
Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 1

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 6

The Relational Algebra

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 3

Relational Algebra Overview

◼ Relational algebra is the basic set of operations

for the relational model

◼ These operations enable a user to specify basic

retrieval requests (or queries)

◼ The result of an operation is a new relation,

which may have been formed from one or more

input relations

◼ This property makes the algebra “closed” (all

objects in relational algebra are relations)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 4

Relational Algebra Overview (continued)

◼ The algebra operations thus produce new

relations

◼ These can be further manipulated using

operations of the same algebra

◼ A sequence of relational algebra operations forms

a relational algebra expression

◼ The result of a relational algebra expression is also a

relation that represents the result of a database

query (or retrieval request)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 5

Relational Algebra Overview

◼ Relational Algebra consists of several groups of operations

◼ Unary Relational Operations

◼ SELECT (symbol:  (sigma))

◼ PROJECT (symbol:  (pi))

◼ RENAME (symbol:  (rho))

◼ Relational Algebra Operations From Set Theory
◼ UNION (), INTERSECTION (), DIFFERENCE (or MINUS, –)

◼ CARTESIAN PRODUCT (x)

◼ Binary Relational Operations
◼ JOIN (several variations of JOIN exist)

◼ Additional Relational Operations
◼ AGGREGATE FUNCTIONS (These compute summary of information:

for example, SUM, COUNT, AVG, MIN, MAX)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 6

Database State for COMPANY

◼ All examples discussed below refer to the COMPANY database

shown here.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 7

Unary Relational Operations: SELECT

◼ The SELECT operation (denoted by  (sigma)) is
used to select a subset of the tuples from a
relation based on a selection condition.

◼ The selection condition acts as a filter

◼ Keeps only those tuples that satisfy the
qualifying condition

◼ Tuples satisfying the condition are selected
whereas the other tuples are discarded (filtered
out)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 8

Unary Relational Operations: SELECT

◼ In general, the select operation is denoted by

 <selection condition>(R) where

◼ the symbol  (sigma) is used to denote the select

operator

◼ the selection condition is a Boolean (conditional)

expression specified on the attributes of relation R

◼ tuples that make the condition true are selected

◼ appear in the result of the operation

◼ tuples that make the condition false are filtered out

◼ discarded from the result of the operation

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Examples:

◼ Select the EMPLOYEE tuples whose
department number is 4:

 DNO = 4 (EMPLOYEE)

◼ Select the employee tuples whose salary is
greater than $30,000:

 SALARY > 30,000 (EMPLOYEE)

Slide 6- 9

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 10

Unary Relational Operations: SELECT

(contd.)

◼ SELECT Operation Properties

◼ The SELECT operation  <selection condition>(R) produces a relation S

that has the same schema (same attributes) as R

◼ SELECT  is commutative:

◼  <condition1>( < condition2> (R)) =  <condition2> ( < condition1> (R))

◼ Because of commutativity property, a cascade (sequence) of

SELECT operations may be applied in any order:

◼ <cond1>(<cond2> (<cond3> (R)) = <cond2> (<cond3> (<cond1> (R)))

◼ A cascade of SELECT operations may be replaced by a single

selection with a conjunction of all the conditions:

◼ <cond1>(< cond2> (<cond3>(R)) =  <cond1> AND < cond2> AND < cond3>(R)))

◼ The number of tuples in the result of a SELECT is less than (or

equal to) the number of tuples in the input relation R

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 11

The following query results refer to this

database state

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 12

Unary Relational Operations: PROJECT

◼ PROJECT Operation is denoted by  (pi)

◼ This operation keeps certain columns
(attributes) from a relation and discards the other
columns.

◼ PROJECT creates a vertical partitioning

◼ The list of specified columns (attributes) is kept in
each tuple

◼ The other attributes in each tuple are discarded

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 13

Unary Relational Operations: PROJECT

(cont.)

◼ The general form of the project operation is:

<attribute list>(R)
◼  (pi) is the symbol used to represent the project

operation

◼ <attribute list> is the desired list of attributes from
relation R.

◼ The project operation removes any duplicate
tuples
◼ This is because the result of the project operation

must be a set of tuples
◼ Mathematical sets do not allow duplicate elements.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ Example: To list each employee’s first and last
name and salary, the following is used:

LNAME, FNAME,SALARY(EMPLOYEE)

Slide 6- 14

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 15

Unary Relational Operations: PROJECT

(contd.)

