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Digital Logic Design 





Basic Definitions 

 Duality Principle ( DeMorgan’s Theorem) 

 Verify DeMorgan’sTheorem  

(x + y)’  =   x’y’ 

(x  y)’    =   x’ + y’ 

 

x y x’ y’ x+y (x+y)’ x’y’ Xy x’+y' (xy)’ 

0 0 1 1 0 1 1 0 1 1 

0 1 1 0 1 0 0 0 1 1 

1 0 0 1 1 0 0 0 1 1 

1 1 0 0 1 0 0 1 0 0 

x + y   =   (x’y’)’ 

x  y    =   (x’ + y’)’ 

 



 Consensus Theorem 

    

 Basic Definitions 

(x+y)•(x’+z)•(y+z) = (x+y)•(x’+z) 

Proof:  

xy + x’z + yz  

= xy + x’z + 1.yz 

= xy + x’z + (x+x’)yz 

= xy + x’z + xyz + x’yz 

= (xy + xyz) + (x’z + x’zy)  

= xy (1+z) + x’z (1+ y) 

= xy + x’z   

  

xy + x’z + yz = xy + x’z 

Proof: 

(x+y)•(x’+z)•(y+z) 

= (x+y)•(x’+z)•(0+y+z) 

= (x+y)•(x’+z)•((xx’)+y+z) 

= (x+y)•(x’+z)•(x+y+z)•(x’+y+z)  

= ((x+y)+(0•z))((x’+z)+(0•y))   

= (x+y)(x’+z)   
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Minterms and Maxterms 

 

 

F1=x’y’z + xy’z’+ xyz 
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Challenge  

F1=(x+y+z) (x+y’+z) 

(x+y’+z’)(x’+y+z’) (x’+y’+z) 

 

 
F1=  (𝑀0𝑀2𝑀3𝑀5𝑀6) 

 

 

F1=  (𝑚1, 𝑚4, 𝑚7) 

     

 

Challenge  

 Convert from any form to the other  



Sum of Minterms 

 Sum of minterms: there are 2n minterms and 22n 

combinations of functions with n Boolean variables. 

 Example : express F = A+B’C as a sum of minterms. 

 F  = A+B'C  

 = A (B+B') + B'C 

 = AB +AB' + B'C  

 = AB(C+C') + AB'(C+C') + (A+A')B'C   

 = ABC+ABC'+AB'C+AB'C'+A'B'C 

 = A'B'C +AB'C' +AB'C+ABC'+ ABC  

 = m1 + m4 +m5 + m6 + m7 

 =  S(1, 4, 5, 6, 7) 

 

 

or, built the truth table first 

1 

2 
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Sum of Minterms 

 Sum of minterms: there are 2n minterms and 22n 

combinations of functions with n Boolean variables. 

 Example: express F = A+B’C as a product of maxterms 

 F  = A+B'C  

 = (A+B’)(A+C) 

 = (A+B’+CC’)(A+C+BB”) 

 = (A+B’+C)(A+B’+C’)(A+B+C)(A+B’+C) 

 = (𝑀0𝑀2𝑀3) 

 

 

 

or, built the truth table first 

1 

2 
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Product of Maxterms 

 Product of maxterms: using distributive law to expand. 

 Example : express F = xy + x'z as a product of maxterms. 

 F  = xy + x'z  

 = (xy + x')(xy +z)  

 = (x+x')(y+x')(x+z)(y+z)  

 = (x'+y)(x+z)(y+z) 

 = (x'+y+zz’)(x+z+yy’)(y+z+xx’) 

 =(x'+y+z)(x'+y+z’)(x+z+y) (x+z+y’)(y+z+x)  

 (y+z+x’) 

 =(x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')   

 = M0M2M4M5 

 = P(0, 2, 4, 5) 

or, built the truth table first 

1 

2 
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Complement of a Function Expressed in 

Canonical Forms 

 The complement of a function expressed as the sum of minterms 

equals the sum of minterms missing from the original function. 

