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iv

Preface

TO THE  READER

Students often approach statistics with great apprehension. For many, it is a required 
course to be taken only under the most favorable circumstances, such as during a quar-
ter or semester when carrying a light course load; for others, it is as distasteful as a visit 
to a credit counselor—to be postponed as long as possible, with the vague hope that 
mounting debts might miraculously disappear. Much of this apprehension doubtless 
rests on the widespread fear of mathematics and mathematically related areas.

This book is written to help you overcome any fear about statistics. Unnecessary 
quantitative considerations have been eliminated. When not obscured by mathematical 
treatments better reserved for more advanced books, some of the beauty of statistics, as 
well as its everyday usefulness, becomes more apparent.

You could go through life quite successfully without ever learning statistics. Having 
learned some statistics, however, you will be less likely to flinch and change the topic 
when numbers enter a discussion; you will be more skeptical of conclusions based on 
loose or erroneous interpretations of sets of numbers; you might even be more inclined 
to initiate a statistical analysis of some problem within your special area of interest.

TO  THE  INSTRUCTOR

Largely because they panic at the prospect of any math beyond long division, many 
students view the introductory statistics class as cruel and unjust punishment. A half-
dozen years of experimentation, first with assorted handouts and then with an extensive 
set of lecture notes distributed as a second text, convinced us that a book could be writ-
ten for these students. Representing the culmination of this effort, the present book 
provides a simple overview of descriptive and inferential statistics for mathematically 
unsophisticated students in the behavioral sciences, social sciences, health sciences, 
and education.

PEDAGOG ICAL  FEATURES

• Basic concepts and procedures are explained in plain English, and a special effort 
has been made to clarify such perennially mystifying topics as the standard devi-
ation, normal curve applications, hypothesis tests, degrees of freedom, and anal-
ysis of variance. For example, the standard deviation is more than a formula; it 
roughly reflects the average amount by which individual observations deviate 
from their mean.

• Unnecessary math, computational busy work, and subtle technical distinctions 
are avoided without sacrificing either accuracy or realism. Small batches of data 
define most computational tasks. Single examples permeate entire chapters or 
even several related chapters, serving as handy frames of reference for new con-
cepts and procedures.
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 PREFACE  v

• Each chapter begins with a preview and ends with a summary, lists of important 
terms and key equations, and review questions.

• Key statements appear in bold type, and step-by-step summaries of important 
procedures, such as solving normal curve problems, appear in boxes.

• Important definitions and reminders about key points appear in page margins.

• Scattered throughout the book are examples of computer outputs for three of the 
most prevalent programs: Minitab, SPSS, and SAS. These outputs can be either 
ignored or expanded without disrupting the continuity of the text.

• Questions are introduced within chapters, often section by section, as Progress 
Checks. They are designed to minimize the cumulative confusion reported by 
many students for some chapters and by some students for most chapters. Each 
chapter ends with Review Questions.

• Questions have been selected to appeal to student interests: for example, proba-
bility calculations, based on design flaws, that re-create the chillingly high likeli-
hood of the Challenger shuttle catastrophe (8.18, page 165); a t test analysis of 
global temperatures to evaluate a possible greenhouse effect (13.7, page 244); 
and a chi-square test of the survival rates of cabin and steerage passengers aboard 
the Titanic (19.14, page 384).

• Appendix B supplies answers to questions marked with asterisks. Other appendi-
ces provide a practical math review complete with self-diagnostic tests, a glos-
sary of important terms, and tables for important statistical  distributions.

INSTRUCT IONAL  A IDS

An electronic version of an instructor’s manual accompanies the text. The instructor’s 
manual supplies answers omitted in the text (for about one-third of all questions), as well 
as sets of  multiple-choice test items for each chapter, and a chapter-by-chapter  commentary 
that reflects the authors’ teaching experiences with this material. Instructors can access 
this material in the Instructor Companion Site at http://www.wiley.com/college/witte.

An electronic version of a student workbook, prepared by Beverly Dretzke of the 
University of Minnesota, also accompanies the text. Self-paced and self-correcting, the 
workbook contains problems, discussions, exercises, and tests that supplement the text. 
Students can access this material in the Student Companion Site at http://www.wiley.
com/college/witte.

CHANGES  IN  TH IS  ED IT ION

• Update discussion of polling and random digit dialing in Section 8.4

• A new Section 14.11 on the “file drawer effect,” whereby nonsignificant statisti-
cal findings are never published and the importance of replication. 

• Updated numerical examples. 

• New examples and questions throughout the book.

• Computer outputs and website have been updated.
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vi PREFACE

US ING  THE  BOOK

The book contains more material than is covered in most one-quarter or one-semester 
courses. Various chapters can be omitted without interrupting the main development. 
Typically, during a one-semester course we cover the entire book except for analysis of 
variance (Chapters 16, 17, and 18) and tests of ranked data (Chapter 20). An instructor 
who wishes to emphasize inferential statistics could skim some of the earlier chapters, 
particularly Normal Distributions and Standard Scores (z) (Chapter 5), and Regression 
(Chapter 7), while an instructor who desires a more applied emphasis could omit Pop-
ulations, Samples, and Probability (Chapter 8) and More about  Hypothesis Testing 
(Chapter 11).
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1

CHAPTER

1
Introduction

1.1 WHY STUDY STATISTICS?

1.2 WHAT IS STATISTICS?

1.3 MORE ABOUT INFERENTIAL STATISTICS

1.4 THREE TYPES OF DATA

1.5 LEVELS OF MEASUREMENT

1.6 TYPES OF VARIABLES

1.7 HOW TO USE THIS BOOK

Summary / Important Terms / Review Questions

Preview

Statistics deals with variability. You’re different from everybody else (and, we hope, 

proud of it). Today differs from both yesterday and tomorrow. In an experiment 

designed to detect whether psychotherapy improves self-esteem, self-esteem scores 

will differ among subjects in the experiment, whether or not psychotherapy improves 

self-esteem.

Beginning with Chapter 2, descriptive statistics will provide tools, such as tables, 

graphs, and averages, that help you describe and organize the inevitable variability 

among observations. For example, self-esteem scores (on a scale of 0 to 50) for a 

group of college students might approximate a bell-shaped curve with an average score 

of 32 and a range of scores from 18 to 49.

Beginning with Chapter 8, inferential statistics will supply powerful concepts that, 

by adjusting for the pervasive effects of variability, permit you to generalize beyond 

limited sets of observations. For example, inferential statistics might help us decide 

whether—after an adjustment has been made for background variability (or chance)—

an observed improvement in self-esteem scores can be attributed to psychotherapy 

rather than to chance.

Chapter 1 provides an overview of both descriptive and inferential statistics, and 

it also introduces a number of terms—some from statistics and some from math 

and research methods—with which you already may have some familiarity. These 

terms will clarify a number of important distinctions that will aid your progress 

through the book.
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2 INTRODUCTION

1 .1  WHY  STUDY  STAT IST ICS?

You’re probably taking a statistics course because it’s required, and your feelings 
about it may be more negative than positive. Let’s explore some of the reasons why 
you should study statistics. For instance, recent issues of a daily newspaper carried 
these items:

 ■ The annual earnings of college graduates exceed, on average, those of high 
school graduates by $20,000.

 ■ On the basis of existing research, there is no evidence of a relationship between 
family size and the scores of adolescents on a test of psychological adjustment.

 ■ Heavy users of tobacco suffer significantly more respiratory ailments than do 
nonusers.

Having learned some statistics, you’ll not stumble over the italicized phrases. Nor, as 
you continue reading, will you hesitate to probe for clarification by asking, “Which 
average shows higher annual earnings?” or “What constitutes a lack of evidence about 
a relationship?” or “How many more is significantly more respiratory ailments?”

A statistical background is indispensable in understanding research reports within 
your special area of interest. Statistical references punctuate the results sections of 
most research reports. Often expressed with parenthetical brevity, these references pro-
vide statistical support for the researcher’s conclusions:

 ■ Subjects who engage in daily exercise score higher on tests of self-esteem than 
do subjects who do not exercise [p  .05].

 ■ Highly anxious students are perceived by others as less attractive than nonanx-
ious students [t (48)  3.21, p  .01, d  .42].

 ■ Attitudes toward extramarital sex depend on socioeconomic status [x2 (4, n  
185)  11.49, p  .05, 2

c
  .03].

Having learned some statistics, you will be able to decipher the meaning of these sym-
bols and consequently read these reports more intelligently.

Sometime in the future—possibly sooner than you think—you might want to plan a 
statistical analysis for a research project of your own. Having learned some statistics, 
you’ll be able to plan the statistical analysis for modest projects involving straightfor-
ward research questions. If your project requires more advanced statistical analysis, 
you’ll know enough to consult someone with more training in statistics. Once you 
begin to understand basic statistical concepts, you will discover that, with some guid-
ance, your own efforts often will enable you to use and interpret more advanced statis-
tical analysis required by your research.

1 .2  WHAT  IS  STAT IST ICS?

It is difficult to imagine, even as a fantasy exercise, a world where there is no 
variability—where, for example, everyone has the same physical characteristics, 
intelligence, attitudes, etc. Knowing that one person is 70 inches tall, and has an 
intelligence quotient (IQ) of 125 and a favorable attitude toward capital punishment, 
we could immediately conclude that everyone else also has these characteristics. 
This mind-numbing world would have little to recommend it, other than that there 
would be no need for the field of statistics (and a few of us probably would be look-
ing for work).
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Desc r ip t i ve  S ta t i s t i cs

Statistics exists because of the prevalence of variability in the real world. In its sim-
plest form, known as descriptive statistics, statistics provides us with tools—tables, 
graphs, averages, ranges, correlations—for organizing and summarizing the inevi-
table variability in collections of actual observations or scores. Examples are:

1. A tabular listing, ranked from most to least, of the total number of romantic 
affairs during college reported anonymously by each member of your stat class

2. A graph showing the annual change in global temperature during the last 30 years

3. A report that describes the average difference in grade point average (GPA) 
between college students who regularly drink alcoholic beverages and those who 
don’t

I n fe ren t ia l  S ta t i s t i cs

Statistics also provides tools—a variety of tests and estimates—for generalizing 
beyond collections of actual observations. This more advanced area is known as infer-
ential statistics. Tools from inferential statistics permit us to use a relatively small 
collection of actual observations to evaluate, for example:

1. A pollster’s claim that a majority of all U.S. voters favor stronger gun control laws

2. A researcher’s hypothesis that, on average, meditators report fewer headaches 
than do nonmeditators

3. An assertion about the relationship between job satisfaction and overall happiness

In this book, you will encounter the most essential tools of descriptive statistics 
(Part 1), beginning with Chapter 2, and those of inferential statistics (Part 2), beginning 
with Chapter 8.

Progress Check *1.1 Indicate whether each of the following statements typifies descrip-
tive statistics (because it describes sets of actual observations) or inferential statistics (because 
it generalizes beyond sets of actual observations).

(a) Students in my statistics class are, on average, 23 years old.

(b) The population of the world exceeds 7 billion (that is, 7,000,000,000 or 1 million multiplied 
by 7000).

(c) Either four or eight years have been the most frequent terms of office actually served by 
U.S. presidents.

(d) Sixty-four percent of all college students favor right-to-abortion laws.

Answers on page 420.

1 .3  MORE  ABOUT  INFERENT IAL  STAT IST ICS

Popu la t ions  and  Samp les

Inferential statistics is concerned with generalizing beyond sets of actual observa-
tions, that is, with generalizing from a sample to a population. In statistics, a population 

Population 

Any complete collection of obser-

vations or potential observations.
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refers to any complete collection of observations or potential observations, whereas a 
sample refers to any smaller collection of actual observations drawn from a popula-
tion. In everyday life, populations often are viewed as collections of real objects (e.g., 
people, whales, automobiles), whereas in statistics, populations may be viewed more 
abstractly as collections of properties or measurements (e.g., the ethnic backgrounds of 
people, life spans of whales, gas mileage of automobiles).

Depending on your perspective, a given set of observations can be either a population 
or a sample. For instance, the weights reported by 53 male statistics students in Table 1.1 
can be viewed either as a population, because you are concerned about exceeding the 
load-bearing capacity of an excursion boat (chartered by the 53 students to celebrate suc-
cessfully completing their stat class!), or as a sample from a population because you wish 
to generalize to the weights of all male statistics students or all male college students.

Table 1.1
QUANTITATIVE DATA: WEIGHTS (IN POUNDS) OF MALE  

STATISTICS STUDENTS

160 168 133 170 150 165 158 165
193 169 245 160 152 190 179 157
226 160 170 180 150 156 190 156
157 163 152 158 225 135 165 135
180 172 160 170 145 185 152
205 151 220 166 152 159 156
165 157 190 206 172 175 154

Ordinarily, populations are quite large and exist only as potential observations (e.g., 
the potential scores of all U.S. college students on a test that measures anxiety). On 
the other hand, samples are relatively small and exist as actual observations (the actual 
scores of 100 college students on the test for anxiety). When using a sample (100 actual 
scores) to generalize to a population (millions of potential scores), it is important that 
the sample represent the population; otherwise, any generalization might be erroneous. 
Although conveniently accessible, the anxiety test scores for the 100 students in stat 
classes at your college probably would not be representative of the scores for all stu-
dents. If you think about it, these 100 stat students might tend to have either higher or 
lower anxiety scores than those in the target population for numerous reasons includ-
ing, for instance, the fact that the 100 students are mostly psychology majors enrolled 
in a required stat class at your particular college.

Random Samp l ing  ( Su rveys )

Whenever possible, a sample should be randomly selected from a population in 
order to increase the likelihood that the sample accurately represents the population. 
Random sampling is a procedure designed to ensure that each potential observation 
in the population has an equal chance of being selected in a survey. Classic examples 
of random samples are a state lottery where each number from 1 to 99 in the population 
has an equal chance of being selected as one of the five winning numbers or a nation-
wide opinion survey in which each telephone number has an equal chance of being 
selected as a result of a series of random selections, beginning with a three-digit area 
code and ending with a specific seven-digit telephone number.

