
Lecture 5:

Chapter 4: Combinational Logic

Mirvat Al-Qutt, Ph.D
Computer Systems Department , FCIS,

Ain Shams University

Digital Logic Design

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

NAND

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

AND

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

OR

 NAND gate is a universal gate

 Can implement any digital system using NAND gate only

 Universal gate : we can implement all logic Operations with

NAND Gates ONLY

NAND-Only Implementation

Inverter

NAND-Only Implementation

 NAND gate is a universal gate

 Can implement any digital system

Figure 3.18 Logic Operations with NAND Gates

NAND Gate

 Two graphic symbols for a NAND gate

(xyz)’ = x’+y’+z’

By applying

DeMorgan’s Theorem

Two-level NAND–Only Implementation

 Two-level logic

 NAND-NAND = sum of products

 Example: F = AB+CD

 F = ((AB)' (CD)')' =AB+CD

Three ways to implement F = AB + CD

NAND–Only Implementation

Two-level NAND–Only Implementation

 Example: implement F(x, y, z) = σ(1,2,3,4,5,7)

Two-level NAND–Only Implementation

 The procedure

1. Simplified in the form of sum of products;

2. A NAND gate for each product term; the inputs to each

NAND gate are the literals of the term (the first level);

3. A single NAND gate for the second sum term (the second

level);

4. A term with a single literal requires an inverter in the first

level.

Multilevel NAND Circuits

 Boolean function implementation

 AND-OR logic → NAND-NAND logic

 AND → NAND + inverter

 OR: inverter + OR = NAND

Figure 3.22 Implementing F = A(CD + B) + BC

NAND-Only Implementation

Figure 3.23 Implementing F = (AB +AB)(C+ D)

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

NOR

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

OR

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

AND

 NOR gate is a universal gate

 Can implement any digital system using NOR gate only

 Universal gate : we can implement all logic Operations with

NOR Gates ONLY

NOR-Only Implementation

Inverter

NOR-Only Implementation

 NOR gate is a universal gate

Figure 3.24 Logic Operation with NOR Gates

NOR-Only Implementation

Figure 3.25 Two Graphic Symbols for NOR Gate

 Two graphic symbols for a NOR gate

(x+y+z)’ = x’y’z’

By applying

DeMorgan’s Theorem

NOR-Only Implementation

Example: F = (A + B)(C + D)E

Figure 3.26 Implementing F = (A + B)(C + D)E

 Two graphic symbols for a NOR gate

NOR-Only Implementation

Example: F = (AB +AB)(C + D)

Figure 3.27 Implementing F = (AB +AB)(C + D) with NOR gates

Exclusive-OR (XOR) xy = xy'+x'y

Exclusive-NOR (XNOR) (xy)' = (x y)= xy + x'y'

Some identities x0 = x
x1 = x'
xx = 0
xx' = 1
xy' = (xy)'
x'y = (xy)'

Commutative AB = BA

Associative (AB) C = A (BC) = ABC

.

Exclusive-OR Function

Exclusive-OR Implementations

 Implementations

 x  y = xy'+x'y

 x  y = (x'+y')x + (x'+y')y

Odd Function

 ABC = (AB'+A'B)C' +(AB+A'B')C

 = AB'C'+A'BC'+ABC+A'B'C = S(1, 2, 4, 7)

XOR is a odd function

→ an odd number of 1's,

then F = 1.

XNOR is a even

function → an even

number of 1's, then F = 1.

XOR and XNOR

 Logic diagram of odd and even functions

Logic Diagram of Odd and Even Functions

Four-variable Exclusive-OR function

 Four-variable Exclusive-OR function

 ABCD = (AB'+A'B)(CD'+C'D) =

(AB'+A'B)(CD+C'D')+(AB+A'B')(CD'+C'D)

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Sender

3 Data bits

1 0 1

P

0

1

C

1

0

Even Parity Generator Even Parity Checking

Error Data Corruption

No Error Data Received Correctly

Receiver

0 0 1

4 Data bits

0 0 1 0

0 0 1 1

Exclusive-OR Function Example

One Common Application of XOR is

Parity Generation and Checking

Sender

3 Data bits

1 0 1

P

1

0

C

1

0

Odd Parity Generator Odd Parity Checking

Error Data Corruption

No Error Data Received Correctly

Receiver

0 0 1

4 Data bits

0 0 1 1

0 0 1 0

Even Parity Generation and Checking

 Parity Generation and Checking

 A parity bit: P = xyz

 Parity check: C = xyzP

 C=1: one bit error or an odd number of data bit error

 C=0: correct or an even # of data bit error

Figure 3.36 Logic Diagram of a Parity Generator and Checker

Parity Generation and Checking

Parity Generation and Checking

Combinational Logic

 Logic circuits for digital systems may be

combinational or sequential.