 F(A, B, C) = S(1, 4, 5, 6, 7)  

 F(A, B, C) = = P(0, 2, 3) 

 

Thus,  

 F‘ (A, B, C) = S(0, 2, 3) 

 F'(A, B, C) =P (1, 4, 5, 6, 7) 

 

 By DeMorgan's theorem mj' = Mj 

x y z F1 F1’ 

0 0 0 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 1 0 
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Conversion between Canonical Forms 

  Example 

 F = xy + xz  

 F(x, y, z) = S(1, 3, 6, 7) 

 F(x, y, z) = P (0, 2, 4, 6) 

 

 Complement ???? 

 F’(x, y, z) = S(0, 2, 4, 6) 

 F’(x, y, z) = P (1, 3, 6, 7) 
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Canonical Forms vs. Standard Forms 

Canonical Forms  

 Each minterm or 

maxterm must contain all 

the variables either 

complemented or 

uncomplemented,  

 Sum of minterms 

(Product terms) 

 OR Product of Maxterms 

(sum terms)  

 

Standard forms 

 the terms that form the 

function may obtain one, 

two, or any number of 

literals, . 

 There are two types of 

standard forms: 

 Sum of products:  

F1 = y' + xy+ x'yz' 

 Product of sums:  

F2 = x(y'+z)(x'+y+z') 
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Standard Forms 

 A Boolean function may be expressed in a nonstandard 

form 

 F3 = AB + C(B + A)         

 But it can be changed to a standard form by. using. The 

distributive law  

 F3 = AB + C(B + A) = AB + BC + AC 

 

 And it can be changed to a canonical form by. using. The 

distributive law after adding missing literal 

 F3 = AB + BC + AC = AB(C+C‘)+BC(A+A‘)+AC(B+B‘) 

     =ABC+ABC‘+ABC+A‘BC+ABC+AB‘C 

      =ABC+ABC‘+A‘BC+AB‘C 
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 Two-level implementation 

 

 

 

 

 

 Multi-level implementation 

 

 

Implementation 

F1 = y' + xy+ x'yz' F2 = x(y'+z)(x'+y+z') 
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SOP POS 

Sum of minterms 

𝐹 = (𝑚0, 𝑚2, … .𝑚𝑖) 

Sum of terms that function gives 1 

Product of Maxterms 

𝐹 = (𝑀0𝑀1…… .𝑀𝑖) 

Product of terms that function gives 0 

Minterms  ( Locate 1’s) 

m0  = x‘y’z’ = 000 

m1  = x’y’z  = 001 

…. 

m7  = xyz    = 111 

Maxterms ( Locate 0’s) 

M0 = x+y+z    = 000 

M1 = x+y+z’   = 001 

…. 

M7 =x‘+y+’z’ = 111 

Convert Boolean function to SOP 

By multiplying each term by the missing 

variable Ored with its complement  

F = xy = xy(z+z’) = xyz +xyz’ 

Convert Boolean function to POS 

By expanding using distributive law and then 

for each term add the missing variable 

ANDed with its complement 

F= x+y = x+y+zz’ = (x+y+z)(x+y+z’) 

Logic Diagram:  

• 2 level implantation  

• Level of AND gates followed by one OR 

gate 

Logic Diagram:  

• 2 level implantation  

• Level of OR gates followed by one AND 

gate 
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Other Logic Operations 

 2n rows in the truth table of n binary variables. 

 22n
 functions for n binary variables. 

 16 functions of two binary variables. 

 

 

 

 

 

 

 

 All the new symbols except for the exclusive-OR symbol are 
not in common use by digital designers. 
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Boolean Expressions 
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Outline of Chapter 3 

 3.1 Introduction 

 3.2 The Map Method 

 3.3 Four-Variable Map 

 3.4 Five-Variable Map 

 3.5 Product-of-Sums Simplification 

 3.6 Don’t-Care Conditions 



Gate-level minimization  

 Gate-level minimization refers to the design task of 

finding an optimal gate-level implementation of Boolean 

functions describing a digital circuit. 