Random sampling can be very difficult when a population lacks structure (e.g., 
all persons currently in psychotherapy) or specific boundaries (e.g., all volunteers 
who could conceivably participate in an experiment). In this case, a random sample 

Sample 

Any smaller collection of actual 

observations from a population.

Random Sampling 

A procedure designed to ensure 

that each potential observation in 

the population has an equal chance 

of being selected in a survey.
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 1.3 MORE ABOUT INFERENTIAL STATISTICS  5

becomes an ideal that can only be approximated—always with an effort to remove 
obvious biases that might cause the sample to misrepresent the population. For exam-
ple, lacking the resources to sample randomly the target population of all U.S. college 
students, you might obtain scores by randomly selecting the 100 students, not just from 
stat classes at your college but also from one or more college directories, possibly using 
some of the more elaborate techniques described in Chapter 8. Insofar as your sample 
only approximates a true random sample, any resulting generalizations should be quali-
fied. For example, if the 100 students were randomly selected only from several public 
colleges in northern California, this fact should be noted, and any generalizations to all 
college students in the United States would be both provisional and open to criticism.

Random Ass ignment  ( Expe r iments )

Estimating the average anxiety score for all college students probably would not 
generate much interest. Instead, we might be interested in determining whether relax-
ation training causes, on average, a reduction in anxiety scores between two groups of 
otherwise similar college students. Even if relaxation training has no effect on anxiety 
scores, we would expect average scores for the two groups to differ because of the inev-
itable variability between groups. The question becomes: How should we interpret the 
apparent difference between the treatment group and the control group? Once variabil-
ity has been taken into account, should the difference be viewed as real (and attributable 
to relaxation training) or as transitory (and merely attributable to variability or chance)?

College students in the relaxation experiment probably are not a random sample 
from any intact population of interest, but rather a convenience sample consisting of 
volunteers from a limited pool of students fulfilling a course requirement. Accordingly, 
our focus shifts from random sampling to the random assignment of volunteers to the 
two groups. Random assignment signifies that each person has an equal chance of 
being assigned to any group in an experiment. Using procedures described in Chapter 8, 
random assignment should be employed whenever possible. Because chance dictates 
the membership of both groups, not only does random assignment minimize any biases 
that might favor one group or another, it also serves as a basis for estimating the role of 
variability in any observed result. Random assignment allows us to evaluate any find-
ing, such as the actual average difference between two groups, to determine whether 
this difference is larger than expected just by chance, once variability is taken into 
account. In other words, it permits us to generalize beyond mere appearances and deter-
mine whether the average difference merits further attention because it probably is real 
or whether it should be ignored because it can be attributed to variability or chance.

Ove rv iew :  Su rveys  and  Expe r iments

Figure  1.1 compares surveys and experiments. Based on random samples from 
populations, surveys permit generalizations from samples back to populations. Based 
on the random assignment of volunteers to groups, experiments permit decisions about 
whether differences between groups are real or merely transitory.

PROGRESS CHECK *1.2 Indicate whether each of the following terms is associated 
 primarily with a survey (S) or an experiment (E).

(a) random assignment

(b) representative

(c) generalization to the population

(d) control group

Answers on page 420.

Random Assignment 

A procedure designed to ensure 

that each person has an equal 

chance of being assigned to any 

group in an experiment.
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6 INTRODUCTION

(e) real difference

(f) random selection

(g) convenience sample

(h) volunteers

Answers on page 420.

1 .4  THREE  TYPES  OF  DATA

Any statistical analysis is performed on data, a collection of actual observations or 
scores in a survey or an experiment.

The precise form of a statistical analysis often depends on whether data are 
qualitative, ranked, or quantitative.

Generally, qualitative data consist of words (Yes or No), letters (Y or N), or numeri-
cal codes (0 or 1) that represent a class or category. Ranked data consist of numbers 
(1st, 2nd, . . . 40th place) that represent relative standing within a group. Quantitative 
data consist of numbers (weights of 238, 170, . . . 185 lbs) that represent an amount or 
a count. To determine the type of data, focus on a single observation in any collection 
of observations. For example, the weights reported by 53 male students in Table 1.1 are 
quantitative data, since any single observation, such as 160 lbs, represents an amount 
of weight. If the weights in Table 1.1 had been replaced with ranks, beginning with a 
rank of 1 for the lightest weight of 133 lbs and ending with a rank of 53 for the heavi-
est weight of 245 lbs, these numbers would have been ranked data, since any single 
observation represents not an amount, but only relative standing within the group of 53 
students. Finally, the Y and N replies of students in Table 1.2 are qualitative data, since 
any single observation is a letter that represents a class of replies.

Data 

A collection of actual observations 

or scores in a survey or an  

experiment

Qualitative Data 

A set of observations where any 

single observation is a word, letter, 

or numerical code that represents a 

class or category.

Ranked Data 

A set of observations where any 

single observation is a number that 

indicates relative standing.

Quantitative Data 

A set of observations where any 

single observation is a number that 

represents an amount or a count.

FIGURE 1.1 

Overview: surveys and experiments.

Sample
(known scores)

Control Group
(known scores)

Random

Sample

Random

Assignment

Is difference

real or transitory?

Generalize to population

SURVEYS

EXPERIMENTS

Treatment Group
(known scores)

Population
(unknown scores)

Volunteers
(unknown scores)
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 1.5 LEVELS OF MEASUREMENT  7

Table 1.2
QUALITATIVE DATA: “DO YOU HAVE A FACEBOOK 

PROFILE?” YES (Y) OR NO (N) REPLIES OF  
STATISTICS STUDENTS

Y Y Y N N Y Y Y
Y Y Y N N Y Y Y
N Y N Y Y Y Y Y
Y Y N Y N Y N Y
Y N Y N N Y Y Y
Y Y N Y Y Y Y Y
N N N N Y N N Y
Y Y Y Y Y N Y N
Y Y Y Y N N Y Y
N Y N N Y Y Y Y

Y Y N

Progress Check *1.3 Indicate whether each of the following terms is qualitative (because 
it’s a word, letter, or numerical code representing a class or category); ranked (because it’s 
a number representing relative standing); or quantitative (because it’s a number representing 
an amount or a count).

(a) ethnic group

(b) age

(c) family size

(d) academic major

(e) sexual preference

(f) IQ score

(g) net worth (dollars)

(h) third-place finish

(i) gender

(j) temperature

Answers on page 420.

1 .5  LEVELS  OF  MEASUREMENT

Learned years ago in grade school, the abstract statement that 2 + 2  4 qualifies as one 
of life’s everyday certainties, along with taxes and death. However, not all numbers 
have the same interpretation. For instance, it wouldn’t make sense to find the sum of 
two Social Security numbers or to claim that, when viewed as indicators of academic 
achievement, two GPAs of 2.0 equal a GPA of 4.0. To clarify further the differences 
among the three types of data, let’s introduce the notion of level of measurement. Loom-
ing behind any data, the level of measurement specifies the extent to which a number 
(or word or letter) actually represents some attribute and, therefore, has implications 
for the appropriateness of various arithmetic operations and statistical procedures.

Level of Measurement 

Specifies the extent to which a 

number (or word or letter) actually 

represents some attribute and, 

therefore, has implications for the 

appropriateness of various arith-

metic operations and statistical 

procedures.
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8 INTRODUCTION

For our purposes, there are three levels of measurement—nominal, ordinal, and 
interval/ratio—and these levels are paired with qualitative, ranked, and quantitative 
data, respectively. The properties of these levels—and the usefulness of their associated 
numbers—vary from nominal, the simplest level with only one property, to  interval/
ratio, the most complex level with four properties. Progressively more complex levels 
contain all properties of simpler levels, plus one or two new properties.

More complex levels of measurement are associated with numbers that, 
because they better represent attributes, permit a wider variety of arithmetic 
operations and statistical procedures.

Qua l i ta t i ve  Da ta  and  Nomina l  Measu rement

If people are classified as either male or female (or coded as 1 or 2), the data are qual-
itative and measurement is nominal. The single property of nominal measurement is 
classification—that is, sorting observations into different classes or categories. Words, 
letters, or numerical codes reflect only differences in kind, not differences in amount. 
Examples of nominal measurement include classifying mood disorders as manic, bipo-
lar, or depressive; sexual preferences as heterosexual, homosexual, bisexual, or non-
sexual; and attitudes toward stricter pollution controls as favor, oppose, or undecided.

A distinctive feature of nominal measurement is its bare-bones representation of any 
attribute. For instance, a student is either male or female. Even with the introduction of 
arbitrary numerical codes, such as 1 for male and 2 for female, it would never be appro-
priate to claim that, because female is 2 and male is 1, females have twice as much 
gender as males. Similarly, calculating an average with these numbers would be mean-
ingless. Because of these limitations, only a few sections of this book and Chapter 19 
are dedicated exclusively to an analysis of qualitative data with nominal measurement.

Ranked  Da ta  and  O rd ina l  Measu rement

When any single number indicates only relative standing, such as first, second, or 
tenth place in a horse race or in a class of graduating seniors, the data are ranked and 
the level of measurement is ordinal. The distinctive property of ordinal measurement 
is order. Comparatively speaking, a first-place finish reflects the fastest finish in a horse 
race or the highest GPA among graduating seniors. Although first place in a horse race 
indicates a faster finish than second place, we don’t know how much faster.

Since ordinal measurement fails to reflect the actual distance between adjacent 
ranks, simple arithmetic operations with ranks are inappropriate. For example, it’s 
inappropriate to conclude that the arithmetic mean of ranks 1 and 3 equals rank 2, since 
this assumes that the actual distance between ranks 1 and 2 equals the distance between 
ranks 2 and 3. Instead, these distances might be very different. For example, rank 2 
might be virtually tied with either rank 1 or rank 3. Only a few sections of this book 
and Chapter 20 are dedicated exclusively to an analysis of ranked data with ordinal 
measurement.*

*Strictly speaking, ordinal measurement also can be associated with qualitative data whose 

classes are ordered. Examples of ordered qualitative data include the classification of skilled 

workers as master craftsman, journeyman, or apprentice; socioeconomic status as low, middle, or 

high; and academic grades as A, B, C, D, or F. It’s worth distinguishing between qualitative data 

with nominal and ordinal measurement because, as described in Chapters 3 and 4, a few extra 

statistical procedures are available for ordered qualitative data.

Nominal Measurement 

Words, letters, or numerical codes 

of qualitative data that reflect 

differences in kind based on clas-

sification.

Ordinal Measurement 

Relative standing of ranked data 

that reflects differences in degree 

based on order.
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Quant i ta t i ve  Da ta  and  I n te r va l /Ra t io  Measu rement

Often the products of familiar measuring devices, such as rulers, clocks, or meters, 
the distinctive properties of interval/ratio measurement are equal intervals and a 
true zero. Weighing yourself on a bathroom scale qualifies as interval/ratio measure-
ment. Equal intervals imply that hefting a 10-lb weight while on the bathroom scale 
always registers your actual weight plus 10 lbs. Equal intervals imply that the differ-
ence between 120 and 130 lbs represents an amount of weight equal to the difference 
between 130 and 140 lbs, and it’s appropriate to describe one person’s weight as a 
certain amount greater than another’s.

A true zero signifies that the bathroom scale registers 0 when not in use—that is, 
when weight is completely absent. Since the bathroom scale possesses a true zero, 
numerical readings reflect the total amount of a person’s weight, and it’s appropriate 
to describe one person’s weight as a certain ratio of another’s. It can be said that the 
weight of a 140-lb person is twice that of a 70-lb person.

In the absence of a true zero, numbers—much like the exposed tips of icebergs—
fail to reflect the total amount being measured. For example, a reading of 0 on the 
Fahrenheit temperature scale does not reflect the complete absence of heat—that is, 
the absence of any molecular motion. In fact, true zero equals −459.4°F on this scale. 
It would be inappropriate, therefore, to claim that 80°F is twice as hot as 40°F. An 
appropriate claim could be salvaged by adding 459.4°F to each of these numbers: 
80° becomes 539.4° and 40° becomes 499.4°. Clearly, 539.4°F is not twice as hot as 
499.4°F.

Interval/ratio measurement appears in the behavioral and social sciences as, for 
example, bar-press rates of rats in Skinner boxes; the minutes of dream-friendly rapid 
eye movement (REM) sleep among participants in a sleep-deprivation experiment; and 
the total number of eye contacts during verbal disputes between romantically involved 
couples. Thanks to the considerable amount of information conveyed by each obser-
vation, interval/ratio measurement permits meaningful arithmetic operations, such as 
calculating arithmetic means, as well as the many statistical procedures for quantitative 
data described in this book.

Measurement  o f  Nonphys ica l  Cha rac te r i s t i cs

When numbers represent nonphysical characteristics, such as intellectual aptitude, 
psychopathic tendency, or emotional maturity, the attainment of interval/ratio mea-
surement often is questionable. For example, there is no external standard (such as 
the 10-lb weight) to demonstrate that the addition of a fixed amount of intellectual 
aptitude always produces an equal increase in IQ scores (equal intervals). There also is 
no instrument (such as the unoccupied bathroom scale) that registers an IQ score of 0 
when intellectual aptitude is completely absent (true zero).

In the absence of equal intervals, it would be inappropriate to claim that the dif-
ference between IQ scores of 120 and 130 represents the same amount of intellectual 
aptitude as the difference between IQ scores of 130 and 140. Likewise, in the absence 
of a true zero, it would be inappropriate to claim that an IQ score of 140 represents 
twice as much intellectual aptitude as an IQ score of 70.

Other interpretations are possible. One possibility is to treat IQ scores as attaining 
only ordinal measurement—that is, for example, a score of 140 represents more intellec-
tual aptitude than a score of 130—without specifying the actual size of this difference. 
This strict interpretation would greatly restrict the number of statistical procedures for 
use with behavioral and social data. A looser (and much more common) interpretation, 
adopted in this book, assumes that, although lacking a true zero, IQ scores provide a 
crude measure of corresponding differences in intellectual aptitude (equal intervals). 
Thus, the difference between IQ scores of 120 and 130 represents a roughly similar 
amount of intellectual aptitude as the difference between scores of 130 and 140.

