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Arithmetic Operations (Addition)

 Arithmetic operations with numbers in base r follow the 

same rules as for decimal numbers. When a base other 

than the familiar base 10 is used, one must be careful to use 

only the r‐allowable digits. 

 Example add 3758 and 4657



Arithmetic Operations (Addition)

 Example add 3758 and 4657

 when the sum of a column is equal to or greater than the base, 

we subtract the base from the sum, record the difference, and 

carry one to the next column to the left.



Arithmetic Operations (Addition)

 In Binary ….. Just like in decimal

 Rules: 

 0+0 = 0

 0+1 = 1

 1+0 = 1

 1+1 = 210 ( 2-2 =0 , result in binary 0 with carry 1)

 1+1+1 = 310 ( 3-2=1 , result in binary 1 with carry 1)

 when the sum of a column is equal to or greater than the base, 

we subtract the base from the sum, record the difference, and 

carry one to the next column to the left.



Arithmetic Operations (Addition)

 In Binary ….. Just like in decimal

 Add 110111 + 011100



Arithmetic Operations (Addition)

 Try it your self 

 Example 2:

 Example 3:



Arithmetic Operations (Addition)

 Try it your self 

 Example 2:

 Example 3:



Arithmetic Operations (Subtraction)

 Example subtract 8025 and 4657



 Example subtract 8025 and 4657

Arithmetic Operations (Subtraction)



 Example subtract 8025 and 4657

Arithmetic Operations (Subtraction)



 Example subtract 8025 and 4657

Arithmetic Operations (Subtraction)



Arithmetic Operations (Subtraction)

 In Binary ….. Just like in decimal

 In binary, the base unit is 2, 

 So when you cannot subtract, you borrow from the column to 

the left.  

 The amount borrowed is 2.  

 The 2 is added to the original column value, so you will be able 

to subtract.



Arithmetic Operations (Subtraction)

 In Binary ….. Just like in decimal

 Example Subtract 110011 - 11100



Arithmetic Operations (Subtraction)

 In Binary ….. Just like in decimal

 Example Subtract 110011 - 11100



Arithmetic Operations (Subtraction)

 In Binary ….. Just like in decimal

 Example Subtract 110011 - 11100



Arithmetic Operations (Subtraction)

 In Binary ….. Just like in decimal

 Example Subtract 110011 - 11100



Arithmetic Operations (Subtraction)

 Try it your self 

 Example 2:

 Example 3:



Arithmetic Operations (Subtraction)

 Try it your self 

 Example 2:

 Example 3:



Arithmetic Operations (Hexadecimal)

Addition



Arithmetic Operations (Hexadecimal)

Subtraction



Arithmetic Operations (Octal)

Addition



Arithmetic Operations (Octal)

Subtraction



Arithmetic Operations (Multiplication)

 Bit by bit

01 1 1 1

01 1 0

00 0 0 0

01 1 1 1

01 1 1 1

0 0 000

0110111 0

x



Complements

 There are two types of complements for each base-r

system

Diminished Radix

Complement

(r-1)’s Complement

Radix

Complement

r's complement

Given a number N in base r

having n digits,

the (r–1)’s complement of N is 

defined as:

(rn –1) – N

Given n-digit number N in base r

the r’s complement of N is 

defined as 

rn – N for N ≠ 0 and 

as 0 for N = 0. 

Comparing with the (r − 1) 's complement, we note that the r's 

complement is obtained by adding 1 to the (r − 1) 's complement, since 

rn – N = [(rn − 1) – N] + 1.



Complements

 Diminished Radix Complement - (r-1)’s Complement

 Given a number N in base r having n digits, the (r–1)’s 

complement of N is defined as:

(rn –1) – N

 Example for 6-digit decimal numbers:

 9’s complement is (rn – 1)–N = (106–1)–N = 999999–N

 9’s complement of 546700 
999999

- 546700 

453299



Complements

 Diminished Radix Complement , (r-1)’s Complement

 Example for 7-digit binary numbers:

 1’s complement is (rn – 1) – N = (27–1)–N = 1111111–N

 1’s complement of 1011000 is 

Observation:

• Subtraction from (rn – 1) will never require a borrow

• Diminished radix complement can be computed digit-by-digit

• For binary: 1 – 0 = 1 and 1 – 1 = 0 

1111111

- 1011000

0100111



Complements
 1’s Complement (Diminished Radix Complement)