 Different representation of Boolean Function  

 Boolean Expression (Many) 

 Truth Table (Unique)   

 Logic Gates Diagram (Many) 

 

 

 

x y z F1 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 0 

1 0 0 1 

1 0 1 1 

1 1 0 1 

1 1 1 1 



The Map Method 

 The complexity of the digital logic gates  is directly 

related to the complexity of the algebraic expression 

 

 Logic minimization 

 
Algebraic approaches The Karnaugh map 

 lack specific rules 

 The simplified 

expression may not be 

unique 

 

 

 

 

 A simple straight-

forward procedure 

 A pictorial form of a 

truth table 



The Map Method 

x y z F1 F2 F3 

0 0 0 0 0 0 

0 0 1 0 0 0 

0 1 0 0 0 1 

0 1 1 0 0 1 

1 0 0 1 0 0 

1 0 1 1 0 0 

1 1 0 1 1 1 

1 1 1 1 1 1 

K- Map : A pictorial form of a truth table 

F1 = x F2 = xy F3 = y 



The Map Method 

x y F1 F2 

0 0 0 0 

0 1 0 1 

1 0 1 0 

1 1 1 1 

K- Map : A pictorial form of a truth table 



Two-Variable Map 

 A two-variable map 

 Four minterms 

 x' = row 0; x = row 1 

 y' = column 0; y = 

column 1 

 A truth table in square 

diagram 

 

Two-variable Map 

m3=xy  

=m1+m2+m3  

=x'y+xy'+xy  
=y(x’+x)+xy’  
=y+xy’ 
=(y+x)(y+y’) 
=x+y   



A Three-variable Map 

 A three-variable map:  Eight minterms 

 The Gray code sequence 

 Any two adjacent squares in the map differ by only on variable 

 Primed in one square and unprimed in the other 

 m1+ m3 = x’y'z + x’yz = x’z (y'+y) = x’z 

 



A Three-variable Map 

 A three-variable map:  Eight minterms 

 The Gray code sequence 

 Any 4 adjacent squares in the map differ by two variable ( have 

only 1 variable in common) 

 Primed in one square and unprimed in the other 

 m1+ m3 +m5+ m6 = x’y'z + x’yz+ xy'z + xyz = z(x’y’+x’y+xy’+xy) 

                                                              = z(x’(y’+y)+x(y’+y)) 

                                                              = z(x’+x) = z 



A Three-variable Map 

 Simplification of Adjacent Squares : 

 m0+ m2 = x'y'z' + x'yz' = x'z' (y'+y) = x'z‘ 

 

 

 

 

 

   m4+ m6 =  xy'z' + xyz' = xz' (y'+y) = xz' 

 



A Three-variable Map 

 Example: simplify the Boolean function F(x, y, z) = S(2, 3, 4, 5) 

 F(x, y, z) = S(2, 3, 4, 5) = x'y + xy' 

 



K-Map Rules  
1. Group ( 2n ) adjacent 1’s ( 2,4,8,16 ,…..) 

2. Group possible maximum ( 2n ) adjacent 1’s 

3. Group overlapping is allowed as long as there are some 1’s are not covered 

yet 

4. Must cover all 1’s, each one must be covered at least once, trying possible 

minimum number of coverage  

5. Stop when all one’s are covered at least once. 

6. Each group expression is based on the shared area label. 

7. Group adjacent ( 2n ) 1’s on the same row, column , consider folded Maps   

 

 



A Three-variable Map 

 Number of squares and Number of Variables  

 

F=xy’z’ F=xy’ 

F= y’ F= 1 



A Three-variable Map 

 Example simplify F(x, y, z) = S(3, 4, 6, 7)  

 F(x, y, z) = S (3, 4, 6, 7) = yz+ xz' 

 



A Three-variable Map 

 Example: simplify F(x, y, z) =  (0,2,4,5,6) 

 F(x, y, z) = S (0, 2, 4, 5, 6) = z'+ xy' 

 



A Three-variable Map 

 Example: let F = A'C + A'B + AB'C + BC 

a) Express it in sum of minterms. 

b) Find the minimal sum of products expression. 