Interval/Ratio Measurement 

Amounts or counts of quantitative 

data reflect differences in degree 

based on equal intervals and a true 

zero.
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10  INTRODUCTION

Insofar as numerical measures of nonphysical characteristics approximate interval 
measurement, they receive the same statistical treatment as numerical measures of 
physical characteristics. In other words, these measures support the arithmetic opera-
tions and statistical tools appropriate for quantitative data.

At this point, you might wish that a person could be injected with 10 points of intel-
lectual aptitude (or psychopathic tendency or emotional maturity) as a first step toward 
an IQ scale with equal intervals and a true zero. Lacking this alternative, however, train 
yourself to look at numbers as products of measurement and to temper your numeri-
cal claims accordingly—particularly when numerical data only seem to approximate 
interval measurement.

Ove rv iew :  Types  o f  Da ta  and  Leve l s  o f  Measu rement

Refer to Figure 1.2 while reading this paragraph. Given some set of observations, 
decide whether any single observation qualifies as a word or as a number. If it is 
a  word (or letter or numerical code), the data are qualitative and the level of measure-
ment is nominal. Arithmetic operations are meaningless and statistical procedures are 
limited. On the other hand, if the observation is a number, the data are either ranked 
or quantitative, depending on whether numbers represent only relative standing or an 
amount/count. If the data are ranked, the level of measurement is ordinal and, as with 
qualitative data, arithmetic operations and statistical procedures are limited. If the data 
are quantitative, the level of measurement is interval/ratio—or approximately interval 
when numbers represent nonphysical characteristics—and a full range of arithmetic 
operations and statistical procedures are available.

Progress Check *1.4 Indicate the level of measurement—nominal, ordinal, or interval/
ratio—attained by the following sets of observations or data. When appropriate, indicate that 
measurement is only approximately interval.

FIGURE 1.2 

Overview: types of data and levels of measurement.

NumbersWords

Classification Order Equal Intervals/True Zero

Relative Standing

DATA

Amount or Count

QUALITATIVE
(Yes, No)

QUANTITATIVE
(160,...193 lbs)

RANKS
(1st, 2nd,...)

NOMINAL INTERVAL/RATIOORDINAL
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 1.6 TYPES OF VARIABLES  11

NOTE: Always assign the highest permissible level of measurement to a given set of observa-
tions. For example, a list of annual incomes should be designated as interval/ratio because a 
$1000 difference always signifies the same amount of income (equal intervals) and because 
$0 signifies the complete absence of income. It would be wrong to describe annual income as 
ordinal data even though different incomes always can be ranked as more or less (order), or 
as nominal data even though different incomes always reflect different classes (classification).

(a) height

(b) religious affiliation

(c) score for psychopathic tendency

(d) years of education

(e) military rank

(f) vocational goal

(g) GPA

(h) marital status

Answers on page 420.

1 .6  TYPES  OF  VAR IABLES

Genera l  De f in i t i on

Another helpful distinction is based on different types of variables. A variable is a 
characteristic or property that can take on different values. Accordingly, the weights 
in Table 1.1 can be described not only as quantitative data but also as observations for 
a quantitative variable, since the various weights take on different numerical values. By 
the same token, the replies in Table 1.2 can be described as observations for a qualita-
tive variable, since the replies to the Facebook profile question take on different values 
of either Yes or No. Given this perspective, any single observation in either Table 1.1 
or 1.2 can be described as a constant, since it takes on only one value.

Disc re te  and  Con t inuous  Va r iab les

Quantitative variables can be further distinguished in terms of whether they are 
discrete or continuous. A discrete variable consists of isolated numbers separated by 
gaps. Examples include most counts, such as the number of children in a family (1, 2, 
3, etc., but never 11/

2
 in spite of how you might occasionally feel about a sibling); the 

number of foreign countries you have visited; and the current size of the U.S. popula-
tion. A continuous variable consists of numbers whose values, at least in theory, have 
no restrictions. Examples include amounts, such as weights of male statistics students; 
durations, such as the reaction times of grade school children to a fire alarm; and stan-
dardized test scores, such as those on the Scholastic Aptitude Test (SAT).

Approx imate  Numbers

In theory, values for continuous variables can be carried out infinitely far. Some-
one’s weight, in pounds, might be 140.01438, and so on, to infinity! Practical consid-
erations require that values for continuous variables be rounded off. Whenever values 
are rounded off, as is always the case with actual values for continuous variables, 
the resulting numbers are approximate, never exact. For example, the weights of the 

Variable 

A characteristic or property that 

can take on different values.

Constant 

A characteristic or property that 

can take on only one value.

Discrete Variable 

A variable that consists of isolated 

numbers separated by gaps.

Continuous Variable 

A variable that consists of numbers 

whose values, at least in theory, 

have no restrictions.

Approximate Numbers 

Numbers that are rounded off, as 

is always the case with values for 

continuous variables.
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12  INTRODUCTION

male statistics students in Table 1.1 are approximate because they have been rounded 
to the nearest pound. A student whose weight is listed as 150 lbs could actually weigh 
between 149.5 and 150.5 lbs. In effect, any value for a continuous variable, such as 
150 lbs, must be identified with a range of values from 149.5 to 150.5 rather than with 
a solitary value. As will be seen, this property of continuous variables has a number of 
repercussions, including the selection of graphs in Chapter 2 and the types of meaning-
ful questions about normal distributions in Chapter 5.

Because of rounding-off procedures, gaps appear among values for continuous vari-
ables. For example, because weights are rounded to the nearest pound, no male statis-
tics student in Table 1.1 has a listed weight between 150 and 151 lbs. These gaps are 
more apparent than real; they are superimposed on a continuous variable by our need 
to deal with finite (and, therefore, approximate) numbers.

Progress Check *1.5 Indicate whether the following quantitative observations are  
discrete or continuous.

(a) litter of mice

(b) cooking time for pasta

(c) parole violations by convicted felons

(d) IQ

(e) age

(f) population of your hometown

(g) speed of a jetliner

Answers on page 420.

I ndependen t  and  Dependen t  Va r iab les

Unlike the simple studies that produced the data in Tables 1.1 and 1.2, most studies 
raise questions about the presence or absence of a relationship between two (or more) 
variables. For example, a psychologist might wish to investigate whether couples who 
undergo special training in “active listening” tend to have fewer communication break-
downs than do couples who undergo no special training. To study this, the psychologist 
may expose couples to two different conditions by randomly assigning them either 
to a treatment group that receives special training in active listening or to a control 
group that receives no special training. Such studies are referred to as experiments. An 
experiment is a study in which the investigator decides who receives the special treat-
ment. When well designed, experiments yield the most informative and unambiguous 
conclusions about cause-effect relationships.

I ndependen t  Va r iab le

Since training is assumed to influence communication, it is an independent vari-
able. In an experiment, an independent variable is the treatment manipulated by the 
investigator.

The impartial creation of distinct groups, which differ only in terms of the indepen-
dent variable, has a most desirable consequence. Once the data have been collected, 
any difference between the groups (that survives a statistical analysis, as described in 
Part 2 of the book) can be interpreted as being caused by the independent variable. 
If, for instance, a difference appears in favor of the active-listening group, the psy-
chologist can conclude that training in active listening causes fewer communication 

Experiment 

A study in which the investigator 

decides who receives the special 

treatment.

Independent Variable 

The treatment manipulated by the 

investigator in an experiment.
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breakdowns between couples. Having observed this relationship, the psychologist can 
expect that, if new couples were trained in active listening, fewer breakdowns in com-
munication would occur.

Dependent  Va r iab le

To test whether training influences communication, the psychologist counts the 
number of communication breakdowns between each couple, as revealed by inap-
propriate replies, aggressive comments, verbal interruptions, etc., while discussing a 
 conflict-provoking topic, such as whether it is acceptable to be intimate with a third 
person. When a variable is believed to have been influenced by the independent vari-
able, it is called a dependent variable. In an experimental setting, the dependent 
 variable is measured, counted, or recorded by the investigator.

Unlike the independent variable, the dependent variable isn’t manipulated by the 
investigator. Instead, it represents an outcome: the data produced by the experiment. 
Accordingly, the values that appear for the dependent variable cannot be specified in 
advance. Although the psychologist suspects that couples with special training will 
tend to show fewer subsequent communication breakdowns, he or she has to wait to see 
precisely how many breakdowns will be observed for each couple.

I ndependen t  o r  Dependen t  Va r iab le?

With just a little practice, you should be able to identify these two types of variables. 
In an experiment, what is being manipulated by the investigator at the outset and, there-
fore, qualifies as the independent variable? What is measured, counted, or recorded by 
the investigator at the completion of the study and, therefore, qualifies as the dependent 
variable? Once these two variables have been identified, they can be used to describe 
the problem posed by the study; that is, does the independent variable cause a change 
in the dependent variable?*

Obse rva t iona l  S tud ies

Instead of undertaking an experiment, an investigator might simply observe the 
relation between two variables. For example, a sociologist might collect paired mea-
sures of poverty level and crime rate for each individual in some group. If a statistical 
analysis reveals that these two variables are related or correlated, then, given some 
person’s poverty level, the sociologist can better predict that person’s crime rate or vice 
versa. Having established the existence of this relationship, however, the sociologist 
can only speculate about cause and effect. Poverty might cause crime or vice versa. On 
the other hand, both poverty and crime might be caused by one or some combination 
of more basic variables, such as inadequate education, racial discrimination, unstable 
family environment, and so on. Such studies are often referred to as observational stud-
ies. An observational study focuses on detecting relationships between variables not 
manipulated by the investigator, and it yields less clear-cut conclusions about cause-
effect relationships than does an experiment.

To detect any relationship between active listening and fewer breakdowns in com-
munication, our psychologist could have conducted an observational study rather 
than an experiment. In this case, he or she would have made no effort to manipulate 
active-listening skills by assigning couples to special training sessions. Instead, the 

*For the present example, note that the independent variable (type of training) is qualitative, 

with nominal measurement, whereas the dependent variable (number of communication break-

downs) is quantitative. Insofar as the number of communication breakdowns is used to indicate the 

quality of communication between couples, its level of measurement is approximately interval.

Dependent Variable 

A variable that is believed to have 

been influenced by the independent 

variable.

Observational Study 

A study that focuses on detecting 

relationships between variables not 

manipulated by the investigator.
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 psychologist might have used a preliminary interview to assign an active-listening 
score to each couple. Subsequently, our psychologist would have obtained a count 
of the number of communication breakdowns for each couple during the conflict- 
resolution session. Now data for both variables would have been collected (or 
observed) by the psychologist—and the cause-effect basis of any relationship would 
be speculative. For example, couples already possessing high active-listening scores 
might also tend to be more seriously committed to each other, and this more serious 
commitment itself might cause both the higher active-listening score and fewer break-
downs in communication. In this case, any special training in active listening, without 
regard to the existing degree of a couple’s commitment, would not reduce the number 
of breakdowns in communication.

Confound ing  Va r iab le

Whenever groups differ not just because of the independent variable but also 
because some uncontrolled variable co-varies with the independent variable, any con-
clusion about a cause-effect relationship is suspect. If, instead of random assignment, 
each couple in an experiment is free to choose whether to undergo special training in 
active listening or to be in the less demanding control group, any conclusion must be 
qualified. A difference between groups might be due not to the independent variable 
but to a confounding variable. For instance, couples willing to devote extra effort to 
special training might already possess a deeper commitment that co-varies with more 
active-listening skills. An uncontrolled variable that compromises the interpretation of 
a study is known as a confounding variable. You can avoid confounding variables, as 
in the present case, by assigning subjects randomly to the various groups in the experi-
ment and also by standardizing all experimental conditions, other than the independent 
variable, for subjects in both groups.

Sometimes a confounding variable occurs because it’s impossible to assign subjects 
randomly to different conditions. For instance, if we’re interested in possible differ-
ences in active-listening skills between males and females, we can’t assign the sub-
ject’s gender randomly. Consequently, any difference between these two preexisting 
groups must be interpreted cautiously. For example, if females, on average, are better 
listeners than males, this difference could be caused by confounding variables that 
co-vary with gender, such as preexisting disparities in active-listening skills attribut-
able not merely to gender, but also to cultural stereotypes, social training, vocational 
interests, academic majors, and so on.

Ove rv iew :  Two  Ac t i ve -L i s ten ing  S tud ies

Figure 1.3 summarizes the active-listening study when viewed as an experiment 
and as an observational study. An experiment permits a decision about whether or not 
the average difference between treatment and control groups is real. An observational 
study permits a decision about whether or not the variables are related or correlated.

Progress Check *1.6 For each of the listed studies, indicate whether it is an experiment 
or an observational study. If it is an experiment, identify the independent variable and note any 
possible confounding variables.

(a) years of education and annual income

(b) prescribed hours of sleep deprivation and subsequent amount of REM (dream) sleep

(c) weight loss among obese males who choose to participate either in a weight-loss program 
or a self-esteem enhancement program

(d) estimated study hours and subsequent test score

Confounding variable 

An uncontrolled variable that 

compromises the interpretation of 

a study.
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 1.7 HOW TO USE THIS BOOK  15

(e) recidivism among substance abusers assigned randomly to different rehabilitation pro-
grams

(f) subsequent GPAs of college applicants who, as the result of a housing lottery, live either 
on campus or off campus

Answers on page 420.

1 .7  HOW TO  USE  TH IS  BOOK

This book contains a number of features that will help your study of statistics. Each 
chapter begins with a preview and ends with a summary, a list of important terms, and, 
whenever appropriate, a list of key equations. Use these aids to orient yourself before 
reading a new chapter and to facilitate your review of previous chapters. Frequent 
reviews are desirable, since statistics is cumulative, with earlier topics forming the 
basis for later topics. For easy reference, important terms are defined in the margins. 
Progress checks appear within chapters, and review questions appear at the end of 
each chapter. Do not shy away from the progress checks or review questions; they will 
clarify and expand your understanding as well as improve your ability to work with 
statistics. Appendix B supplies answers to all questions marked with asterisks, includ-
ing all progress checks and selected review questions.