◼ PROJECT Operation Properties

◼ The number of tuples in the result of projection

<list>(R) is always less or equal to the number of

tuples in R

◼ If the list of attributes includes a key of R, then

the number of tuples in the result of PROJECT is

equal to the number of tuples in R

◼ PROJECT is not commutative

◼  <list1> ( <list2> (R)) =  <list1> (R) as long as <list2>

contains the attributes in <list1>

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 16

Examples of applying SELECT and

PROJECT operations

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 17

Relational Algebra Expressions

◼ We may want to apply several relational algebra

operations one after the other

◼ Either we can write the operations as a single

relational algebra expression by nesting the

operations, or

◼ We can apply one operation at a time and create

intermediate result relations.

◼ In the latter case, we must give names to the

relations that hold the intermediate results.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 18

Single expression versus sequence of

relational operations (Example)

◼ To retrieve the first name, last name, and salary of all

employees who work in department number 5, we must

apply a select and a project operation

◼ We can write a single relational algebra expression as

follows:

◼ FNAME, LNAME, SALARY( DNO=5(EMPLOYEE))

◼ OR We can explicitly show the sequence of operations,

giving a name to each intermediate relation:

◼ DEP5_EMPS   DNO=5(EMPLOYEE)

◼ RESULT   FNAME, LNAME, SALARY (DEP5_EMPS)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 19

Unary Relational Operations: RENAME

◼ The RENAME operator is denoted by  (rho)

◼ In some cases, we may want to rename the

attributes of a relation or the relation name or

both

◼ Useful when a query requires multiple

operations

◼ Necessary in some cases (see JOIN

operation later)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 20

Unary Relational Operations: RENAME

(contd.)

◼ The general RENAME operation  can be

expressed by any of the following forms:

◼ S (B1, B2, …, Bn)(R) changes both:

◼ the relation name to S, and

◼ the column (attribute) names to B1, B1, …..Bn

◼ S(R) changes:

◼ the relation name only to S

◼ (B1, B2, …, Bn)(R) changes:

◼ the column (attribute) names only to B1, B1, …..Bn

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 21

Relational Algebra Operations from

Set Theory: UNION

◼ UNION Operation

◼ Binary operation, denoted by 

◼ The result of R  S, is a relation that includes all
tuples that are either in R or in S or in both R and
S

◼ Duplicate tuples are eliminated

◼ The two operand relations R and S must be “type
compatible” (or UNION compatible)

◼ R and S must have same number of attributes

◼ Each pair of corresponding attributes must be
type compatible (have same or compatible domains)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 22

Example of the result of a UNION

operation

◼ UNION Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 23

Relational Algebra Operations from

Set Theory: UNION

◼ Example:
◼ To retrieve the social security numbers of all employees who

either work in department 5 (RESULT1 below) or directly
supervise an employee who works in department 5 (RESULT2
below)

◼ We can use the UNION operation as follows:

DEP5_EMPS  DNO=5 (EMPLOYEE)

RESULT1   SSN(DEP5_EMPS)

RESULT2(SSN)  SUPERSSN(DEP5_EMPS)

RESULT  RESULT1  RESULT2
◼ The union operation produces the tuples that are in either

RESULT1 or RESULT2 or both

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 24

Example of the result of a UNION

operation

◼ UNION Example

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 26

Relational Algebra Operations from Set

Theory: INTERSECTION

◼ INTERSECTION is denoted by 

◼ The result of the operation R  S, is a

relation that includes all tuples that are in

both R and S

◼ The attribute names in the result will be the

same as the attribute names in R

◼ The two operand relations R and S must be

“type compatible”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 27

Relational Algebra Operations from Set

Theory: SET DIFFERENCE (cont.)

◼ SET DIFFERENCE (also called MINUS or

EXCEPT) is denoted by –

◼ The result of R – S, is a relation that includes

all tuples that are in R but not in S

◼ The attribute names in the result will be the

same as the attribute names in R

◼ The two operand relations R and S must be

“type compatible”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 28

Example to illustrate the result of UNION,

INTERSECT, and DIFFERENCE

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 29

Some properties of UNION, INTERSECT,

and DIFFERENCE

◼ Notice that both union and intersection are commutative

operations; that is

◼ R  S = S  R, and R  S = S  R

◼ Both union and intersection can be treated as n-ary

operations applicable to any number of relations as both

are associative operations; that is

◼ R  (S  T) = (R  S)  T

◼ (R  S)  T = R  (S  T)

◼ The minus operation is not commutative; that is, in

general

◼ R – S ≠ S – R

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 30

Relational Algebra Operations from Set

Theory: CARTESIAN PRODUCT

◼ CARTESIAN (or CROSS) PRODUCT Operation X

◼ This operation is used to combine tuples from two relations

in a combinatorial fashion.