 A combinational circuit consists of input variables,

logic gates, and output variables.

Combinational Logic

 Combinational circuits:

 Consist of logic gates only

 Outputs are determined from the present values of inputs

 Sequential circuits:

 Consist of logic gates and storage elements

 Outputs are a function of the inputs and the state of the

storage elements

 Depend not only on present inputs, but also on past values

Combinational Logic

 A combinational circuit consists of:

 Input variables

 Logic gates

 Output variables

 Transform binary information from the given input data to

a required output data.

Combinational Logic
 There are 2n possible binary input combinations for n input

variable

 Only one possible output value for each possible input
combination

 Can be specified with a truth table, m Boolean functions, one for
each output variable , Each output function is expressed in
terms of n input variables

Analysis Procedure

 The “analysis” is the reverse of “design”.

 Analysis: determine the function that the circuit implements

 Often start with a given logic diagram

 First step: make sure that circuit is combinational and not

sequential.

 Without feedback paths or memory elements

 Second step: obtain the output Boolean functions or the

truth table

Analysis Procedure

 To obtain the output Boolean functions from a logic

diagram, proceed as follows: (do it backward)

1

• Label all gate outputs that are a function of input
variables with arbitrary symbols. Determine the Boolean
functions for each gate output.

2

• Label the gates that are a function of input variables and
previously labeled gates with other arbitrary symbols.
Find the Boolean functions for these gates.

3

• Repeat the process outlined in step 2 until the outputs of
the circuit are obtained.

4

• By repeated substitution of previously defined functions,
obtain the output Boolean functions in terms of input
variables.

F1 = T3 + T2

= F'2 T1 + ABC

= (AB + AC + BC)' (A + B + C) + ABC

= (A' + B')(A' + C')(B' + C') (A + B + C) + ABC

= (A' + B' C')(AB' + AC' + BC' +B' C) + ABC

= A' BC' + A' B' C + AB' C' + ABC

Analysis Procedure - Example

F2 = AB + AC + BC;

 Truth Table: We can derive the truth table by using

the logic gate diagram

Analysis procedure - Example

Analysis procedure - Example
 Truth Table: We can derive the truth table by using the logic

gate diagram

 To obtain the truth table from the logic diagram:
1. Determine the number of input variables

 For n inputs:
 2n possible combinations

 List the binary numbers from 0 to 2n -1 in a table

2. Label the outputs of selected gates

3. Obtain the truth table for the outputs of those gates that are a
function of the input variables only

4. Obtain the truth table for those gates that are a function of
previously defined variables at step 3
 Repeatedly until all outputs are determined

Design Procedure
 Input: the specification of the problem.

 Output: the logic circuit diagram or Boolean functions.

1

• determine the required number of inputs and
outputs from the specification

2

• derive the truth table that defines the required
relationship between inputs and outputs

3
• obtain the simplified Boolean function for

each output as a function of the input variables

4

• draw the logic diagram and verify the
correctness of the design.

Code Conversion Design Problems

 It is sometimes necessary to use the output of one system

as the input to another.

 A conversion circuit must be inserted between the two system if

each uses different codes for the same information.

 Thus, a code converter is a circuit that makes the two systems

compatible even though each uses a different binary code.

 To convert from binary code A to binary code B, the input lines

must supply the bit combination of elements as specified by code

A and the output lines must generate the corresponding bit

combination of code B.

Code Conversion Example

1

2 BCD to Excess-3 Code Converter

 Input BCD

 4 –Variables Input

 Output Excess-3

 4 –Variables output

Code Conversion Example

1

2 BCD to Excess-3

Code Converter

 Input BCD

 4 –Variables Input

 Output Excess-3

 4 –Variables output

Input BCD- Code Output Excess -3 Code

A B C D W X Y Z

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x x

Code Conversion Example

 Boolean Expression :

 The six don’t care minterms (10~15) are marked with X.

 Each of four maps represents one of the four outputs of this

circuit as a function of the four input variables.

3

Code Conversion Example

 Boolean Expression : 3

Code Conversion Example

 Logic Diagram: Reduce the number of gates used.

z = D‘

y = CD + C' D‘

= CD + (C + D)'

 C + D is used to implement the three outputs.

4

x = B'C + B'D + BC' D'

= B' (C + D) + BC' D'

= B' (C + D) + B(C + D)'

w = A + BC + BD

= A + B(C + D)

Code Conversion Example

4

z = D‘

y = CD + (C + D)‘

x = B' (C + D) + B(C + D)'

w = A + B(C + D)