The math review in Appendix A summarizes most of the basic math symbols 
and operations used throughout this book. If you are anxious about your math back-
ground—and almost everyone is—check Appendix A. Be assured that no special math 
background is required. If you can add, subtract, multiply, and divide, you can learn (or 
relearn) the simple math described in Appendix A. If this material looks unfamiliar, it 
would be a good idea to study Appendix A within the next few weeks.

FIGURE 1.3 

Overview: two active-listening studies.
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An electronic version of a student workbook, prepared by Beverly Dretzke of the 
Center for Applied Research and Educational Improvement, University of Minnesota, 
Minneapolis, also accompanies the text. Self-paced and self-correcting, it supplies 
additional problems, questions, and tests that supplement the text. You can access this 
material by clicking on the Student Study Guide in the Student Companion website for 
the text at http://www.wiley.com/college/witte.

We cannot resist ending this chapter with a personal note, as well as a few sugges-
tions based on findings from the learning laboratory. A dear relative lent this book to 
an elderly neighbor, who not only praised it, saying that he wished he had had such 
a stat text many years ago while he was a student at the University of Pittsburgh, but 
subsequently died with the book still open next to his bed. Upon being informed of this, 
the first author’s wife commented, “I wonder which chapter killed him.” In all good 
conscience, therefore, we cannot recommend this book for casual bedside reading if 
you are more than 85 years old. Otherwise, read it anywhere or anytime. Seriously, 
not only read assigned material before class, but also reread it as soon as possible after 
class to maximize the retention of newly learned material. In the same vein, end read-
ing sessions with active rehearsal: Close the book and attempt to re-create mentally, in 
an orderly fashion and with little or no peeking, the material that you have just read. 
With this effort, you should find the remaining chapters accessible and statistics to be 
both understandable and useful.

Summary

Statistics exists because of the prevalence of variability in the real world. It consists 
of two main subdivisions: descriptive statistics, which is concerned with organizing 
and summarizing information for sets of actual observations, and inferential statistics, 
which is concerned with generalizing beyond sets of actual observations—that is, gen-
eralizing from a sample to a population.

Ordinarily, populations are quite large and exist only as potential observations, 
while samples are relatively small and exist as actual observations. Random samples 
increase the likelihood that the sample accurately represents the population because all 
potential observations in the population have an equal chance of being in the random 
sample.

When populations consist of only limited pools of volunteers, as in many investiga-
tions, the focus shifts from random samples to random assignment. Random assign-
ment ensures that each volunteer has an equal chance of occupying any group in the 
investigation. Not only does random assignment minimize any initial biases that might 
favor one group over another, but it also allows us to determine whether an observed 
difference between groups probably is real or merely due to chance variability.

There are three types of data—qualitative, ranked, and quantitative—which are 
paired with three levels of measurement—nominal, ordinal, and interval/ratio, respec-
tively. Qualitative data consist of words, letters, or codes that represent only classes 
with nominal measurement. Ranked data consist of numbers that represent relative 
standing with ordinal measurement. Quantitative data consist of numbers that represent 
an amount or a count with interval/ratio measurement.

Distinctive properties of the three levels of measurement are classification (nomi-
nal), order (ordinal), and equal intervals and true zero (interval/ratio). Shifts to more 
complex levels of measurement permit a wider variety of arithmetic operations and 
statistical procedures.

Even though the numerical measurement of various nonphysical characteristics fails 
to attain an interval/ratio level, the resulting data usually are treated as approximating 
interval measurement. The limitations of these data should not, however, be ignored 
completely when making numerical claims.
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It is helpful to distinguish between discrete and continuous variables. Discrete vari-
ables consist of isolated numbers separated by gaps, whereas continuous variables 
consist of numbers whose values, at least in theory, have no restrictions. In practice, 
values of continuous variables always are rounded off and, therefore, are approximate 
numbers.

It is also helpful to distinguish between independent and dependent variables. In 
experiments, independent variables are manipulated by the investigator; dependent 
variables are outcomes measured, counted, or recorded by the investigator. If well 
designed, experiments yield the most clear-cut information about cause-effect relation-
ships. Investigators may also undertake observational studies in which variables are 
observed without intervention. Observational studies yield less clear-cut information 
about cause-effect relationships. Both types of studies can be weakened by confound-
ing variables.

Important Terms

Descriptive statistics Inferential statistics

Population Sample

Random sampling Random assignment

Data Qualitative data

Ranked data Quantitative data

Level of measurement Nominal measurement

Ordinal measurement Interval/ratio measurement

Variable Constant

Discrete variable Continuous variable

Independent variable Approximate numbers

Experiment Dependent variable

Confounding variable Observational study

REV IEW QUEST IONS

 1.7 Indicate whether each of the following statements typifies descriptive statistics 
(because it describes sets of actual observations) or inferential statistics (because it 
generalizes beyond sets of actual observations).

 (a) On the basis of a survey conducted by the Bureau of Labor Statistics, it is estimated 
that 5.1 percent of the entire workforce was unemployed during the last month.

 (b) During a recent semester, the ages of students at my college ranged from 16 to 
75 years.

 (c) Research suggests that an aspirin every other day reduces the chance of heart 
attacks (by almost 50 percent) in middle-age men.

 (d) Joe’s GPA has hovered near 3.5 throughout college.

 (e) There is some evidence that any form of frustration—whether physical, social, 
economic, or political—always leads to some form of aggression by the frustrated 
 person.
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18  INTRODUCTION

 (f) According to tests conducted by the Environmental Protection Agency, the 2016 
Toyota Prius should average approximately 52 miles per gallon for combined city/
highway travel.

 (g) On average, Babe Ruth hit 32 homeruns during each season of his major league 
baseball career.

 (h) Research on learning suggests that active rehearsal increases the retention of newly 
read material; therefore, immediately after reading a chapter in this book, you should 
close the book and try to organize the new material.

 (i) Children with no siblings tend to be more adult-oriented than children with one or 
more siblings.

 1.8 Indicate whether each of the following studies is an experiment or an observational 
study. If it is an experiment, identify the independent variable and note any possible 
confounding variables.

 (a) A psychologist uses chimpanzees to test the notion that more crowded living con-
ditions trigger aggressive behavior. Chimps are placed, according to an impartial 
assignment rule, in cages with either one, several, or many other chimps. Subse-
quently, during a standard observation period, each chimp is assigned a score based 
on its aggressive behavior toward a chimplike stuffed doll.

 (b) An investigator wishes to test whether, when compared with recognized scientists, 
recognized artists tend to be born under different astrological signs.

 (c) To determine whether there is a relationship between the sexual codes of primitive 
tribes and their behavior toward neighboring tribes, an anthropologist consults avail-
able records, classifying each tribe on the basis of its sexual codes (permissive or 
repressive) and its behavior toward neighboring tribes (friendly or hostile).

 (d) In a study of group problem solving, an investigator assigns college students to 
groups of two, three, or four students and measures the amount of time required by 
each group to solve a complex puzzle.

 (e) A school psychologist wishes to determine whether reading comprehension scores 
are related to the number of months of formal education, as reported on school 
transcripts, for a group of 12-year-old migrant children.

 (f) To determine whether Graduate Record Exam (GRE) scores can be increased by 
cramming, an investigator allows college students to choose to participate in either 
a GRE test-taking workshop or a control (non-test-taking) workshop and then com-
pares the GRE scores earned subsequently by the two groups of students.

 (g) A social scientist wishes to determine whether there is a relationship between the 
attractiveness scores (on a 100-point scale) assigned to college students by a panel 
of peers and their scores on a paper-and-pencil test of anxiety.

 (h) A political scientist wishes to determine whether males and females differ with 
respect to their attitudes toward defense spending by the federal government. She 
asks each person if he or she thinks that the current level of defense spending 
should be increased, remain the same, or be decreased.

 (i) Investigators found that four year-old children who delayed eating one marshmal-
low in order to eat two marshmallows later, scored higher than non-delayers on the 
Scholastic Aptitude Test (SAT) taken over a decade later.
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 1.9 Recent studies, as summarized, for example, in E. Mortensen et al. (2002). The 
association between duration of breastfeeding and adult intelligence. Journal of 
the American Medical Association, 287, 2365–2371, suggest that breastfeeding of 
infants may increase their subsequent cognitive (IQ) development. Both experiments 
and observational studies are cited.

 (a) What determines whether some of these studies are experiments?

 (b) Name at least two potential confounding variables controlled by breastfeeding 
experiments.

 1.10 If you have not done so already, familiarize yourself with the various appendices in 
this book.

 (a) Particularly note the location of Appendix B (Answers to Selected Questions) and 
Appendix D (Glossary).

 (b) Browse through Appendix A (Math Review). If this material looks unfamiliar, study 
Appendix A, using the self-diagnostic tests as guides.
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PART

1
Descriptive Statistics
Organizing and Summarizing Data 

2 Describing Data with Tables and Graphs

3 Describing Data with Averages

4 Describing Variability

5 Normal Distributions and Standard (z) Scores

6 Describing Relationships: Correlation

7 Regression

Preview

You probably associate statistics with sets of numbers. Numerical sets—or, 
more generally, sets of data—usually represent the point of departure for 
a statistical analysis. While focusing on descriptive statistics in the next six 
chapters, we’ll avoid extensive sets of numbers (and the discomfort they 
trigger in some of us) without, however, shortchanging your exposure to key 
statistical tools and concepts. As will become apparent, these tools will help 
us make sense out of data, with its inevitable variability, and communicate 
information about data to others.
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Describing Data  
with Tables and Graphs

TABLES  ( FREQUENCY  D ISTR IBUT IONS )

2.1 FREQUENCY DISTRIBUTIONS FOR QUANTITATIVE DATA

2.2 GUIDELINES

2.3 OUTLIERS

2.4 RELATIVE FREQUENCY DISTRIBUTIONS

2.5 CUMULATIVE FREQUENCY DISTRIBUTIONS

2.6 FREQUENCY DISTRIBUTIONS FOR QUALITATIVE (NOMINAL) DATA

2.7 INTERPRETING DISTRIBUTIONS CONSTRUCTED BY OTHERS

GRAPHS

2.8 GRAPHS FOR QUANTITATIVE DATA

2.9 TYPICAL SHAPES

2.10 A GRAPH FOR QUALITATIVE (NOMINAL) DATA

2.11 MISLEADING GRAPHS

2.12 DOING IT YOURSELF

Summary / Important Terms / Review Questions

Preview

A frequency distribution helps us to detect any pattern in the data (assuming a 

pattern exists) by superimposing some order on the inevitable variability among 

observations. For example, the appearance of a familiar bell-shaped pattern in the 

frequency distribution of reaction times of airline pilots to a cockpit alarm suggests the 

presence of many small chance factors whose collective effect must be considered in 

pilot retraining or cockpit redesign. Frequency distributions will appear in their various 

forms throughout the remainder of the book.

Graphs of frequency distributions further aid our effort to detect data patterns and 

make sense out of the data. For example, knowing that the silhouette of a graph is 

balanced, as is the distribution of IQs for the general population, or that the silhouette 

is lopsided, as is the distribution of wealth for U.S. citizens, might supply important 

clues for understanding the data. Because they vividly summarize information, graphs 

sometimes serve as the final products of simple statistical analyses.

Given some data, as in Table 1.1 on page 4, how do you make sense out of them—both 
for yourself and for others? Hidden among all those observations, is there an impor-
tant message, possibly one that either supports or fails to support one of your ideas? 

CHAPTER

2
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(Or, more interestingly, is there a difference between two or more sets of data—for 
instance, between the GRE scores of students who do or do not attend a test-taking 
workshop; or between the survival rates of coronary bypass patients who do or do not 
own a dog; or between the starting salaries of male and female executives?) At this 
point, especially if you are facing a fresh set of data in which you have a special inter-
est, statistics can be exciting as well as challenging. Your initial responsibility is to 
describe the data as clearly, completely, and concisely as possible. Statistics supplies 
some tools, including tables and graphs, and some guidelines. Beyond that, it is just the 
data and you. There is no single right way to describe data. Equally valid descriptions 
of the same data might appear in tables or graphs with different formats. By following 
just a few guidelines, your reward will be a well-summarized set of data.

TABLES  ( FREQUENCY  D ISTR IBUT IONS )

2 .1  FREQUENCY DISTRIBUTIONS FOR QUANTITATIVE DATA

Table 2.1 shows one way to organize the weights of the male statistics students listed 
in Table 1.1. First, arrange a column of consecutive numbers, beginning with the light-
est weight (133) at the bottom and ending with the heaviest weight (245) at the top. 
(Because of the extreme length of this column, many intermediate numbers have been 
omitted in Table 2.1, a procedure never followed in practice.) Then place a short verti-
cal stroke or tally next to a number each time its value appears in the original set of 
data; once this process has been completed, substitute for each tally count (not shown 
in Table 2.1) a number indicating the frequency (  f  ) of occurrence of each weight.

A frequency distribution is a collection of observations produced by sorting obser-
vations into classes and showing their frequency (f ) of occurrence in each class.

When observations are sorted into classes of single values, as in Table 2.1, the result is 
referred to as a frequency distribution for ungrouped data.

Not  A lways  App rop r ia te

The frequency distribution shown in Table 2.1 is only partially displayed because 
there are more than 100 possible values between the largest and smallest observa-
tions. Frequency distributions for ungrouped data are much more informative when the 
number of possible values is less than about 20. Under these circumstances, they are a 
straightforward method for organizing data. Otherwise, if there are 20 or more possible 
values, consider using a frequency distribution for grouped data.

Progress Check *2.1 Students in a theater arts appreciation class rated the classic film 
The Wizard of Oz on a 10-point scale, ranging from 1 (poor) to 10 (excellent), as follows:

3 7 2 7 8
3 1 4 10 3
2 5 3 5 8
9 7 6 3 7
8 9 7 3 6

Since the number of possible values is relatively small—only 10—it’s appropriate to construct 
a frequency distribution for ungrouped data. Do this.

Answer on page 420.

Table 2.1 
FREQUENCY 

DISTRIBUTION 
(UNGROUPED DATA)

WEIGHT f

245 1
244 0
243 0
242 0

*
*
*

161 0
160 4
159 1
158 2
157 3

*
*
*

136 0
135 2
134 0
133    1

Total 53

Frequency Distribution 

A collection of observations pro-

duced by sorting observations 

into classes and showing their 

frequency (f) of occurrence in each 

class.