◼ Denoted by R(A1, A2, . . ., An) x S(B1, B2, . . ., Bm)

◼ Result is a relation Q with degree n + m attributes:

◼ Q(A1, A2, . . ., An, B1, B2, . . ., Bm), in that order.

◼ The resulting relation state has one tuple for each

combination of tuples—one from R and one from S.

◼ Hence, if R has nR tuples (denoted as |R| = nR), and S has

nS tuples, then R x S will have nR * nS tuples.

◼ The two operands do NOT have to be "type compatible”

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 31

Relational Algebra Operations from Set

Theory: CARTESIAN PRODUCT (cont.)

◼ Generally, CROSS PRODUCT is not a
meaningful operation

◼ Can become meaningful when followed by other
operations

◼ Example (not meaningful):
◼ FEMALE_EMPS   SEX=’F’(EMPLOYEE)

◼ EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)

◼ EMP_DEPENDENTS  EMPNAMES x DEPENDENT

◼ EMP_DEPENDENTS will contain every combination of
EMPNAMES and DEPENDENT

◼ whether or not they are actually related

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 32

Relational Algebra Operations from Set

Theory: CARTESIAN PRODUCT (cont.)

◼ To keep only combinations where the
DEPENDENT is related to the EMPLOYEE, we
add a SELECT operation as follows

◼ Example (meaningful):
◼ FEMALE_EMPS   SEX=’F’(EMPLOYEE)

◼ EMPNAMES   FNAME, LNAME, SSN (FEMALE_EMPS)

◼ EMP_DEPENDENTS  EMPNAMES x DEPENDENT

◼ ACTUAL_DEPS   SSN=ESSN(EMP_DEPENDENTS)

◼ RESULT   FNAME, LNAME, DEPENDENT_NAME (ACTUAL_DEPS)

◼ RESULT will now contain the name of female employees
and their dependents

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 33

Example of applying CARTESIAN PRODUCT

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 34

Binary Relational Operations: JOIN

◼ JOIN Operation (denoted by)
◼ The sequence of CARTESIAN PRODECT followed by

SELECT is used quite commonly to identify and select
related tuples from two relations

◼ A special operation, called JOIN combines this sequence
into a single operation

◼ This operation is very important for any relational database
with more than a single relation, because it allows us
combine related tuples from various relations

◼ The general form of a join operation on two relations R(A1,
A2, . . ., An) and S(B1, B2, . . ., Bm) is:

R <join condition>S

◼ where R and S can be any relations that result from general
relational algebra expressions.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 35

Binary Relational Operations: JOIN (cont.)

◼ Example: Suppose that we want to retrieve the name of the
manager of each department.
◼ To get the manager’s name, we need to combine each

DEPARTMENT tuple with the EMPLOYEE tuple whose SSN
value matches the MGRSSN value in the department tuple.

◼ We do this by using the join operation.

◼ DEPT_MGR  DEPARTMENT MGRSSN=SSN EMPLOYEE

◼ MGRSSN=SSN is the join condition
◼ Combines each department record with the employee who

manages the department

◼ The join condition can also be specified as
DEPARTMENT.MGRSSN= EMPLOYEE.SSN

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 36

Example of applying the JOIN operation

DEPT_MGR  DEPARTMENT MGRSSN=SSN EMPLOYEE

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 37

Binary Relational Operations:

NATURAL JOIN Operation

◼ NATURAL JOIN Operation *

◼ Another variation of JOIN called NATURAL JOIN — denoted

by * — was created to get rid of the second (superfluous)

attribute in an EQUIJOIN condition.

◼ because one of each pair of attributes with identical

values is superfluous

◼ The standard definition of natural join requires that the two

join attributes, or each pair of corresponding join attributes,

have the same name in both relations

◼ If this is not the case, a renaming operation is applied

first.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 38

Additional Relational Operations:

Aggregate Functions and Grouping

◼ A type of request that cannot be expressed in the basic

relational algebra is to specify mathematical aggregate

functions on collections of values from the database.

