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NAND-Only Implementation

 NAND gate is a universal gate

 Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates



NAND Gate

 Two graphic symbols for a NAND gate

(xyz)’  = x’+y’+z’

By applying 

DeMorgan’s Theorem



Two-level NAND–Only Implementation

 Two-level logic

 NAND-NAND = sum of products

 Example: F = AB+CD

 F = ((AB)' (CD)' )' =AB+CD

Three ways to implement F = AB + CD

NAND–Only Implementation



Two-level NAND–Only Implementation

 Example: implement F(x, y, z) = σ(1,2,3,4,5,7)



Two-level NAND–Only Implementation

 The procedure

1. Simplified in the form of sum of products;

2. A NAND gate for each product term; the inputs to each 

NAND gate are the literals of the term (the first level);

3. A single NAND gate for the second sum term (the second 

level);

4. A term with a single literal requires an inverter in the first 

level.



Multilevel NAND Circuits

 Boolean function implementation

 AND-OR logic → NAND-NAND logic

 AND → NAND + inverter

 OR: inverter + OR = NAND

Figure 3.22 Implementing F = A(CD + B) + BC



NAND-Only Implementation

Figure 3.23 Implementing F = (AB +AB)(C+ D)
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NOR-Only Implementation

 NOR gate is a universal gate

Figure 3.24 Logic Operation with NOR Gates



NOR-Only Implementation

Figure 3.25 Two Graphic Symbols for NOR Gate

 Two graphic symbols for a NOR gate

(x+y+z)’  = x’y’z’

By applying 

DeMorgan’s Theorem



NOR-Only Implementation

Example: F = (A + B)(C + D)E

Figure 3.26 Implementing F = (A + B)(C + D)E

 Two graphic symbols for a NOR gate



NOR-Only Implementation

Example: F = (AB +AB)(C + D) 

Figure 3.27 Implementing F = (AB +AB)(C + D) with NOR gates



Exclusive-OR (XOR) xy = xy'+x'y

Exclusive-NOR (XNOR) (xy)' = (x    y)= xy + x'y'

Some identities x0 = x
x1 = x'
xx = 0
xx' = 1
xy' = (xy)'
x'y = (xy)'

Commutative AB = BA

Associative (AB) C = A (BC) = ABC

.

Exclusive-OR Function



Exclusive-OR Implementations

 Implementations

 x  y = xy'+x'y

 x  y = (x'+y')x + (x'+y')y 



Odd Function

 ABC = (AB'+A'B)C' +(AB+A'B')C 

 =  AB'C'+A'BC'+ABC+A'B'C = S(1, 2, 4, 7)

XOR is a odd function 

→ an odd number of 1's, 

then F = 1.

XNOR is a even 

function → an even 

number of 1's, then F = 1.



XOR and XNOR

 Logic diagram of odd and even functions

Logic Diagram of Odd and Even Functions



Four-variable Exclusive-OR function

 Four-variable Exclusive-OR function

 ABCD = (AB'+A'B)(CD'+C'D) = 

(AB'+A'B)(CD+C'D')+(AB+A'B')(CD'+C'D)



Exclusive-OR Function Example

One Common Application of XOR is 

Parity Generation and Checking

Sender

3 Data bits

1 0 1

P

0

1

C

1

0

Even Parity Generator Even Parity Checking

Error Data Corruption

No Error Data Received Correctly

Receiver

0 0 1

4 Data bits

0 0 1 0

0 0 1 1
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Even Parity Generation and Checking

 Parity Generation and Checking

 A parity bit: P = xyz

 Parity check: C = xyzP

 C=1: one bit error or an odd number of data bit error

 C=0: correct or an even # of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker



Parity Generation and Checking



Parity Generation and Checking



Combinational Logic

 Logic circuits for digital systems may be 

combinational or sequential.

 A combinational circuit consists of input variables, 

logic gates, and output variables.



Combinational Logic

 Combinational circuits:

 Consist of logic gates only

 Outputs are determined from the present values of inputs

 Sequential circuits:

 Consist of logic gates and storage elements

 Outputs are a function of the inputs and the state of the 

storage elements

 Depend not only on present inputs, but also on past values



Combinational Logic

 A combinational circuit consists of:

 Input variables

 Logic gates

 Output variables

 Transform binary information from the given input data to 

a required output data.