Frequency Distribution 

for Ungrouped Data 

A frequency distribution produced 

whenever observations are sorted 

into classes of single values.
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Grouped  Da ta

Table  2.2 shows another way to organize the weights in Table  1.1 according to 
their frequency of occurrence. When observations are sorted into classes of more than 
one value, as in Table 2.2, the result is referred to as a frequency distribution for 
grouped data. Let’s look at the general structure of this frequency distribution. Data 
are grouped into class intervals with 10 possible values each. The bottom class includes 
the smallest observation (133), and the top class includes the largest observation (245). 
The distance between bottom and top is occupied by an orderly series of classes. The 
frequency (  f  ) column shows the frequency of observations in each class and, at the 
bottom, the total number of observations in all classes.

Let’s summarize the more important properties of the distribution of weights in 
Table 2.2. Although ranging from the 130s to the 240s, the weights peak in the 150s, 
with a progressively decreasing but relatively heavy concentration in the 160s and 
170s. Furthermore, the distribution of weights is not balanced about its peak, but tilted 
in the direction of the heavier weights.

2 .2  GU IDEL INES

The “Guidelines for Frequency Distributions” box lists seven rules for producing a 
well-constructed frequency distribution. The first three rules are essential and should 
not be violated. The last four rules are optional and can be modified or ignored as 
circumstances warrant. Satisfy yourself that the frequency distribution in Table  2.2 
actually complies with these seven rules.

How Man y  C lasses?

The seventh guideline requires a few more comments. The use of too many 
classes—as in Table 2.3, in which the weights are grouped into 24 classes, each with 
an interval of 5—tends to defeat the purpose of a frequency distribution, namely, to 
provide a reasonably concise description of data. On the other hand, the use of too few 
classes—as in Table 2.4, in which the weights are grouped into three classes, each with 
an interval of 50—can mask important data patterns such as the high density of weights 
in the 150s and 160s.

When  The re  A re  E i the r  Many  o r  Few  Obse rva t ions

There is nothing sacred about 10, the recommended number of classes. When 
describing large sets of data, you might aim for considerably more than 10 classes in 
order to portray some of the more fine-grained data patterns that otherwise could van-
ish. On the other hand, when describing small batches of data, you might aim for fewer 
than 10 classes in order to spotlight data regularities that otherwise could be blurred. 
It is best, therefore, to think of 10, the recommended number of classes, as a rough rule 
of thumb to be applied with discretion.

Gaps  be tween  C lasses

In well-constructed frequency tables, the gaps between classes, such as between 149 
and 150 in Table 2.2, show clearly that each observation or score has been assigned to one, 
and only one, class. The size of the gap should always equal one unit of  measurement; 
that is, it should always equal the smallest possible difference between scores within a 
particular set of data. Since the gap is never bigger than one unit of measurement, no 
score can fall into the gap. In the present case, in which the weights are reported to the 
nearest pound, one pound is the unit of measurement, and therefore, the gap between 
classes equals one pound. These gaps would not be appropriate if the weights had been 
reported to the nearest tenth of a pound. In this case, one-tenth of a pound is the unit of 
 measurement, and therefore, the gap should equal one-tenth of a pound. The smallest 
class interval would be 130.0–139.9 (not 130–139), and the next class interval would be 

Table 2.2
FREQUENCY 

DISTRIBUTION 
(GROUPED DATA)

WEIGHT f

240–249 1
230–239 0
220–229 3
210–219 0
200–209 2
190–199 4
180–189 3
170–179 7
160–169 12
150–159 17
140–149 1
130–139    3

Total 53

Frequency Distribution 

for Grouped Data 

A frequency distribution pro-

duced whenever observations 

are sorted into classes of more 

than one value.

Unit of Measurement 

The smallest possible difference 

between scores.
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140.0–149.9 (not 140–149), and so on. These new boundaries would guarantee that any 
observation, such as 139.6, would be assigned to one, and only one, class.

Gaps between classes do not signify any disruption in the essentially continuous 
nature of the data. It would be erroneous to conclude that, because of the gap between 
149 and 150 for the frequency distribution in Table 2.2, nobody can weigh between 
149 and 150 lbs. As noted in Section 1.6, a man who reports his weight as 150 lbs 
 actually could weigh anywhere between 149.5 and 150.5 lbs, just as a man who reports 
his weight as 149 lbs actually could weigh anywhere between 148.5 and 149.5 lbs.

GUIDELINES FOR FREQUENCY DISTRIBUTIONS

Essential

1. Each observation should be included in one, and only one, class.

Example: 130–139, 140–149, 150–159, etc. It would be incorrect to use 
130–140, 140–150, 150–160, etc., in which, because the boundaries 
of classes overlap, an observation of 140 (or 150) could be assigned to 
either of two classes.

2. List all classes, even those with zero frequencies.

Example: Listed in Table 2.2 is the class 210–219 and its frequency of 
zero. It would be incorrect to skip this class because of its zero frequency.

3. All classes should have equal intervals.

Example: 130–139, 140–149, 150–159, etc. It would be incorrect to use 
130–139, 140–159, etc., in which the second class interval (140–159) is 
twice as wide as the first class interval (130–139).

Optional

4. All classes should have both an upper boundary and a lower 
boundary.

Example: 240–249. Less preferred would be 240–above, in which no 
maximum value can be assigned to observations in this class. (Neverthe-
less, this type of open-ended class is employed as a space-saving device 
when many different tables must be listed, as in the Statistical Abstract 
of the United States. An open-ended class appears in the table “Two Age 
Distributions” in Review Question 2.17 at the end of this chapter.)

5. Select the class interval from convenient numbers, such as 
1, 2, 3, . . . 10, particularly 5 and 10 or multiples of 5 and 10.

Example: 130–139, 140–149, in which the class interval of 10 is a 
convenient number. Less preferred would be 130–142, 143–155, etc., in 
which the class interval of 13 is not a convenient number.

6. The lower boundary of each class interval should be a multiple of 
the class interval.

Example: 130–139, 140–149, in which the lower boundaries of 130, 
140, are multiples of 10, the class interval. Less preferred would be 
135–144, 145–154, etc., in which the lower boundaries of 135 and 145 
are not multiples of 10, the class interval.

7. Aim for a total of approximately 10 classes.

Example: The distribution in Table 2.2 uses 12 classes. Less preferred 
would be the distributions in Tables 2.3 and 2.4. The distribution in 
Table 2.3 has too many classes (24), whereas the distribution in Table 2.4 
has too few classes (3).

Table 2.3
FREQUENCY 

DISTRIBUTION WITH 
TOO MANY 
INTERVALS

WEIGHT f

245–249 1
240–244 0
235–239 0
230–234 0
225–229 2
220–224 1
215–219 0
210–214 0
205–209 2
200–204 0
195–199 0
190–194 4
185–189 1
180–184 2
175–179 2
170–174 5
165–169 7
160–164 5
155–159 9
150–154 8
145–149 1
140–144 0
135–139 2
130–134    1

Total 53

Table 2.4
FREQUENCY 

DISTRIBUTION WITH 
TOO FEW INTERVALS

WEIGHT f

200–249 6
150–199 43
100–149    4

Total 53

Witte11e_c02.indd   25 11/18/2016   9:02:52 PM



26  DESCRIBING DATA WITH TABLES AND GRAPHS 

Rea l  L im i t s  o f  C lass  I n te r va l s

Gaps cannot be ignored when you are determining the actual width of any class 
interval. The real limits are located at the midpoint of the gap between adjacent tabled 
boundaries; that is, one-half of one unit of measurement below the lower tabled bound-
ary and one-half of one unit of measurement above the upper tabled boundary.

For example, the real limits for 140–149 in Table 2.2 are 139.5 (140 minus one-half 
of the unit of measurement of 1) and 149.5 (149 plus one-half of the unit of measurement 
of 1), and the actual width of the class interval would be 10 (from 149.5 139.5 = 10).

If weights had been reported to the nearest tenth of a pound, the real limits for 
140.0–149.9 would be 139.95 (140.0 minus one-half of the unit of measurement of .1) 
and 149.95 (149.9 plus one-half of one unit of measurement of .1), and the actual width 
of the class interval still would be 10 (from 149.95 139.95 = 10).

Cons t ruc t ing  F requency  D i s t r i bu t ions

Now that you know the properties of well-constructed frequency distributions, 
study the step-by-step procedure listed in the “Constructing Frequency Distributions” 
box, which shows precisely how the distribution in Table 2.2 was constructed from the 
weight data in Table 1.1. You might want to refer back to this box when you need to 
construct a frequency distribution for grouped data.

Progress Check *2.2 The IQ scores for a group of 35 high school dropouts are as follows:

91 85 84 79 80
87 96 75 86 104
95 71 105 90 77

123 80 100 93 108
98 69 99 95 90

110 109 94 100 103
112 90 90 98 89

(a) Construct a frequency distribution for grouped data.

(b) Specify the real limits for the lowest class interval in this frequency distribution.

Answers on pages 420 and 421.

Progress Check *2.3 What are some possible poor features of the following frequency 
distribution?

ESTIMATED WEEKLY TV VIEWING TIME 
(HRS) FOR 250 SIXTH GRADERS

VIEWING TIME f

35–above 2
30–34 5
25–30 29
20–22 60
15–19 60
10–14 34
5–9 31
0–4    29

Total 250

Answers on page 421.

Real Limits 

Located at the midpoint of the 

gap between adjacent tabled 

 boundaries.
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2 .3  OUTL IERS

Be prepared to deal occasionally with the appearance of one or more very extreme
scores, or outliers. A GPA of 0.06, an IQ of 170, summer wages of $62,000—each 
requires special attention because of its potential impact on a summary of the data.

Check  fo r  Accu racy

Whenever you encounter an outrageously extreme value, such as a GPA of 0.06, 
attempt to verify its accuracy. For instance, was a respectable GPA of 3.06 recorded 
erroneously as 0.06? If the outlier survives an accuracy check, it should be treated as 
a legitimate score.

Outlier

A very extreme score.

CONSTRUCTING FREQUENCY DISTRIBUTIONS

1. Find the range, that is, the difference between the largest and 
smallest observations. The range of weights in Table 1.1 is 
245 133 = 112.

2. Find the class interval required to span the range by dividing the 
range by the desired number of classes (ordinarily 10). In the present 
 example,

Class erval
range

desired number of classes
intee = = =

112

10
11 2.

3. Round off to the nearest convenient interval (such as 1, 2, 3, . . . 
10, particularly 5 or 10 or multiples of 5 or 10). In the present 
 example, the nearest convenient interval is 10.

4. Determine where the lowest class should begin. (Ordinarily, this 
number should be a multiple of the class interval.) In the present 
example, the smallest score is 133, and therefore the lowest class 
should begin at 130, since 130 is a multiple of 10 (the class interval).

5. Determine where the lowest class should end by adding the 
class interval to the lower boundary and then subtracting one unit 
of  measurement. In the present example, add 10 to 130 and then 
subtract 1, the unit of measurement, to obtain 139—the number at 
which the lowest class should end.

6. Working upward, list as many equivalent classes as are required 
to include the largest observation. In the present example, list 
130–139, 140–149, . . . , 240–249, so that the last class includes 
245, the largest score.

7. Indicate with a tally the class in which each observation falls. 
For  example, the first score in Table 1.1, 160, produces a tally next 
to 160–169; the next score, 193, produces a tally next to 190–199; 
and so on.

8. Replace the tally count for each class with a number—the 
 frequency (f )—and show the total of all frequencies. (Tally marks 
are not usually shown in the final frequency distribution.)

9. Supply headings for both columns and a title for the table.
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Might  Exc lude  f rom  Summar ies

You might choose to segregate (but not to suppress!) an outlier from any summary 
of the data. For example, you might relegate it to a footnote instead of using exces-
sively wide class intervals in order to include it in a frequency distribution. Or you 
might use various numerical summaries, such as the median and interquartile range, to 
be discussed in Chapters 3 and 4, that ignore extreme scores, including outliers.

Might  En hance  Unde rs tand ing

Insofar as a valid outlier can be viewed as the product of special circumstances, it 
might help you to understand the data. For example, you might understand better why 
crime rates differ among communities by studying the special circumstances that produce 
a community with an extremely low (or high) crime rate, or why learning rates differ 
among third graders by studying a third grader who learns very rapidly (or very slowly).

Progress Check *2.4 Identify any outliers in each of the following sets of data collected 
from nine college students.

SUMMER INCOME AGE FAMILY SIZE GPA

$6,450 20 2 2.30
$4,820 19 4 4.00
$5,650 61 3 3.56
$1,720 32 6 2.89
$600 19 18 2.15
$0 22 2 3.01
$3,482 23 6 3.09
$25,700 27 3 3.50
$8,548 21 4 3.20

Answers on page 421.

2 .4  RELAT IVE  FREQUENCY  D ISTR IBUT IONS

An important variation of the frequency distribution is the relative frequency  distribution.

Relative frequency distributions show the frequency of each class as a part or 
fraction of the total frequency for the entire distribution.

This type of distribution allows us to focus on the relative concentration of observa-
tions among different classes within the same distribution. In the case of the weight 
data in Table  2.2, it permits us to see that the 160s account for about one-fourth 
(12/53 = 23, or 23%) of all observations. This type of distribution is especially helpful 
when you must compare two or more distributions based on different total numbers of 
observations. For instance, as in Review Question 2.17, you might want to compare the 
distribution of ages for 500 residents of a small town with that for the approximately 
300  million residents of the United States. The conversion to relative  frequencies 
allows a direct comparison of the shapes of these two distributions without having to 
adjust for the radically different total numbers of observations.

Cons t ruc t ing  Re la t i ve  F requency  D i s t r i bu t ions

 To convert a frequency distribution into a relative frequency distribution, divide 
the frequency for each class by the total frequency for the entire distribution. Table 2.5 
illustrates a relative frequency distribution based on the weight distribution of Table 2.2. 