 F(A, B, C) = S(1, 2, 3, 5, 7) = C + A'B 

 

 



Four-Variable Map 

 The map (w,x,y,z) 

 16 minterms 

 Combinations of 2, 4, 8, and 16 adjacent squares 

 



Four-Variable Map 

 Example: simplify F(w, x, y, z) = S(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) 

 

F = y'+ 

w'z'+ 

xz' 



Four-Variable Map 

 Example: simplify F(w, x, y, z) = S(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) 

 

F = y'+w'z'+xz' 



Four-Variable Map 

 Example: simplify F =A’B’C’+B’CD’+ A’BCD’+ AB’C’D+AB’D’ 

 

 

F = B’C’+B’D’+A’CD’ 

1 1 1 

1 

1 

1 1 

B’C 

B’D’ 

A’CD’ 



Number of adjacent squares and the 

number of literals 

 Relationship between the number of adjacent squares and 

the number of literals in the term. 

 



Product of Sums Simplification 

 It is obvious that we can represent the function F in sum of 

product directly using K-Map  

 

 

What if we want to represent F in Product of Sum Form !!!!!!!!! 

F = y'+w'z'+xz' 



Product of Sums Simplification 

1. Get a Simplified F’  in the form of sum of products (groupings 

zeros of F) 

2. Get F with aid of DeMorgan's theorem F = (F’)’  

 

F’: sum of products → F: product of sums 



Product of Sums Simplification 

 Simplify F =  (0, 1, 2, 5, 8, 9, 10) into  

(a) sum-of-products form, and  

(b) product-of-sums form: 

 

  

  
F(A, B, C, D)= 

B'D'+B'C'+A'C'D 

F' = AB+CD+BD‘ 

then 

F=(A'+B')(C'+D')(B'+D) 



Product of Sums Simplification 

 Consider the function defined in Table 3.2. 

 In sum-of-minterm: 

 

 

 

 In sum-of-maxterm: 

 

 

 

( , , ) (1,3,4,6)F x y z = 

( , , ) (0,2,5,7)F x y z = P



Product of Sums Simplification 

 Consider the function defined in Table 3.2. 

 Combine the 1’s:  

 

 

 

 Combine the 0’s : 

 

 

 Taking the complement of F 

 

( , , )F x y z x z xz = 

( , , )F x y z xz x z = ' 

( , , ) ( )( )F x y z x z x z =  



Don't-Care  

Conditions 

 The value of a function is not specified for certain 

combinations of variables 

 

 The don't-care conditions can be utilized in logic 

minimization 

 Can be implemented as 0 or 1 

 

 



Don't-Care  

Conditions w x y z F 

0 0 0 0 x 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 0 

1 0 0 0 0 

1 0 0 1 x 

1 0 1 0 x 

1 0 1 1 x 

1 1 0 0 x 

1 1 0 1 x 

1 1 1 0 x 

1 1 1 1 x 

x 1 1 1 

0 0 0 0 

x x x x 

0 x x x 

𝐅 = 𝟏     𝐢𝐟    𝟎 < 𝐰𝐱𝐲𝐳 𝟏𝟎 < 𝟒 
𝐅 = 𝟎     𝐢𝐟    𝟒 ≤ 𝐰𝐱𝐲𝐳 𝟏𝟎 < 𝟗 

 

 



Don't-Care  

Conditions 

 Example: simplify F(w, x, y, z) = S(1, 3, 7, 11, 15) which has 

the don't-care conditions d(w, x, y, z) = S(0, 2, 5). 

 

F = S(0, 1, 2, 3, 7, 11, 15)   F = S(1, 3, 5, 7, 11, 15) 



 