 All ‘0’s become ‘1’s

 All ‘1’s become ‘0’s

Example (10110000)2

 (01001111)2

If you add a number and its 1’s complement …

1 0 1 1 0 0 0 0

+ 0 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1



Complements

 There are two types of complements for each base-r

system

Diminished Radix

Complement

(r-1)’s Complement

Radix

Complement

r's complement

Given a number N in base r

having n digits,

the (r–1)’s complement of N is 

defined as:

(rn –1) – N

Given n-digit number N in base r

the r’s complement of N is 

defined as 

rn – N for N ≠ 0 and 

as 0 for N = 0. 



Complements

 Radix Complement

 Example: Base-10

 The 10's complement of 012398 is 987602

 The 10's complement of 246700 is 753300  

Comparing with the (r − 1) 's complement, we note that the r's 

complement is obtained by adding 1 to the (r − 1) 's complement, since 

rn – N = [(rn − 1) – N] + 1.

1000000

- 012398

987602

1000000

- 246700 

753300 



Complements

 Radix Complement

 Example: Base-2

 The 2's complement of 1101100 is 0010100 

 The 2's complement of 0110111 is 1001001 

Comparing with the (r − 1) 's complement, we note that the r's 

complement is obtained by adding 1 to the (r − 1) 's complement, since 

rn – N = [(rn − 1) – N] + 1.

10000000

- 1101100 

0010100 

10000000

- 0110111 

1001001 



Complements
 2’s Complement (Radix Complement)

 Take 1’s complement then add 1

 Toggle all bits to the left of the first ‘1’ from the right

Example:

Number:

1’s Comp.:

0 1 0 1 0 0 0 0

1 0 1 1 0 0 0 0

0 1 0 0 1 1 1 1

+                        1

OR

1 0 1 1 0 0 0 0

00001010



Complements

 Subtraction with Complements

 The subtraction of two n-digit unsigned numbers M – N in base

r can be done as follows:



 Example 1.7

 Given the two binary numbers perform the subtraction 

 X = 1010.  Y = 0110, 

 (a) X – ;   (b) Y – X , using complement. 

10011

+   1 

1010

+1001

1010

-0110

Complements

X-Y Y-X

1’s Comp 2’s Comp 1’s Comp 2’s Comp

0100

10100

1010

+1010

1010

-0110

0100

1011

0110

+0101

0110

-1010

-0100

1100

0110

+0110

0110

-1010

-0100



Complements

1’s Complement 2’s Complement

Subtract N from (2n-1) Subtract N from (2n)

Inverting 0’s to be 1’s and 1’s to be 0’s

Bitwise toggling 

Toggle all bits to the left of the first ‘1’ 

from the right

Subtraction M-N is done By:

- Get 1’s Complement of N

- Add M + N

- If carry then Add carry to 

summation

- If no carry then result = - 1’s 

complement of result

Subtraction M-N is done By:

- Get 2’s Complement of N

- Add M + N

- If carry then discard carry

- If no carry then result = - 2’s 

complement of result



Digital Logic Gates

 Definition of Binary Logic

 Binary logic consists of binary variables and a set of logical operations. 

 The variables are designated by letters of the alphabet, such as A, B, C, x, y, z, etc, 

with each variable having two and only two distinct possible values: 1 and 0, 

 Three basic logical operations: AND, OR, and NOT. 



 Truth Tables, Boolean Expressions, and Logic Gates

AND OR

Digital Logic Gates



Switching Circuits

AND OR



 Truth Tables, Boolean Expressions, and Logic Gates

AND OR NOT

Digital Logic Gates



 Truth Tables, Boolean Expressions, and Logic Gates

NAND NOR Buffer

Digital Logic Gates



Digital Logic Gates



Digital Logic Gates

 Logic gates

 Graphic Symbols and Input-Output Signals for Logic gates:

Fig. 1.6   Gates with multiple inputs



Chapter 2: 

Boolean Algebra and Logic Gates



Outlines

1. Basic Definitions

2. Axiomatic Definition of Boolean Algebra

3. Basic Theorems and Properties of Boolean Algebra

4. Boolean Functions

5. Canonical and Standard Forms

6. Other Logical Operations



Boolean Algebra 

 Finding simpler and cheaper, but equivalent, 

realizations of a circuit can reap huge payoffs in reducing 

the overall cost of the design. 