Relative Frequency Distribution 

A frequency distribution showing 

the frequency of each class as a 

fraction of the total frequency for 

the entire distribution.
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The conversion to proportions is straightforward. For instance, to obtain the proportion 
of .06 for the class 130–139, divide the frequency of 3 for that class by the total fre-
quency of 53. Repeat this process until a proportion has been calculated for each class.

Percen tages  o r  P ropo r t i ons?

Some people prefer to deal with percentages rather than proportions because 
 percentages usually lack decimal points. A proportion always varies between 0 and 
1, whereas a percentage always varies between 0 percent and 100 percent. To convert 
the relative frequencies in Table 2.5 from proportions to percentages, multiply each 
proportion by 100; that is, move the decimal point two places to the right. For example, 
multiply .06 (the proportion for the class 130–139) by 100 to obtain 6 percent.

Progress Check *2.5 GRE scores for a group of graduate school applicants are distrib-
uted as follows:

GRE f

725–749 1
700–724 3
675–699 14
650–674 30
625–649 34
600–624 42
575–599 30
550–574 27
525–549 13
500–524 4
475–499     2

Total 200

Convert to a relative frequency distribution. When calculating proportions, round numbers to 
two digits to the right of the decimal point, using the rounding procedure specified in Section 
A.7 of Appendix A.

Answers on page 421.

Table 2.5
RELATIVE FREQUENCY DISTRIBUTION

WEIGHT f RELATIVE f

240–249 1 .02
230–239 0 .00
220–229 3 .06
210–219 0 .00
200–209 2 .04
190–199 4 .08
180–189 3 .06
170–179 7 .13
160–169 12 .23
150–159 17 .32
140–149 1 .02
130–139   3  .06

Total 53 1.02*

* The sum does not equal 1.00 because of rounding-off errors.

Witte11e_c02.indd   29 11/18/2016   9:02:53 PM



30  DESCRIBING DATA WITH TABLES AND GRAPHS 

2 .5  CUMULAT IVE  FREQUENCY  D ISTR IBUT IONS

Cumulative frequency distributions show the total number of observations in 
each class and in all lower-ranked classes.

This type of distribution can be used effectively with sets of scores, such as test 
scores for intellectual or academic aptitude, when relative standing within the distribu-
tion assumes primary importance. Under these circumstances, cumulative frequencies 
are usually converted, in turn, to cumulative percentages. Cumulative percentages are 
often referred to as percentile ranks.

Cons t ruc t ing  Cumu la t i ve  F requency  D i s t r i bu t ions

To convert a frequency distribution into a cumulative frequency distribution, add 
to the frequency of each class the sum of the frequencies of all classes ranked below 
it. This gives the cumulative frequency for that class. Begin with the lowest-ranked 
class in the frequency distribution and work upward, finding the cumulative frequen-
cies in ascending order. In Table 2.6, the cumulative frequency for the class 130–139 
is 3, since there are no classes ranked lower. The cumulative frequency for the class 
140–149 is 4, since 1 is the frequency for that class and 3 is the frequency of all 
lower-ranked classes. The cumulative frequency for the class 150–159 is 21, since 17 
is the frequency for that class and 4 is the sum of the frequencies of all lower-ranked 
classes.

Table 2.6 
CUMULATIVE FREQUENCY DISTRIBUTION

WEIGHT f CUMULATIVE f
CUMULATIVE  

PERCENT

240–249 1 53 100
230–239 0 52 98
220–229 3 52 98
210–219 0 49 92
200–209 2 49 92
190–199 4 47 89
180–189 3 43 81
170–179 7 40 75
160–169 12 33 62
150–159 17 21 40
140–149 1 4 8
130–139    3 3 6

Total 53

Cumula t i ve  Pe rcen tages

As has been suggested, if relative standing within a distribution is particularly 
important, then cumulative frequencies are converted to cumulative percentages. 
A glance at Table 2.6 reveals that 75 percent of all weights are the same as or lighter 
than the weights between 170 and 179 lbs. To obtain this cumulative percentage (75%), 
the cumulative frequency of 40 for the class 170–179 should be divided by the total 
frequency of 53 for the entire distribution.

Cumulative Frequency  

Distribution 

A frequency distribution showing 

the total number of observations 

in each class and all lower-ranked 

classes.
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Progress Check *2.6

(a) Convert the distribution of GRE scores shown in Question 2.5 to a cumulative frequency 
distribution.

(b) Convert the distribution of GRE scores obtained in Question 2.6(a) to a cumulative percent 
frequency distribution.

Answers on page 421.

Percen t i l e  Ranks

When used to describe the relative position of any score within its parent distribu-
tion, cumulative percentages are referred to as percentile ranks. The percentile rank 
of a score indicates the percentage of scores in the entire distribution with similar or 
smaller values than that score. Thus a weight has a percentile rank of 80 if equal or 
lighter weights constitute 80 percent of the entire distribution.

Approx imate  Pe rcen t i l e  Ranks  ( f r om  G rouped  Da ta )

The assignment of exact percentile ranks requires that cumulative percentages be 
obtained from frequency distributions for ungrouped data. If we have access only to a 
frequency distribution for grouped data, as in Table 2.6, cumulative percentages can  
be used to assign approximate percentile ranks. In Table 2.6, for example, any weight 
in the class 170–179 could be assigned an approximate percentile rank of 75, since 75 
is the cumulative percent for this class.

Progress Check *2.7 Referring to Table 2.6, find the approximate percentile rank of any 
weight in the class 200–209.

Answers on page 422.

2 .6  FREQUENCY  D ISTR IBUT IONS  FOR  QUAL ITAT IVE 
(NOMINAL )  DATA

When, among a set of observations, any single observation is a word, letter, or numeri-
cal code, the data are qualitative. Frequency distributions for qualitative data are easy 
to construct. Simply determine the frequency with which observations occupy each 
class, and report these frequencies as shown in Table  2.7 for the Facebook profile 
survey. This frequency distribution reveals that Yes replies are approximately twice as 
prevalent as No replies.

Orde red  Qua l i t a t i ve  Da ta

It’s totally arbitrary whether Yes is listed above or below No in Table 2.7. When, 
however, qualitative data have an ordinal level of measurement because observations 
can be ordered from least to most, that order should be preserved in the frequency table, 
as illustrated in Table 2.8, in which military ranks are listed in descending order from 
general to lieutenant.

Re la t i ve  and  Cumu la t i ve  D i s t r i bu t ions  fo r  Qua l i t a t i ve  Da ta

 Frequency distributions for qualitative variables can always be converted into rela-
tive frequency distributions, as illustrated in Table 2.8. Furthermore, if measurement is 
ordinal because observations can be ordered from least to most, cumulative frequencies 
(and cumulative percentages) can be used. As illustrated in Table 2.8, it’s appropriate 

Percentile Rank of an 

 Observation

Percentage of scores in the entire 

distribution with equal or smaller 

values than that score.

Table 2.7 
FACEBOOK PROFILE 

SURVEY

Response f
Yes   56
No   27

Total   83
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to claim, for example, that a captain has an approximate percentile rank of 63 among 
officers since 62.5 (or 63) is the cumulative percent for this class. If measurement is 
only nominal because observations cannot be ordered, as in Table 2.7, a cumulative 
frequency distribution is meaningless.

Progress Check *2.8 Movie ratings reflect ordinal measurement because they can be 
ordered from most to least restrictive: NC-17, R, PG-13, PG, and G. The ratings of some films 
shown recently in San Francisco are as follows:

PG PG PG PG-13 G
G PG-13 R PG PG
R PG R PG R

NC-17 NC-17 PG G PG-13

(a) Construct a frequency distribution.

(b) Convert to relative frequencies, expressed as percentages.

(c) Construct a cumulative frequency distribution.

(d) Find the approximate percentile rank for those films with a PG rating.

Answers on page 422.

2 .7  INTERPRET ING  D ISTR IBUT IONS  CONSTRUCTED 
BY  OTHERS

When inspecting a distribution for the first time, train yourself to look at the entire 
table, not just the distribution. Read the title, column headings, and any footnotes. 
Where do the data come from? Is a source cited? Next, focus on the form of the fre-
quency distribution. Is it well constructed? For quantitative data, does the total number 
of classes seem to avoid either over- or under-summarizing the data?

After these preliminaries, inspect the content of the frequency distribution. What is the 
approximate range? Does it seem reasonable? (Otherwise, you might be misinterpreting 
the distribution or the distribution might contain one or more outliers that require spe-
cial attention.) As best you can, disregard the inevitable irregularities that accompany a 
frequency distribution and focus on its overall appearance or shape. Do the  frequencies 
arrange themselves around a single peak (high point) or several peaks? (More than one 
peak might signify the presence of several different types of observations—for example, 
the annual incomes of male and female wage earners—coexisting in the same  distribution.) 
Is the distribution fairly balanced around its peak? (An obviously unbalanced distribution 

Table 2.8
RANKS OF OFFICERS IN THE U.S. ARMY  (PROJECTED 2016)

RANK f PROPORTION CUMULATIVE PERCENT
General  311 .004* 100.0
Colonel  13,156 .167  99.6
Major  16,108 .204  82.9
Captain  29,169 .370  62.5
Lieutenant  20,083 .255  25.5

Total 78,827

*To avoid a value of .00 for General, proportions are carried three places to the right of the 
decimal point.
Source: http://www.statista.com/statistics
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might reflect the presence of a numerical boundary, such as a score of 100 percent correct 
on an extremely easy exam, beyond which no score is possible.)

When interpreting distributions, including distributions constructed by someone 
else, keep an open mind. Follow the previous suggestions but also pursue any ques-
tions stimulated by your inspection of the entire table.

GRAPHS

Data can be described clearly and concisely with the aid of a well-constructed fre-
quency distribution. And data can often be described even more vividly, particularly 
when you’re attempting to communicate with a general audience, by converting fre-
quency distributions into graphs. Let’s explore some of the most common types of 
graphs for quantitative and qualitative data.

2 .8  GRAPHS  FOR  QUANT ITAT IVE  DATA

His tog rams

The weight distribution described in Table 2.2 appears as a histogram in Figure 2.1. 
A casual glance at this histogram confirms previous conclusions: a dense concentration 
of weights among the 150s, 160s, and 170s, with a spread in the direction of the heavier 
weights. Let’s pinpoint some of the more important features of histograms.

 ■ Equal units along the horizontal axis (the X axis, or abscissa) reflect the various 
class intervals of the frequency distribution.

 ■ Equal units along the vertical axis (the Y axis, or ordinate) reflect increases in 
frequency. (The units along the vertical axis do not have to be the same width as 
those along the horizontal axis.)

 ■ The intersection of the two axes defines the origin at which both numerical scales 
equal 0.

Histogram 

A bar-type graph for quantitative 

data. The common boundaries 

between adjacent bars emphasize 

the continuity of the data, as with 

continuous variables.

FIGURE 2.1 

Histogram.
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 ■ Numerical scales always increase from left to right along the horizontal axis and 
from bottom to top along the vertical axis. It is considered good practice to use 
wiggly lines to highlight breaks in scale, such as those along the horizontal axis 
in Figure 2.1, between the origin of 0 and the smallest class of 130–139.

 ■ The body of the histogram consists of a series of bars whose heights reflect the 
frequencies for the various classes. Notice that adjacent bars in histograms have 
common boundaries that emphasize the continuity of quantitative data for con-
tinuous variables. The introduction of gaps between adjacent bars would  suggest 
an artificial disruption in the data more appropriate for discrete quantitative 
 variables or for qualitative variables.

The extensive set of numbers along the horizontal scale of Figure 2.1 can be replaced 
with a few convenient numbers, as in panel A of Figure 2.2. This concession helps 
avoid excessive cluttering of the numerical scale.

F requency  Po l ygon

An important variation on a histogram is the frequency polygon, or line graph. 
Frequency polygons may be constructed directly from frequency distributions. How-
ever, we will follow the step-by-step transformation of a histogram into a frequency 
polygon, as described in panels A, B, C, and D of Figure 2.2.

A. This panel shows the histogram for the weight distribution.

B. Place dots at the midpoints of each bar top or, in the absence of bar tops, at mid-
points for classes on the horizontal axis, and connect them with straight lines. 
[To find the midpoint of any class, such as 160–169, simply add the two tabled 
boundaries (160 + 169 = 329) and divide this sum by 2 (329/2 = 164.5).]

C. Anchor the frequency polygon to the horizontal axis. First, extend the upper tail 
to the midpoint of the first unoccupied class (250–259) on the upper flank of the 
histogram. Then extend the lower tail to the midpoint of the first unoccupied 
class (120–129) on the lower flank of the histogram. Now all of the area under 
the frequency polygon is enclosed completely.

D. Finally, erase all of the histogram bars, leaving only the frequency polygon. 
 Frequency polygons are particularly useful when two or more frequency distri-
butions or relative frequency distributions are to be included in the same graph. 
See Review Question 2.17.

Progress Check *2.9 The following frequency distribution shows the annual incomes in 
dollars for a group of college graduates.

INCOME f

130,000–139,999 1
120,000–129,999 0
110,000–119,999 1
100,000–109,999 3
 90,000–99,999 1
 80,000–89,999 5
 70,000–79,999 7
 60,000–69,999 10
 50,000–59,999 14
 40,000–49,999 23
 30,000–39,999 17
 20,000–29,999 10
 10,000–19,999 8
    0–9,999     3

Total 103

Frequency Polygon 

A line graph for quantitative data 

that also emphasizes the continuity 

of continuous variables.
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FIGURE 2.2 

Transition from histogram to frequency polygon.
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(a) Construct a histogram.

(b) Construct a frequency polygon.

(c) Is this distribution balanced or lopsided?

Answers on page 422.
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S tem and  Lea f  D i sp lays

Still another technique for summarizing quantitative data is a stem and leaf  display. 
Stem and leaf displays are ideal for summarizing distributions, such as that for weight 
data, without destroying the identities of individual observations.

Cons t ruc t ing  a  D i sp lay

The leftmost panel of Table 2.9 re-creates the weights of the 53 male statistics students 
listed in Table 1.1. To construct the stem and leaf display for these data, first note that, 
when counting by tens, the weights range from the 130s to the 240s. Arrange a column of 
numbers, the stems, beginning with 13 (representing the 130s) and ending with 24 (repre-
senting the 240s). Draw a vertical line to separate the stems, which represent multiples of 
10, from the space to be occupied by the leaves, which represent multiples of 1.

