﬁ F 2 %

=P =T,
Dor— }"?‘/

F,=AB +AC + BC;

:
v

=
/l Fi=T;+T,
Lom, T lees
C— =(AB+AC+BC)' (A+B+C)+ABC
FIGURE 4.2 5
Logic diagram for analysis example = (A' + B')(A' + C')(B' + C') (A +B+ C) +ABC
= (A' + B' C')(AB' + AC' + BC' +B' C) + ABC !
=A'BC' +A'B' C +AB' C' + ABC |

Analysis procedure - Example

» Truth Table: We can derive the truth table by using
the logic gate diagram

Table 4.1
Truth Table for the Logic Diagram of Fig. 4.2

= A B C|R F, T . T3 F
,, 0o o0 0| 0 1 00 0 0
EL 0o o0 1|0 1 1 0 1 1
=D 0o 1 ol o 1 1 0 1 1
j:)ju o 1 1]1 0o 1 0o 0 o0
L ooic dagraesforsnalysis examele 1] 0 0 1 1 0 1 1

1 o 1/1 0o 1 0 0 o0

1 1 ol1 0o 1 0 0 0

i1 1 1|1 o 1 1 o0 1

Analysis procedure - Example

Truth Table: We can derive the truth table by using the logic
gate diagram

To obtain the truth table from the logic diagram:
|. Determine the number of input variables

For n inputs:
2" possible combinations
List the binary numbers from 0 to 2" -1 in a table
2. Label the outputs of selected gates

3. Obtain the truth table for the outputs of those gates that are a
function of the input variables only

4. Obtain the truth table for those gates that are a function of
previously defined variables at step 3

Repeatedly until all outputs are determined

Design Procedure

Input: the specification of the problem.
Output: the logic circuit diagram or Boolean functions.

\
* determine the required number of inputs and

| outputs from the specification
J

N
* derive the truth table that defines the required

relationship between inputs and outputs

* obtain the simplified Boolean function for

2
3 each output as a function of the input variables
4

* draw the logic diagram and verify the
correctness of the design.

Code Conversion Design Problems

It is sometimes necessary to use the output of one system
as the input to another.

A conversion circuit must be inserted between the two system if
each uses different codes for the same information.

Thus, a code converter is a circuit that makes the two systems
compatible even though each uses a different binary code.
To convert from binary code A to binary code B, the input lines
must supply the bit combination of elements as specified by code

A and the output lines must generate the corresponding bit
combination of code B.

Code Conversion Example

BCD to Excess-3 Code Converter @

Output Excess-3 Code

@ Input BCD

B
Input BCD
4 —Variables Input

Output Excess-3
4 —Variables output

=~ = O O O o o o o olr>

o O - -+ B+, O O O O

O O = =~ O O = = O Ol0

= O = O = O = O = o]0

= =~ = =~ = O O O O oOl]=

=~ O O O O = = = = O]|X

o = = O O = = O O - |I<

= O = O = O = O N

o

Input BCD- Code

Output Excess -3 Code

Code Conver

BCD to Excess-3

Code Converter

Input BCD @

4 —Variables Input

Output Excess-3

4 —Variables output

A B C A% X Y Z
0 0 0 0 0 0 I I
0 0 0 I 0 I 0 0
0 0 I 0 0 I 0 I
0 0 I I 0 I I 0
0 I 0 0 0 I I I
0 I 0 I I 0 0 0
0 I I 0 I 0 0 I
0 I I I I 0 I 0
I 0 0 0 I 0 I I
I 0 0 I I I 0 0
X X X X
X X X X
X X X X
X X X X
X X X
X X X 4 S

Code Conversion Example

Boolean Expression : @

The six don’t care minterms (10~15) are marked with X.

Each of four maps represents one of the four outputs of this
circuit as a function of the four input variables.

CD ¢ CD ¢

4 00 01 11 10 Ap 00 01 11 10

00 1 1 1 00

01 1 01 1 1 1 B

B
11| X X X X 11| X X X X
A A
10 1 X X 10 1 1 X X
D D

X=BC+B'D+ BCD w=A+ BC+ BD

Code Conversion Example

Boolean Expression : @

CD ¢ cD ¢

Ag 00 01 T 11 10 Ag 00 01 ~ 11 10

00 1 1 0o 1 1

01 1 1 01| 1 1

B
111 X X X X 11| X X X X
A A
10 1 X X 10 1 X X
D D

Code Conversion Example
Logic Diagram: Reduce the number of gates used. @
z =D x =B'C+B'D+BC'D'

=B' (C + D) + BC' D'
= B' (C + D) + B(C + D)’

y =CD+C'D" w =A+BC+BD
= CD + (C + D)’ =A + B(C + D)

C + D is used to implement the three outputs.

Code Conversion Example

@

D +— \cp
{ — 4 = D¢ |
e e y =CD+(C+D)
| | x =B'(C+D)+B(C+D)
cHp w =A+B(C+D)
:) [
)
>),
)
_/

A Di "