◼ Examples of such functions include retrieving the average

or total salary of all employees or the total number of

employee tuples.

◼ These functions are used in simple statistical queries that

summarize information from the database tuples.

◼ Common functions applied to collections of numeric

values include

◼ SUM, AVERAGE, MAXIMUM, and MINIMUM.

◼ The COUNT function is used for counting tuples or

values.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 39

Aggregate Function Operation

◼ Use of the Aggregate Functional operation ℱ

◼ ℱMAX Salary (EMPLOYEE) retrieves the maximum salary value

from the EMPLOYEE relation

◼ ℱMIN Salary (EMPLOYEE) retrieves the minimum Salary value

from the EMPLOYEE relation

◼ ℱSUM Salary (EMPLOYEE) retrieves the sum of the Salary

from the EMPLOYEE relation

◼ ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE) computes the count

(number) of employees and their average salary

◼ Note: count just counts the number of rows, without removing

duplicates

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 40

Using Grouping with Aggregation

◼ The previous examples all summarized one or more attributes for a

set of tuples

◼ Maximum Salary or Count (number of) Ssn

◼ Grouping can be combined with Aggregate Functions

◼ Example: For each department, retrieve the DNO, COUNT SSN, and

AVERAGE SALARY

◼ A variation of aggregate operation ℱ allows this:

◼ Grouping attribute placed to left of symbol

◼ Aggregate functions to right of symbol

◼ DNO ℱCOUNT SSN, AVERAGE Salary (EMPLOYEE)

◼ Above operation groups employees by DNO (department number)

and computes the count of employees and average salary per

department

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 41

Examples of applying aggregate functions

and grouping

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 42

Examples of Queries in Relational Algebra

: Procedural Form

◼ Q1: Retrieve the name and address of all employees who work for the

‘Research’ department.

RESEARCH_DEPT   DNAME=’Research’ (DEPARTMENT)

RESEARCH_EMPS  (RESEARCH_DEPT DNUMBER= DNOEMPLOYEEEMPLOYEE)

RESULT   FNAME, LNAME, ADDRESS (RESEARCH_EMPS)

◼ Q6: Retrieve the names of employees who have no dependents.

ALL_EMPS   SSN(EMPLOYEE)

EMPS_WITH_DEPS(SSN)   ESSN(DEPENDENT)

EMPS_WITHOUT_DEPS  (ALL_EMPS - EMPS_WITH_DEPS)

RESULT   LNAME, FNAME (EMPS_WITHOUT_DEPS * EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 6- 43

Examples of Queries in Relational Algebra

– Single expressions

As a single expression, these queries become:

◼ Q1: Retrieve the name and address of all employees who work for the

‘Research’ department.

 Fname, Lname, Address (σ Dname= ‘Research’

(DEPARTMENT Dnumber=Dno(EMPLOYEE))

◼ Q6: Retrieve the names of employees who have no dependents.

 Lname, Fname(( Ssn (EMPLOYEE) − ρ Ssn ( Essn

(DEPENDENT))) ∗ EMPLOYEE)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Chapter 15

Algorithms for Query Processing

and Optimization

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Query Processing

◼ A query expressed in a high-level query language such as

SQL must first be scanned, parsed, and validated.

◼ The scanner identifies the query tokens—such as

SQL keywords, attribute names, and relation names.

◼ The parser checks the query syntax to determine

whether it is formulated according to the syntax rules

(rules of grammar) of the query language.

◼ The query must also be validated by checking that all

attribute and relation names are valid and

semantically meaningful names in the schema of the

particular database being queried.

Slide 15- 45

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 46

Query Optimization

◼ An internal representation of the query is then created,

usually as a tree data structure called a query tree.

◼ The DBMS must then devise an execution strategy or

query plan for retrieving the results of the query from the

database files.

◼ A query typically has many possible execution

strategies, and the process of choosing a suitable one

for processing a query is known as query optimization.

◼ Query optimization:

◼ The process of choosing a suitable execution strategy

for processing a query.

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 47

Introduction to Query Processing

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Compiled vs. Interpreted Queries

◼ The optimizer must limit the number of execution
strategies to be considered; otherwise, too much
time will be spent making cost estimates for the
many possible execution strategies.

◼ This approach is more suitable for compiled queries
where the optimization is done at compile time and
the resulting execution strategy code is stored
and executed directly at runtime.

◼ For interpreted queries, where the entire process
occurs at runtime, a full-scale optimization may slow
down the response time.