Table 2.9 
CONSTRUCTING STEM AND LEAF DISPLAY FROM WEIGHTS OF MALE 

STATISTICS STUDENTS

RAW SCORES STEM AND LEAF DISPLAY

 160 165 135 175
 193 168 245 165 13 3 5 5
 226 169 170 185 14 5
152 160 156 154 15 2 7 1 7 8 0 2 0 2 6 9 8 2 6 4 7 6
180 170 160 179  16  0  3 5 8 9 0 0 0 6 5 5 5
205 150 225 165 17 2 0 0 0 2 5 9
163 152 190 206 18 0 0 5
157 160 159 165  19  3  0 0 0
151 190 172 157 20 5 6
157 150 190 156 21
220 133 166 135  22  6  0 5
145 180 158 23
158 152 152 24 5
172 170 156

Next, enter each raw score into the stem and leaf display. As suggested by the 
shaded coding in Table 2.9, the first raw score of 160 reappears as a leaf of 0 on a stem 
of 16. The next raw score of 193 reappears as a leaf of 3 on a stem of 19, and the third 
raw score of 226 reappears as a leaf of 6 on a stem of 22, and so on, until each raw score 
reappears as a leaf on its appropriate stem.

I n te rp re ta t i on

Notice that the weight data have been sorted by the stems. All weights in the 130s 
are listed together; all of those in the 140s are listed together, and so on. A glance at 
the stem and leaf display in Table 2.9 shows essentially the same pattern of weights 
depicted by the frequency distribution in Table 2.2 and the histogram in Figure 2.1. 
(If you rotate the book counterclockwise one-quarter of a full turn, the silhouette of 
the stem and leaf display is the same as the histogram for the weight data. This simple 
maneuver only works if, as in the present display, stem values are listed from smallest 
at the top to largest at the bottom—one reason why the customary ranking for most 
tables in this book has been reversed for stem and leaf displays.)

Se lec t ion  o f  S tems

Stem values are not limited to units of 10. Depending on the data, you might identify 
the stem with one or more leading digits that culminates in some variation on a stem 

Stem and Leaf Display 

A device for sorting quantitative 

data on the basis of leading and 

trailing digits.
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value of 10, such as 1, 100, 1000, or even .1, .01, .001, and so on. For instance, an 
annual income of $23,784 could be displayed as a stem of 23 (thousands) and a leaf of 
784. (Leaves consisting of two or more digits, such as 784, are separated by commas.) 
An SAT test score of 689 could be displayed as a stem of 6 (hundreds) and a leaf of 
89. A GPA of 3.25 could be displayed as a stem of 3 (ones) and a leaf of 25, or if you 
wanted more than a few stems, 3.25 could be displayed as a stem of 3.2 (one-tenths) 
and a leaf of 5.

Stem and leaf displays represent statistical bargains. Just a few minutes of work pro-
duces a description of data that is both clear and complete. Even though rarely appear-
ing in published reports, stem and leaf displays often serve as the first step toward 
organizing data.

Progress Check *2.10 Construct a stem and leaf display for the following IQ scores 
obtained from a group of four-year-old children.

120  98 118 117  99 111
126  85  88 124 104 113
108 141 123 137  78  96
102 132 109 106 143»

Answers on page 422.

2 .9  TYP ICAL  SHAPES

Whether expressed as a histogram, a frequency polygon, or a stem and leaf display, 
an important characteristic of a frequency distribution is its shape. Figure 2.3 shows 
some of the more typical shapes for smoothed frequency polygons (which ignore the 
inevitable irregularities of real data).

FIGURE 2.3 

Typical shapes.

Few extreme
observations

Few extreme
observations

Positive direction Negative direction
X X

X X

D. NEGATIVELY SKEWEDC. POSITIVELY SKEWED
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Norma l

Any distribution that approximates the normal shape in panel A of Figure 2.3 can 
be analyzed, as we will see in Chapter 5, with the aid of the well-documented normal 
curve. The familiar bell-shaped silhouette of the normal curve can be superimposed on 
many frequency distributions, including those for uninterrupted gestation periods of 
human fetuses, scores on standardized tests, and even the popping times of individual 
kernels in a batch of popcorn.

Bimoda l

Any distribution that approximates the bimodal shape in panel B of Figure  2.3 
might, as suggested previously, reflect the coexistence of two different types of obser-
vations in the same distribution. For instance, the distribution of the ages of resi-
dents in a neighborhood consisting largely of either new parents or their infants has a 
bimodal shape.

Pos i t i ve l y  Skewed

The two remaining shapes in Figure 2.3 are lopsided. A lopsided distribution caused 
by a few extreme observations in the positive direction (to the right of the majority of 
observations), as in panel C of Figure 2.3, is a positively skewed distribution. The 
distribution of incomes among U.S. families has a pronounced positive skew, with 
most family incomes under $200,000 and relatively few family incomes spanning a 
wide range of values above $200,000. The distribution of weights in Figure 2.1 also is 
positively skewed.

Negat i ve l y  Skewed

A lopsided distribution caused by a few extreme observations in the negative direc-
tion (to the left of the majority of observations), as in panel D of Figure 2.3, is a nega-
tively skewed distribution. The distribution of ages at retirement among U.S. job 
holders has a pronounced negative skew, with most retirement ages at 60 years or older 
and relatively few retirement ages spanning the wide range of ages younger than 60.

Pos i t i ve l y  o r  Nega t i ve l y  Skewed?

Some people have difficulty with this terminology, probably because an entire dis-
tribution is labeled on the basis of the relative location, in the positive or negative 
direction, of a few extreme observations, rather than on the basis of the location of the 
majority of observations. To make this distinction, always force yourself to focus on 
the relative locations of the few extreme observations. If you get confused, use pan-
els C and D of Figure 2.3 as guides, noting which silhouette in these two panels best 
approximates the shape of the distribution in question.

Progress Check *2.11 Describe the probable shape—normal, bimodal, positively 
skewed, or negatively skewed—for each of the following distributions:

(a) female beauty contestants’ scores on a masculinity test, with a higher score indicating a 
greater degree of masculinity

(b) scores on a standardized IQ test for a group of people selected from the general population

(c) test scores for a group of high school students on a very difficult college-level math exam

(d) reading achievement scores for a third-grade class consisting of about equal numbers of 
regular students and learning-challenged students

(e) scores of students at the Eastman School of Music on a test of music aptitude (designed 
for use with the general population)

Answers on page 422.

Positively Skewed Distribution 

A distribution that includes a few 

extreme observations in the posi-

tive direction (to the right of the 

majority of observations).

Negatively Skewed Distribution 

A distribution that includes a 

few extreme observations in the 

negative direction (to the left of the 

majority of observations).
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2 .10  A  GRAPH  FOR  QUAL ITAT IVE  (NOMINAL )  DATA

The distribution in Table 2.7, based on replies to the question “Do you have a Facebook 
profile?” appears as a bar graph in Figure 2.4. A glance at this graph confirms that Yes 
replies occur approximately twice as often as No replies.

As with histograms, equal segments along the horizontal axis are allocated to the 
different words or classes that appear in the frequency distribution for qualitative data. 
Likewise, equal segments along the vertical axis reflect increases in frequency. The 
body of the bar graph consists of a series of bars whose heights reflect the frequencies 
for the various words or classes.

A person’s answer to the question “Do you have a Facebook profile?” is either Yes 
or No, not some impossible intermediate value, such as 40 percent Yes and 60 percent 
No. Gaps are placed between adjacent bars of bar graphs to emphasize the discontinu-
ous nature of qualitative data. A bar graph also can be used with quantitative data to 
emphasize the discontinuous nature of a discrete variable, such as the number of chil-
dren in a family.

Progress Check *2.12 Referring to the box “Constructing Graphs” on page 47 for step-
by-step instructions, construct a bar graph for the data shown in the following table:

RACE/ETHNICITY OF U.S. 
POPULATION, 2010 (IN MILLIONS)

Race/Ethnicity f
African American 37.7
Asian American* 17.2
Hispanic 50.5
White 196.8

Total** 302.2

*Mostly Asians, but also other races, such as 
Native Americans and Eskimos.
** Total does not include 6.6 million non-
Hispanics reporting two or more races.
Source: www.uscensus.gov/prod/census2010/

Answer on page 423.

Bar Graph 

A bar-type graph for qualitative 

data. Gaps between adjacent bars 

emphasize the discontinuous 

nature of the data.

FIGURE 2.4 

Bar graph.
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2 .11  MISLEAD ING  GRAPHS

Graphs can be constructed in an unscrupulous manner to support a particular point of 
view. Indeed, this type of statistical fraud gives credibility to popular sayings, includ-
ing “Numbers don’t lie, but statisticians do” and “There are three kinds of lies—lies, 
damned lies, and statistics.”

For example, to imply that comparatively many students responded Yes to the Face-
book profile question, an unscrupulous person might resort to the various tricks shown 
in Figure 2.5:

 ■ The width of the Yes bar is more than three times that of the No bar, thus violat-
ing the custom that bars be equal in width.

 ■ The lower end of the frequency scale is omitted, thus violating the custom that 
the entire scale be reproduced, beginning with zero. (Otherwise, a broken scale 
should be highlighted by crossover lines, as in Figures 2.1 and 2.2.)

 ■ The height of the vertical axis is several times the width of the horizontal axis, 
thus violating the custom, heretofore unmentioned, that the vertical axis be 
approximately as tall as the horizontal axis is wide. Beware of graphs in which, 
because the vertical axis is many times larger than the horizontal axis (as in 
 Figure 2.5), frequency differences are exaggerated, or in which, because the ver-
tical axis is many times smaller than the horizontal axis, frequency differences 
are suppressed.

FIGURE 2.5 

Distorted bar graph.
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The combined effect of Figure  2.5 is to imply that virtually all of the students 
responded Yes. Notice the radically different impressions created by Figures 2.4 and 
2.5, even though both are based on exactly the same data. To heighten your  sensitivity 
to this type of distortion and to other types of statistical frauds, read the highly enter-
taining book by Darrell Huff and Irving Geis, (1993). How to Lie with Statistics. 
New York, NY: Norton.

Progress Check *2.13 Criticize the graphs that appear here (ignore the inadequate label-
ing of both axes).
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Answers on page 423.

2 .12  DO ING  I T  YOURSELF

When you are constructing a graph, attempt to depict the data as clearly, concisely, 
and completely as possible. The blatant distortion shown in Figure 2.5 can easily be 
avoided by complying with the several customs described in the preceding section and 
by following the step-by-step procedure in the box “Constructing Graphs” on page 42. 
Otherwise, equally valid graphs of the same data might appear in different formats. It is 
often a matter of personal preference whether, for instance, a histogram or a frequency 
polygon should be used with quantitative data.
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Summary

Frequency distributions organize observations according to their frequencies of 
occurrence.

Frequency distributions for ungrouped data are produced whenever observations 
are sorted into classes of single values. This type of frequency distribution is most 
informative when there are fewer than about 20 possible values between the largest 
and smallest observations.

Frequency distributions for grouped data require observations to be sorted 
into classes of more than one value. This type of frequency distribution should be 

CONSTRUCTING GRAPHS

1. Decide on the appropriate type of graph, recalling that histograms 
and frequency polygons are appropriate for quantitative data, while 
bar graphs are appropriate for qualitative data and also are some-
times used with discrete quantitative data.

2. Draw the horizontal axis, then the vertical axis, remembering that 
the vertical axis should be about as tall as the horizontal axis is wide.

3. Identify the string of class intervals that eventually will be super-
imposed on the horizontal axis. For qualitative data or ungrouped 
quantitative data, this is easy—just use the classes suggested by the 
data. For grouped quantitative data, proceed as if you were creat-
ing a set of class intervals for a frequency distribution. (See the box 
“Constructing Frequency Distributions” on page 27.)

4. Superimpose the string of class intervals (with gaps for bar 
graphs) along the entire length of the horizontal axis. For his-
tograms and frequency polygons, be prepared for some trial and 
error—use a pencil! Do not use a string of empty class intervals to 
bridge a sizable gap between the origin of 0 and the smallest class 
interval. Instead, use wiggly lines to signal a break in scale, then 
begin with the smallest class interval. Also, do not clutter the hori-
zontal scale with excessive numbers—use just a few convenient 
numbers.

5. Along the entire length of the vertical axis, superimpose a 
 progression of convenient numbers, beginning at the bottom with 
0 and ending at the top with a number as large as or slightly larger 
than the maximum observed frequency. If there is a considerable 
gap between the origin of 0 and the smallest observed frequency, use 
wiggly lines to signal a break in scale.

6. Using the scaled axes, construct bars (or dots and lines) to reflect 
the frequency of observations within each class interval. For 
frequency polygons, dots should be located above the midpoints of 
class intervals, and both tails of the graph should be anchored to the 
horizontal axis, as described under “Frequency Polygons” in  
Section 2.8.

7. Supply labels for both axes and a title (or even an explanatory 
sentence) for the graph.
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 constructed, step by step, to comply with a number of guidelines. (See the box “Con-
structing Frequency Distributions” on page 42.) Essentially, a well-constructed fre-
quency distribution consists of a string of non-overlapping, equal classes that occupy 
the entire distance between the largest and smallest observations.

Very extreme scores, or outliers, require special attention. Given a valid outlier, you 
might choose to relegate it to a footnote because of its potential for distortion, or you 
might even concentrate on it as a possible key to understanding the data.

When comparing two or more frequency distributions based on appreciably differ-
ent total numbers of observations, it is often helpful to express frequencies as relative 
frequencies.

When relative standing within the distribution is important, convert frequency dis-
tributions into cumulative percentages, referred to as percentile ranks. The percentile 
rank of a score indicates the percentage of scores in the entire distribution with similar 
or smaller values.

Frequency distributions for qualitative data are easy to construct. They also can be 
converted into relative frequency distributions and, if the data can be ordered because 
of ordinal measurement, into percentile ranks.

