
Oracle Database 11g

PL SQL – Part III

2

Controlling PL/SQL Flow of Execution

Change the logical flow of statements by using

control structures:

• Conditional control structures (IF statement)

• Loop control structures

– Basic loop

– FOR loop

– WHILE loop

3

The IF Statement: Syntax

• END IF is two words.

• At most, one ELSE clause is permitted.

• ELSIF is one word.

IF condition THEN

statements;

[ELSIF condition THEN

statements;]

[ELSE

statements;]

END IF;

4

• Categorize the employees according to their salary into
three groups, one for employees who earn more than
5000, one for employees who earn more than 3000, and
one for the rest.

IF-THEN-ELSIF Statements: ExampleIF-THEN-ELSIF Statements: Example

...

IF sal > 5000 THEN

dbms_output.put_line (‘Category one’);

ELSIF sal > 3000 THEN

dbms_output.put_line (‘Category two’);

ELSE

dbms_output.put_line (‘Category three’);

END IF;

5

• Iterate through your statements with a basic

loop.

• Without the EXIT statement, the loop would be

infinite.

LOOP

statement1;

. . .

EXIT [WHEN condition];

END LOOP;

Basic Loop: Syntax

-- delimiter

-- statements

-- EXIT statement

-- delimiter

6

Basic Loop: Example

Insert the first ten new items for order number 101.

declaer

v_ord_id s_item.ord_id%TYPE := 101;

v_counter NUMBER(2) := 1;

BEGIN

...

LOOP

INSERT INTO s_item (ord_id, item_id)

VALUES (v_ord_id, v_counter);

v_counter := v_counter + 1;

EXIT WHEN v_counter > 10;

END LOOP;

...

7

FOR Loop: Syntax

• Use a FOR loop to shortcut the test for the number of
iterations.

• Do not declare the index; it is declared implicitly.

FOR index in [REVERSE]

lower_bound..upper_bound LOOP

statement1;

statement2;

. . .

END LOOP;

8

FOR Loop Example

BEGIN

FOR i IN 1 .. 10 LOOP

DBMS_OUTPUT.PUT_LINE(i);

END LOOP;

END;

BEGIN

FOR i IN REVERSE 1 .. 10 LOOP

DBMS_OUTPUT.PUT_LINE(i);

END LOOP;

END;

9

FOR Loop: Example

Guidelines

• Reference the index within the loop only; it is

undefined outside the loop.

• Use an expression to reference the existing

value of an index.

• Index is read only, do not reference the index as

the target of an assignment.

10

WHILE Loop: Syntax

Use the WHILE loop to repeat statements while a
condition is TRUE.

WHILE condition LOOP

statement1;

statement2;

. . .

END LOOP;

Condition is

evaluated at the

beginning of

each iteration.

11

WHILE Loop: Example

Insert the first ten new items for order number 101.

. . .

v_ord_id s_item.ord_id%TYPE := 101;

v_counter NUMBER(2) := 1;

BEGIN

. . .

WHILE v_counter <= 10 LOOP

INSERT INTO s_item (ord_id, item_id)

VALUES (v_ord_id, v_counter);

v_counter := v_counter + 1;

END LOOP;

. . .

12

Cursors

• Load the

current

row into

variables

FETCH

• Test for

existing

rows

EMPTY?

• Return to
FETCH if

rows are

found

No

• Release the

active set

CLOSE
Yes

• Create a

named

SQL area

• Define the

query

DECLARE

• Execute the

query

• Identify the

active set

OPEN

cursors are used to select Multiple rows inside PL/SQL block

13

Controlling Cursors

1. Declare the cursor. In the declarative section of a
PL/SQL block, by naming it and defining the structure of
the query to be associated with it.

2. Open the cursor. In the executable section of block.
The OPEN statement executes the query. Rows
identified by the query are called the active set and are
now available for fetching.

3. Fetch data from the cursor. After each fetch, you test
the cursor for any existing row. If there are no more rows
to process, then you must close the cursor.

4. Close the cursor. The CLOSE statement releases the
active set of rows. It is now possible to reopen the cursor
to establish a fresh active set.

14

Controlling Cursors

Fetch a row.

Close the cursor.

Cursor

pointer

Open the cursor.1

2

3

Cursor

pointer

Cursor

pointer

15

Declaring the Cursor

• Syntax: CURSOR cursor_name IS

select_statement;

• Example:
DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees

WHERE department_id =30;

• The active set of a cursor is determined by the SELECT statement in the

cursor declaration.

• It is mandatory to have an INTO clause for a SELECT statement in PL/SQL.

However, note that the SELECT statement in the cursor declaration

cannot have an INTO clause.

• If processing rows in a specific sequence is required, use the ORDER BY

clause in the query.

16

Opening the Cursor

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name

FROM employees

WHERE department_id =30;

...

BEGIN

OPEN emp_cursor;

• The OPEN statement :

1. executes the query associated with the cursor

2. identifies the active set

3. positions the cursor pointer to the first row

• The OPEN statement is included in the executable section

of the PL/SQL block.