 Mathematical methods that simplify circuits rely primarily 

on Boolean algebra. 

 Therefore, this chapter provides a basic vocabulary and a 

brief foundation in Boolean algebra that will enable you 

to optimize simple circuits



Algebras

 What is an algebra?

 Mathematical system consisting of
 Set of elements (example: N = {1,2,3,4,…})

 Set of operators (+, -, ×, ÷)

 Axioms or postulates (associativity, distributivity, closure, identity 
elements, etc.)

 Why is it important?

 Defines rules of “calculations”

 Note: operators with two inputs are called binary

 Does not mean they are restricted to binary numbers!

 Operator(s) with one input are called unary

46



Axiomatic Definition of Boolean Algebra

 We need to define algebra for binary values

 Developed by George Boole in 1854

 Huntington postulates (1904) for Boolean algebra :

 B = {0, 1} and two binary operations, (+) and (.)

 Terminology:

 Literal: A variable or its complement

 Product term: literals connected by (·)

 Sum term: literals connected by (+)

47



Basic Definitions

 The Postulates Boolean Algebra

 Closure (+ and‧)

 The identity elements

 + → 0

 · →1

x y x.y

0 0 0

0 1 0

1 0 0

1 1 1

AND

x y x+y

0 0 0

0 1 1

1 0 1

1 1 1

OR

x x’

0 1

1 0

NOT



Basic Definitions

 The Postulates Boolean Algebra

 The commutative laws  x+y = y+x, x.y = y.x

 The distributive laws   x . (y+z)  = (x.y)+(x.z)

x y z y+z x．(y+z) x．y x．z (x．y)+(x．z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1



Basic Definitions

 The Postulates Boolean Algebra

 The commutative laws  x+y = y+x, x.y = y.x

 The distributive laws   x . (y+z)  = (x.y)+(x.z)

x y z y+z x．(y+z) x．y x．z (x．y)+(x．z)

0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

0 1 1 1 0 0 0 0

1 0 0 0 0 0 0 0

1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1



Basic Definitions

 The Postulates Boolean Algebra

 The distributive laws   x +(y.z)  = (x+y).(x+z)

x y z y.z x+(y.z) x + y x + z (x+y).(x+z)

0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0

0 1 0 0 0 1 0 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 1 1 1



Basic Definitions

 The Postulates Boolean Algebra

 Complement

 x + x'=1 , since 

 0+0'=0+1=1; 

 1+1'=1+0=1

 x．x‘ = 0, since

 0．0'=0．1=0; 

 1．1'=1．0=0



Basic Definitions

 Duality Principle ( DeMorgan’s Law)

 Every algebraic expression deducible from the postulates 

of Boolean algebra remains valid if the operators and 

identity elements are interchanged.

 To get dual form:

 Interchange OR(+) and AND(.)

 Toggle 0’s and 1’s



Basic Definitions

 Duality Principle ( DeMorgan’sTheorem)

 Verify DeMorgan’sTheorem

(x + y)’ =   x’y’

(x  y)’           =   x’ + y’

x y x’ y’ x+y (x+y)’ x’y’ Xy x’+y' (xy)’

0 0 1 1 0 1 1 0 1 1

0 1 1 0 1 0 0 0 1 1

1 0 0 1 1 0 0 0 1 1

1 1 0 0 1 0 0 1 0 0



Basic Definitions

 The Postulates Boolean Algebra

 Complement

 x + x'=1 , since 

 0+0'=0+1=1; 

 1+1'=1+0=1

 x．x‘ = 0, since

 0．0'=0．1=0; 

 1．1'=1．0=0



Basic Definitions

 Consensus Theorem

56

Proof:

(x+y)•(x’+z)•(y+z)

= (x+y)•(x’+z)•(0+y+z)

= (x+y)•(x’+z)•((xx’)+y+z)

= (x+y)•(x’+z)•(x+y+z)•(x’+y+z)

= (x+y)•(0•z)(x’+z)•(0•y) 

= (x+y)(x’+z) 

Proof: 

xy + x’z + yz

= xy + x’z + 1.yz

= xy + x’z + (x+x’)yz

= xy + x’z + xyz + x’yz

= (xy + xyz) + (x’z + x’zy)