Combinational Logic
 There are 2n possible binary input combinations for n input 

variable

 Only one possible output value for each possible input 
combination

 Can be specified with a truth table, m Boolean functions, one for 
each output variable , Each output function is expressed  in 
terms of n input variables



Analysis Procedure

 The “analysis” is the reverse of “design”.

 Analysis: determine the function that the circuit implements

 Often start with a given logic diagram

 First step: make sure that circuit is combinational and not 

sequential.

 Without feedback paths or memory elements

 Second step: obtain the output Boolean functions or the 

truth table



Analysis Procedure

 To obtain the output Boolean functions from a logic 

diagram, proceed as follows: ( do it backward )

1

• Label all gate outputs that are a function of input 
variables with arbitrary symbols. Determine the Boolean 
functions for each gate output.

2

• Label the gates that are a function of input variables and 
previously labeled gates with other arbitrary symbols. 
Find the Boolean functions for these gates.

3

• Repeat the process outlined in step 2 until the outputs of 
the circuit are obtained.

4

• By repeated substitution of previously defined functions, 
obtain the output Boolean functions in terms of input 
variables.



F1 = T3 + T2

= F'2 T1 + ABC

= (AB + AC + BC)' (A + B + C) + ABC

= (A' + B' )(A' + C' )(B' + C' ) (A + B + C) + ABC

= (A' + B' C' )(AB' + AC' + BC' +B' C) + ABC

= A' BC' + A' B' C + AB' C' + ABC

Analysis Procedure - Example

F2 = AB + AC + BC;  



 Truth Table:  We can derive the truth table by using 

the logic gate diagram

Analysis procedure - Example



Analysis procedure - Example
 Truth Table:  We can derive the truth table by using the logic 

gate diagram

 To obtain the truth table from the logic diagram:
1. Determine the number of input variables

 For n inputs:
 2n possible combinations

 List the binary numbers from 0 to 2n -1 in a table

2. Label the outputs of selected gates

3. Obtain the truth table for the outputs of those gates that are a 
function of the input variables only

4. Obtain the truth table for those gates that are a function of 
previously defined variables at step 3
 Repeatedly until all outputs are determined



Design Procedure 
 Input: the specification of the problem.

 Output: the logic circuit diagram or Boolean functions.

1     

• determine the required number of inputs and 
outputs from the specification

2

• derive the truth table that defines the required 
relationship between inputs and outputs

3
• obtain the simplified Boolean function for 

each output as a function of the input variables

4

• draw the logic diagram and verify the 
correctness of the design.



Code Conversion Design Problems

 It is sometimes necessary to use the output of one system 

as the input to another. 

 A conversion circuit must be inserted between the two system if 

each uses different codes for the same information. 

 Thus, a code converter is a circuit that makes the two systems 

compatible even though each uses a different binary code.

 To convert from binary code A to binary code B, the input lines 

must supply the bit combination of elements as specified by code 

A and the output lines must generate the corresponding bit 

combination of code B.



Code Conversion Example

1

2 BCD to Excess-3 Code Converter 

 Input BCD 

 4 –Variables Input 

 Output Excess-3

 4 –Variables output



Code Conversion Example

1

2 BCD to Excess-3 

Code Converter 

 Input BCD 

 4 –Variables Input 

 Output Excess-3

 4 –Variables output

Input BCD- Code Output Excess -3 Code

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x



Code Conversion Example

 Boolean Expression :

 The six don’t care minterms (10~15) are marked with X.

 Each of four maps represents one of the four outputs of this 

circuit as a function of the four input variables.

3



Code Conversion Example

 Boolean Expression : 3



Code Conversion Example

 Logic Diagram: Reduce the number of gates used.

z = D‘

y = CD + C' D‘

= CD + (C + D)'

 C + D is used to implement the three outputs.

4

x = B'C + B'D + BC' D' 

= B' (C + D) + BC' D'

= B' (C + D) + B(C + D)'

w = A + BC + BD 

= A + B(C + D)



Code Conversion Example

4

z = D‘

y = CD + (C + D)‘

x = B' (C + D) + B(C + D)'

w = A + B(C + D)