17

Fetching One Record from the Cursor

SET SERVEROUTPUT ON

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name

FROM employees

WHERE department_id =30;

empno employees.employee_id%TYPE;

lname employees.last_name%TYPE;

BEGIN

OPEN emp_cursor;

FETCH emp_cursor INTO empno, lname;

DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END;

How many records are fetched here? Only 1

18

Fetching Data from the Cursor

SET SERVEROUTPUT ON

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees

WHERE department_id =30;

empno employees.employee_id%TYPE;

lname employees.last_name%TYPE;

BEGIN

OPEN emp_cursor;

LOOP

FETCH emp_cursor INTO empno, lname;

EXIT WHEN emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;

...

END; /

 cursor attribute %NOTFOUND is used to test for the exit

condition.

19

Closing the Cursor

SET SERVEROUTPUT ON

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees

WHERE department_id =30;

empno employees.employee_id%TYPE;

lname employees.last_name%TYPE;

BEGIN

OPEN emp_cursor;

LOOP

FETCH emp_cursor INTO empno, lname;

EXIT WHEN emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;

CLOSE emp_cursor;

...

END; /

20

Close Cursor

 The CLOSE statement disables the cursor

 You can reopen the cursor if required

 A cursor can be reopened only if it is closed

 If you attempt to fetch data from a cursor after

it has been closed, then an INVALID_CURSOR

exception will be raised.

21

Cursor: Complete Example

SET SERVEROUTPUT ON

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name FROM employees

WHERE department_id =30;

empno employees.employee_id%TYPE;

lname employees.last_name%TYPE;

BEGIN

OPEN emp_cursor;

LOOP

FETCH emp_cursor INTO empno, lname;

EXIT WHEN emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(empno ||' '||lname);

END LOOP;

CLOSE emp_cursor;

END;

22

Cursors and Records

• Process the rows of the active set by fetching
values into a PL/SQL RECORD.

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name

FROM employees

WHERE department_id =30;

emp_record emp_cursor%ROWTYPE;

BEGIN

OPEN emp_cursor;

LOOP

FETCH emp_cursor INTO emp_record;

...

 You can define a record based on the selected list of

columns in an explicit cursor.

23

Cursor FOR Loops

• Syntax:

– The cursor FOR loop is a shortcut to process
cursors.

– Implicit open, fetch, exit, and close occur.

– The record is implicitly declared.

FOR record_name IN cursor_name LOOP

statement1;

statement2;

. . .

END LOOP;

24

Cursor FOR Loops

• It is a shortcut because: the cursor is opened, a

row is fetched once for each iteration in the loop,

the loop exits when the last row is processed, and

the cursor is closed automatically.

• The loop itself is terminated automatically at the

end of the iteration where the last row is fetched.

25

Cursor FOR Loops

SET SERVEROUTPUT ON

DECLARE

CURSOR emp_cursor IS

SELECT employee_id, last_name

FROM employees

WHERE department_id =30;

BEGIN

FOR emp_record IN emp_cursor LOOP

DBMS_OUTPUT.PUT_LINE(

emp_record.employee_id

||' ' ||emp_record.last_name);

END LOOP;

END;

26

Cursor Attributes

• Obtain status information about cursor.

Boolean Evaluates to TRUE if the cursor is

open

Evaluates to TRUE if the most recent

fetch does not return a row

Evaluates to TRUE if the most recent

fetch returns a row; complement of
%NOTFOUND

Evaluates to the number of rows

returned so far

Boolean

Boolean

Number

%ISOPEN

%NOTFOUND

%FOUND

%ROWCOUNT

Attribute Type Description

27

The %ISOPEN Attribute

– Fetch rows only when the cursor is open.

– Use the %ISOPEN cursor attribute before

performing a fetch to test whether the cursor
is open.

• Example:

IF NOT emp_cursor%ISOPEN THEN

OPEN emp_cursor;

END IF;

LOOP

FETCH emp_cursor...

28

Example of %ROWCOUNT and %NOTFOUND

SET SERVEROUTPUT ON

DECLARE

empno employees.employee_id%TYPE;

ename employees.last_name%TYPE;

CURSOR emp_cursor IS

SELECT employee_id,

last_name FROM employees;

BEGIN

OPEN emp_cursor;

LOOP

FETCH emp_cursor INTO empno, ename;

EXIT WHEN emp_cursor%ROWCOUNT > 10 OR

emp_cursor%NOTFOUND;

DBMS_OUTPUT.PUT_LINE(TO_CHAR(empno)

||' '|| ename);

END LOOP;

CLOSE emp_cursor;

END ;

29

Practice1

Use cursor to display the employee number and

name for all employees in department 50

31

Practice 2

• Create a function that calculates the number

of employees working in a specific department

that will be provided by the user.

• Then execute this function for department 10

32

Creating Function

Correcting errors in

functions

35

Executing function

36

Practice 3

• Create a procedure that displays the number

of employees who have a manager.

37

Creating Procedure with OUT parameter

38

Executing Procedure with OUT parameter