= xy (1+z) + x’z (1+ y)

= xy + x’z

(x+y)•(x’+z)•(y+z) = (x+y)•(x’+z)xy + x’z + yz = xy + x’z



Operator Precedence

 The operator precedence for evaluating Boolean 

Expression is

 Parentheses 

 NOT

 AND

 OR

 Examples

 x y' + z

 (x y + z)'

57



Boolean Functions

 A Boolean function my include:

 Binary variables

 Binary operators OR and AND

 Unary operator NOT

 Parentheses

 Examples

 F1= x y z'

 F2 = x + y'z

 F3 = x' y' z + x' y z + x y'

 F4 = x y' + x' z

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0

• The truth table of 2n 

entries (n=number of variables)

• Two Boolean expressions 

may specify the same 

function F3 = F4



Boolean Functions

 Different representation of Boolean Function 

 Boolean Expression (Many)

 Truth Table (Unique)  

 Logic Gates Diagram (Many)

 Examples

 F1= x y z'

 F2 = x + y'z

 F3 = x' y' z + x' y z + x y'

 F4 = x y' + x' z

x y z F1 F2 F3 F4

0 0 0 0 0 0 0

0 0 1 0 1 1 1

0 1 0 0 0 0 0

0 1 1 0 0 1 1

1 0 0 0 1 1 1

1 0 1 0 1 1 1

1 1 0 1 1 0 0

1 1 1 0 1 0 0



Boolean Functions
 Implementation 

with logic gates



Boolean Functions
 Implementation with 

logic gates

F2 = x' y' z + x' y z + x y '     

= x' z (y'+y) + x y ' 

= x' z (1) + x y ' 

= x' z  + x y ' 

Simplification

Economical

Simpler , 

Less Cost

Fewer Gates 

Fewer Inputs 



Boolean Functions

 Simplify the following functions 

F = x(x’ + y) 

= xx’ + xy

= 0 + xy

= xy

F = x + x’ y 

=  (x + x’)(x + y)

= 1(x + y)

= (x + y)

F = (x + y)(x+ y’)

= x + xy + xy’ +yy’

= x(1 + y + y’) 

= x 

F = xy + x’z + yz

= xy + x’z + yz (x + x’)

= xy + x’z + xyz + x’yz

= xy (1+z) + x’z (1+y)

= xy + x’z

Consensus Theorem



Complement of a Function 
 The complement of a function F is F’ and is obtained from 

an interchange of 0’s for 1’s and 1’s for 0’s in the value of 
F. 

 The complement of a function may be derived 
algebraically with aid of DeMorgan’s theorems,
 3 variables DeMorgan's theorem

 (A+B+C)’ = (A+X)’ //let B+C = X

= A'X’ //by theorem 5(a) (DeMorgan's)

= A'(B+C)’ //substitute B+C = X

= A'(B'C’) //by DeMorgan's theorem 

= A'B'C’ //by associative theorem 



Complement of a Function 
 The complement of a function F is F’ and is obtained from 

an interchange of 0’s for 1’s and 1’s for 0’s in the value of 
F. 

 The complement of a function may be derived 
algebraically with aid of DeMorgan’s theorems,
 3 variables DeMorgan's theorem

 (A+B+C)' = (A+X)' let B+C = X

= A'X' by theorem 5(a) (DeMorgan's)

= A'(B+C)' substitute B+C = X

= A'(B'C') by DeMorgan's theorem 

= A'B'C' by associative theorem 



Complement of a Function 

 The complement of a function F is F’ and is obtained 

from an interchange of 0’s for 1’s and 1’s for 0’s in the 

value of F. 

 Generalization: a function is obtained by interchanging 

AND and OR operators and complementing each 

literal.

 F = A+B+C+D+ ...  Then F‘ =(A+B+C+D+ ... )' = A'B'C'D'...

 F = ABCD ...  Then F‘ = (ABCD ... )' = A'+ B'+C'+D' ... 

The complement of a function may be 

derived algebraically with aid of 

DeMorgan’s theorems



Complement of a Function 
 Find the Complement of the following functions

 F1 = x’ y z’ + x’ y’ z 

 F2 = x(y’ z’ +  y z) 

 F1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z')

 F2' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)‘

= x' + (y+z) (y'+z')  = x' + yz‘+y'z