48

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 49

Translating SQL Queries into Relational

Algebra

◼ Query block:

◼ The basic unit that can be translated into the
algebraic operators and optimized.

◼ A query block contains a single SELECT-FROM-
WHERE expression, as well as GROUP BY and
HAVING clause if these are part of the block.

◼ Nested queries within a query are identified as
separate query blocks.

◼ In general, a query tree gives a good visual
representation and understanding of the
query in terms of the relational operations

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 50

Translating SQL Queries into Relational

Algebra (2)

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > (SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5);

SELECT MAX (SALARY)

FROM EMPLOYEE

WHERE DNO = 5

SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE SALARY > C

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 51

Query Optimization

◼ Example:

◼ For every project located in ‘Stafford’, retrieve the project number,
the controlling department number and the department manager’s
last name, address and birthdate.

◼ Relation algebra:

PNUMBER, DNUM, LNAME, ADDRESS, BDATE

(((PLOCATION=‘STAFFORD’(PROJECT))

DNUM=DNUMBER (DEPARTMENT)) MGRSSN=SSN (EMPLOYEE))

◼ SQL query:

Q2: SELECT P.NUMBER,P.DNUM,E.LNAME,
E.ADDRESS, E.BDATE

FROM PROJECT AS P,DEPARTMENT AS D,
EMPLOYEE AS E

WHERE P.DNUM=D.DNUMBER AND
D.MGRSSN=E.SSN AND
P.PLOCATION=‘STAFFORD’;

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Initial Query Tree

52

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Improved Query Tree

53

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Example

◼ Find the last names of employees born after 1957

who work on a project named ‘Aquarius’.

◼ SELECT Lname

FROM EMPLOYEE, WORKS_ON, PROJECT

WHERE Pname=‘Aquarius’ AND Pnumber=Pno

AND Essn=Ssn AND Bdate > ‘1957-12-31’;

54

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

1- Initial Query Tree

55

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

2- Improved Query Tree
An improved query tree that first applies the SELECT operations to

reduce the number of tuples that appear in the CARTESIAN

PRODUCT

56

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

3- Improved Query Tree

A further improvement is achieved by switching the positions of

the EMPLOYEE and PROJECT relations in the tree:

57

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

4- Improved Query Tree
We can further improve the query tree by replacing any CARTESIAN

PRODUCT operation that is followed by a join condition with a

JOIN operation:

58

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

5- Improved Query Tree
Another improvement is to keep only the attributes needed by

subsequent operations in the intermediate relations, by including

PROJECT (π) operations as early as possible in the query tree:

59

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

Rules

◼ 1. Break up any SELECT operations with conjunctive conditions into

a cascade of SELECT operations. This permits a greater degree of

freedom in moving SELECT operations down different branches of

the tree.

◼ 2. Move each SELECT operation as far down the query tree as is

permitted by the attributes involved in the select condition.

◼ If the condition involves attributes from only one table, which

means that it represents a selection condition, the operation is

moved all the way to the leaf node that represents this table.

◼ 3. Rearrange the leaf nodes of the tree, position the leaf node

relations with the most restrictive SELECT operations so they are

executed first in the query tree representation. The definition of most

restrictive SELECT can mean either the ones that produce a

relation with the fewest tuples or with the smallest absolute size.

60

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe

◼ 4. Combine a CARTESIAN PRODUCT operation

with a subsequent SELECT operation in the tree

into a JOIN operation, if the condition

represents a join condition.

◼ 5. Break down and move lists of projection

attributes down the tree as far as possible by

creating new PROJECT operations as needed.

61

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 62

◼ Summary of Heuristics for Algebraic Optimization:

1. The main heuristic is to apply first the operations that
reduce the size of intermediate results.

2. Perform select operations as early as possible to
reduce the number of tuples and perform project
operations as early as possible to reduce the number of
attributes. (This is done by moving select and project
operations as far down the tree as possible.)

3. The select and join operations that are most restrictive
should be executed before other similar operations. (This
is done by reordering the leaf nodes of the tree among
themselves and adjusting the rest of the tree
appropriately.)

Copyright © 2007 Ramez Elmasri and Shamkant B. Navathe Slide 15- 63

◼ Cost Components for Query Execution

1. Access cost to secondary storage

2. Computation cost

3. Communication cost

◼ Note: Different database systems may focus on

different cost components.

◼ Large (1) vs. small (2) and distributed (3)

databases

