
Oracle Database 11g

PL SQL – Part I

2

Overview

What is PL/SQL?

• PL/SQL is an extension to SQL with design features of
programming languages.

• Data manipulation and query statements are included within
procedural units of code.

Benefits of PL/SQL:

• Modularize program development

• A procedural language with control structures

• Handle errors

3

PL/SQL Block Structure

DECLARE (Optional)

Variables, constants, cursors, user
defined exceptions

BEGIN (Mandatory)

SQL statements

PL/SQL control statements

EXCEPTION (Optional)

Actions to perform when errors occur

END; (Mandatory)

4

Block Types

Anonymous Procedure Function

[DECLARE]

BEGIN

--statements

[EXCEPTION]

END;

PROCEDURE name

IS

BEGIN

--statements

[EXCEPTION]

END;

FUNCTION name

RETURN datatype

IS

BEGIN

--statements

RETURN value;

[EXCEPTION]

END;

5

Developing a Simple
PL/SQL Block

6

Handling Variables in PL/SQL

• Declare and initialize variables within the

declaration section.

• Assign new values to variables within the

executable section.

7

Declaring Variables and Constants: Syntax

Guidelines

• Initialize constants designated as NOT NULL.

• Initialize identifiers by using the assignment
operator (:=) or by the DEFAULT reserved word.

• Declare at most one identifier per line.

identifier [CONSTANT] datatype [NOT NULL]

[:= | DEFAULT expr];

8

Declaring Scalar Variables

• Have no internal components.

• Hold a single value.

• Base Types:

– BINARY_INTEGER

– NUMBER [(precision, scale)]

– CHAR [(maximum_length)]

– VARCHAR2(maximum_length)

– DATE

– BOOLEAN

9

Scalar Variable

Declarations: Examples

v_gender CHAR(1);

v_count BINARY_INTEGER := 0;

v_total_sal NUMBER(9) := 0;

v_order_date DATE := SYSDATE + 7;

c_tax_rate CONSTANT NUMBER(3,2) := 8.25;

v_valid BOOLEAN NOT NULL := TRUE;

10

Operators in PL/SQL: Examples

v_equal := (v_n1 = v_n2);

v_valid := (v_emp_id IS NOT NULL);

• Set the value of a Boolean flag.

• Validate an employee number if it contains a value.

11

Nested Blocks and Variable Scope

• Statements can be nested wherever an executable

statement is allowed.

• Nested block becomes a statement.

• Exception section can contain nested blocks.

• Scope of an object is the region of the program that

can refer to the object.

• Identifier is visible in the regions in which you can

reference the unqualified identifier.

– A block can look up to the enclosing block.

– A block cannot look down to enclosed blocks.

12

Nested Blocks and

Variable Scope: Example

DECLARE

x BINARY_INTEGER;

BEGIN

...

DECLARE

y NUMBER;

BEGIN

...

END;

...

END;

Scope of y

Scope of x

13

Commenting Code

Comment code by

• Prefixing the comment with two dashes (- -).

• Placing the comment between /* and */.

Example

...

v_sal NUMBER (9,2);

BEGIN

/* Compute the annual salary based on the

monthly salary input from the user */

v_sal := v_sal * 12;

END;

14

DataType Conversion

15

Datatype Conversion

• Convert data to comparable datatypes.

• Mixed datatypes can result in an error and affect
performance.

• Conversion functions:

– TO_CHAR

– TO_DATE

– TO_NUMBER

16

Datatype Conversion: Example

• This statement produces a compile error.

• To correct the error, the TO_CHAR conversion
function is used.

v1 := USER||SYSDATE;

v1 := USER||TO_CHAR(SYSDATE);

17

%TYPE Attribute

18

The %TYPE Attribute

• Declare a variable according to

– Another previously declared variable.

– A database column definition.

• Prefix %TYPE with

– The database table and column.

– The previously declared variable name.

• PL/SQL determines the datatype and size of the
variable.

19

The %TYPE Attribute: Examples

Advantages of using the %TYPE attribute

• The datatype of the underlying database column
may be unknown.

• The datatype of the underlying database column
may change at runtime.

...

v_last_name emp.last_name%TYPE;

v_first_name emp.first_name%TYPE;

v_balance NUMBER(7);

v2_balance v_balance%TYPE := 10;

...

20

%ROWTYPE Attribute

21

The %ROWTYPE Attribute

• Declare a variable according to a collection of columns
in a database table or view.

• Prefix %ROWTYPE with the database table or view.

• Fields in the record take their names and data types

from the columns of the table or view.

DECLARE

identifier reference%ROWTYPE;

• Syntax:

DECLARE

Dept_record dept%ROWTYPE;

22

Advantages of Using %ROWTYPE

• The number and data types of the underlying

database columns may be unknown.

• The number and data types of the underlying

database column may change at run time.

• The attribute is useful when retrieving a row

with the SELECT * statement.

23

Interacting with the
Database

24

SQL Commands in PL/SQL

• Extract a row of data from the database by using

the SELECT command.

• Make changes to rows in the database by using

DML commands.

• Control a transaction with COMMIT or

ROLLBACK commands.

25

Retrieving Data: Syntax

Retrieve data from the database with SELECT.

• INTO clause is required.

• Exactly one row must be returned.

• Full SELECT syntax is available.

SELECT select_list

INTO variable_name | record_name

FROM table

WHERE condition;

26

Retrieving Data: Example

Retrieve the order date and the ship date for the
specified order.

DECLARE

v1 orders.date_ordered%TYPE;

v2 orders.date_shipped%TYPE;

BEGIN

SELECT date_ordered, date_shipped

INTO v1, v2

FROM orders

WHERE order_id = 102;

END;

27

Retrieving Data: Example

Return the sum of the salaries for all employees in the
specified department.

DECLARE

v_sum_salary emp.salary%TYPE;

BEGIN

SELECT SUM(salary) --group function

INTO v_sum_salary

FROM emp

WHERE dept_id = 30;

END;

28

Retrieving Data: Example

Retrieve all information about the specified department

DECLARE

dept_record dept%ROWTYPE;

BEGIN

SELECT *

INTO dept_record --PL/SQL RECORD

FROM dept

WHERE dept_id = 30;

...

END;

29

SELECT Exceptions

• SELECT statements in PL/SQL must retrieve exactly

one row.

• If zero or more than one row is retrieved, an

exception is raised.

• SELECT exceptions:

– TOO_MANY_ROWS

– NO_DATA_FOUND

30

TOO_MANY_ROWS Exception: Example

Retrieve the order for customer number 208.

BEGIN

SELECT order_id

INTO v1

FROM orders

WHERE customer_id = 208;

end;

TOO_MANY_ROWS

Customer 208 has several orders.

31

NO_DATA_FOUND Exception: Example

Retrieve the order for customer number 999.

BEGIN

SELECT order_id

INTO v1

FROM orders

WHERE customer_id = 999;

end;

NO_DATA_FOUND