Frequency distributions can be converted into graphs.
If the data are quantitative, histograms, frequency polygons, or stem and leaf dis-

plays are often used. Frequency polygons are particularly useful when two or more 
frequency distributions are to be included in the same graph.

Shape is an important characteristic of a histogram or a frequency polygon. 
Smoothed frequency polygons were used to describe four of the more typical shapes: 
normal, bimodal, positively skewed, and negatively skewed.

Bar graphs are often used with qualitative data and sometimes with discrete quan-
titative data. They resemble histograms except that gaps separate adjacent bars in bar 
graphs.

When interpreting graphs, beware of various unscrupulous techniques, such as using 
bizarre combinations of axes to either exaggerate or suppress a particular data pattern.

When constructing graphs, refer to the step-by-step procedure described in the box 
“Constructing Graphs” on page 42.

Important Terms

Frequency distribution

Frequency distribution for ungrouped 
data

Frequency distribution for grouped data

Unit of measurement

Real limits

Outlier

Relative frequency distribution

Cumulative frequency distribution

Percentile rank

Histogram

Frequency polygon

Stem and leaf display

Positively skewed distribution

Negatively skewed distribution

Bar graph

REV IEW QUEST IONS

 2.14 (a) Construct a frequency distribution for the number of different residences occu-
pied by graduating seniors during their college career, namely

1, 4, 2, 3, 3, 1, 6, 7, 4, 3, 3, 9, 2, 4, 2, 2, 3, 2, 3, 4, 4, 2, 3, 3, 5

 (b) What is the shape of this distribution?
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 2.15 The number of friends reported by Facebook users is summarized in the following 
frequency distribution:

FRIENDS f

400 above 2
350 399 5
300 349 12
250 299 17
200 249 23
150 199 49
100 149 27
 50 99 29
  0 49    36

Total 200

 (a) What is the shape of this distribution?

 (b) Find the relative frequencies.

 (c) Find the approximate percentile rank of the interval 300–349.

 (d) Convert to a histogram.

 (e) Why would it not be possible to convert to a stem and leaf display? 

 2.16 Assume that student volunteers were assigned arbitrarily (according to a coin toss) 
either to be trained to meditate or to behave as usual. To determine whether medita-
tion training (the independent variable) influences GPAs (the dependent variable), 
GPAs were calculated for each student at the end of the one-year experiment, yield-
ing these results for the two groups:

MEDITATORS NONMEDITATORS

3.25 2.25 2.75 3.67 3.79 3.00
3.56 3.33 2.25 2.50 2.75 1.90
3.57 2.45 3.75 3.50 2.67 2.90
2.95 3.30 3.56 2.80 2.65 2.58
3.56 3.78 3.75 2.83 3.10 3.37
3.45 3.00 3.35 3.25 2.76 2.86
3.10 2.75 3.09 2.90 2.10 2.66
2.58 2.95 3.56 2.34 3.20 2.67
3.30 3.43 3.47 3.59 3.00 3.08

 (a) What is the unit of measurement for these data?

(b) Construct separate frequency distributions for meditators and for nonmeditators. 
(First, construct the frequency distribution for the group having the larger range. 
Then, to facilitate comparisons, use the same set of classes for the other frequency 
distribution.)

(c) Do the two groups tend to differ? (Eventually, tools from inferential statistics, as 
described in Part 2, will help you decide whether any apparent difference between 
the two groups probably is real or merely transitory, that is, attributable to variability 
or chance. See Review Question 14.15 on page 271.)
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 *2.17 Are there any conspicuous differences between the two distributions in the following 
table (one reflecting the ages of all residents of a small town and the other reflecting 
the ages of all U.S. residents)?

 (a) To help make the desired comparison, convert the frequencies (f) for the small town 
to percentages.

 (b) Describe any seemingly conspicuous differences between the two distributions.

 (c) Using just one graph, construct frequency polygons for the two relative frequency 
distributions.

*NOTE: When segmenting the horizontal axis, assign the same width to the open-ended 
interval (65–above) as to any other class interval. (This tactic causes some distor-
tion at the upper end of the histogram, since one class interval is doing the work of 
several. Nothing is free, including the convenience of open-ended intervals.)

Answers on pages 423 and 424.

 TWO AGE DISTRIBUTIONS

AGE
SMALL TOWN  

f
U.S. POPULATION (2010) 

(%)
65–above 105  13
60–64 53  5
55–59 45  6
50–54 40 7
45–49 44 7
40–44 38  7
35–39 31 7
30–34 27  6
25–29 25 7
20–24 20 7
15–19 20 7
10–14 19 7
 5–9 17 7
 0–4    16    7   

Total 500 99%

NOTE: The top class (65–above) has no upper boundary. Although less 
preferred, as discussed previously, this type of open-ended class is 
employed as a space-saving device when, as in the Statistical Abstract 
of the United States, many different tables must be listed.
Source: 2012 Statistical Abstract of the United States.

 2.18 The following table shows distributions of bachelor’s degrees earned in 2011–2012 
for selected fields of study by all male graduates and by all female graduates.

(a) How many female psychology majors graduated in 2011–2012?

(b) Since the total numbers of male and female graduates are fairly different—600.0 
thousand and 803.6 thousand—it is helpful to convert first to relative frequencies 
before making comparisons between male and female graduates. Then, inspect 
these relative frequencies and note what appear to be the most conspicuous differ-
ences between male and female graduates.
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(c) Would it be meaningful to cumulate the frequencies in either of these frequency distribu-
tions?

(d) Using just one graph, construct bar graphs for all male graduates and for all female gradu-
ates. Hint: Alternate shaded and unshaded bars for males and females, respectively.

BACHELOR’S DEGREES EARNED IN 2011–2012 
BY SELECTED FIELD OF STUDY AND GENDER (IN THOUSANDS)

MAJOR FIELD OF STUDY MALES FEMALES
Business 190.0 176.7
Social sciences  90.6  87.9
Education  21.8  84.0
Health sciences  24.9 138.6
Psychology  25.4  83.6
Engineering  81.3  17.3
Life sciences  39.5  56.3
Fine arts  37.2  58.6
Communications  33.5  55.2
Computer sciences  38.8   8.6
English   17.0   36.8

Total 600.0 803.6

Source: 2013 Digest of Educational Statistics at http://nces.ed.gov.

 *2.19 The following table is slightly more complex than previous tables, and shows both 
frequency distributions and relative frequency distributions of race/ethnicity for the 
U.S. population in 1980 and in 2010. It also shows the frequency (f) change and the 
percent (%) change of race/ethnicity between 1980 and 2010.

(a) Which group changed the most in terms of the actual number of people?

(b) Relative to its size in 1980, which group increased most?

(c) Relative to its size in 1980, which group increased less rapidly than the general 
 population?

(d) What is the most striking trend in these data?

Answers on page 424.

RACE/ETHNICITY OF U.S. POPULATION (IN MILLIONS)

1980 2010 1980–2010

RACE/ETHNICITY f % f % f CHANGE % CHANGE
African American 26.7 12 37.7 12 11.0 41
Asian American 5.2 2 17.2 6 12.0 231
Hispanic 14.6 6 50.5 17 35.9 246
White 180.1 80 196.8 65 16.7 9
Total 226.6 100 302.2 100 75.6 33

NOTE: The last column expresses the 1980–2010 change as a percentage of the 1980 popula-
tion for that row.
Source: www.uscensus.gov/prod/cen2010/
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CHAPTER

3
Describing Data with Averages

3.1 MODE

3.2 MEDIAN

3.3 MEAN

3.4 WHICH AVERAGE?

3.5 AVERAGES FOR QUALITATIVE AND RANKED DATA

Summary / Important Terms / Key Equation / Review Questions

Preview

Tables and graphs of frequency distributions are important points of departure when 

attempting to describe data. More precise summaries, such as averages, provide 

additional valuable information. Long-term investors in the stock market are able to 

ignore, with only an occasional sleepless night, daily fluctuations in their stocks by 

remembering that, on average, the annual growth rate of stocks during the past 50 

years has exceeded by several percentage points that of more conservative investments 

in bonds. You might stop smoking because, on average, nonsmokers can expect 

to live longer than heavy smokers (by as much as 10 years, according to some 

researchers). You might strengthen your resolve to graduate from college upon hearing 

that, on average, the lifetime earnings of college graduates are almost double those of 

high school graduates.

Averages consist of numbers (or words) about which the data are, in some sense, 

centered. They are often referred to as measures of central tendency, the several 

types of average yield numbers or words that attempt to describe, most generally, 

the middle or typical value for a distribution. This chapter focuses on three different 

measures of central tendency—the mode, median, and mean. Each of these has its 

special uses, but the mean is the most important average in both descriptive and 

inferential statistics.

Measures of Central Tendency 

Numbers or words that attempt 

to describe, most generally, 

the middle or typical value for 

a  distribution.
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3 .1  MODE

The mode reflects the value of the most frequently occurring score.

Table 3.1 shows the number of years served by 20 recent U.S. presidents, beginning 
with Benjamin Harrison (4 years) and ending with Bill Clinton (8 years). Four years is 
the modal term, since the greatest number of presidents, 7, served this term. Note that 
the mode equals 4 years, the value of the most frequently occurring term, not 7, the 
frequency with which that term occurred.

It is easy to assign a value to the mode. If the data are organized, as in Figure 3.1, 
a glance will often be enough. However, if the data are not organized, as in Table 3.1, 
some counting may be required. The mode is readily understood as the most prevalent 
or typical value.

More  Than  One  Mode

Distributions can have more than one mode (or no mode at all). Distributions with 
two obvious peaks, even though they are not exactly the same height, are referred to as 
bimodal. Distributions with more than two peaks are referred to as multimodal. The 
presence of more than one mode might reflect important differences among subsets of 
data. For instance, the distribution of weights for both male and female statistics stu-
dents would most likely be bimodal, reflecting the combination of two separate weight 
distributions—a heavier one for males and a lighter one for females. Notice that even the 
distribution of presidential terms in Figure 3.1 tends to be bimodal, with a major peak 
at 4 years and a minor peak at 8 years, reflecting the two most typical terms of office.

Progress Check *3.1 Determine the mode for the following retirement ages: 60, 63, 45, 
63, 65, 70, 55, 63, 60, 65, 63.

Progress Check *3.2 The owner of a new car conducts six gas mileage tests and obtains 
the following results, expressed in miles per gallon: 26.3, 28.7, 27.4, 26.6, 27.4, 26.9. Find 
the mode for these data.

Answers on page 424.

Bimodal 

Describes any distribution with two 

obvious peaks.

Mode 

The value of the most frequent 

score.

Source: The New York Times 
Almanac (2012).

Table 3.1
TERMS IN YEARS  

OF 20 RECENT U.S. 
PRESIDENTS,  

LISTED 
CHRONOLOGICALLY

 4 (Harrison)
4
4
8
4
8
2
6
4

12
8
8
2
6
5
3
4
8
4

 8 (Clinton)

FIGURE 3.1 

Distribution of presidential terms.

5
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Length of Term (years)
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f
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3 .2  MED IAN

The median reflects the middle value when observations are ordered from least 
to most.

The median splits a set of ordered observations into two equal parts, the upper and 
lower halves. In other words, the median has a percentile rank of 50, since observations 
with equal or smaller values constitute 50 percent of the entire distribution.*

F ind ing  the  Med ian

Table 3.2 shows how to find the median for two different sets of scores. The num-
bers in shaded squares cross-reference instructions in the top panel with examples in 
the bottom panel. Study Table 3.2 before reading on.

Median   

The middle value when 

 observations are ordered from 

least to most.

*Strictly speaking, the median always has a percentile rank of exactly 50 only insofar as inter-

polation procedures, not discussed in this book, identify the value of the median with a single 

point along the numerical scale for the data.

Table 3.2
FINDING THE MEDIAN

A. INSTRUCTIONS
 1  Order scores from least to most.
 2  Find the middle position by adding one to the total number of scores and dividing by 2.
 3  If the middle position is a whole number, as in the left-hand panel below, use this number to count into the set of 

ordered scores.
 4  The value of the median equals the value of the score located at the middle position.
 5  If the middle position is not a whole number, as in the right-hand panel below, use the two nearest whole numbers 

to count into the set of ordered scores.
 6  The value of the median equals the value midway between those of the two  middlemost scores; to find the midway 

value, add the two given values and divide by 2.

B. EXAMPLES
Set of five scores:
2, 8, 2, 7, 6

 1  2, 2, 6, 7, 8

 2  
5 1

2
3

2, 2, 6, 7, 8

 3  1, 2,  3

 4  median = 6

Set of six scores:
 3, 8, 9, 3, 1, 8

 1  1, 3, 3, 8, 8, 9

 2  
6 1

2
3 5.

1, 3, 3, 8, 8, 9

 5  1, 2, 3, 4

 6  median = 3 8
2

5 5.
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Table 3.3
TERMS IN YEARS OF 20 RECENT U.S. PRESIDENTS

ARRANGED  
BY LENGTH

12
8
8
8
8
8
8
6
6

5
4
4
4
4
4
4
4
3
2
2

DEVIATION  
FROM MEAN

6 40
2 40
2 40
2 40
2 40
2 40
2 40
0 40
0 40

.

.

.

.

.

.

.

.

.

(mean = 5.60)
0 60
1 60
1 60
1 60
1 60
1 60
1 60
1 60
2 60
3 60
3 60

.

.

.

.

.

.

.

.

.

.

.

SUM OF  
DEVIATIONS

21 6

21 6

.

.

To find the median, scores always must be ordered from least to most (or vice 
versa). This task is straightforward with small sets of data but becomes increasingly 
cumbersome with larger sets of data that must be ordered manually.

When the total number of scores is odd, as in the lower left-hand panel of Table 3.2, 
there is a single middle-ranked score, and the value of the median equals the value of 
this score. When the total number of scores is even, as in the lower right-hand panel of 
Table 3.2, the value of the median equals a value midway between the values of the two 
middlemost scores. In either case, the value of the median always reflects the value of 
middle-ranked scores, not the position of these scores among the set of ordered scores.

The median term can be found for the 20 presidents. First, rank the terms from 
longest (12 for Franklin Roosevelt) to shortest (2 for Harding and Kennedy), as shown 
in the left-hand column of Table 3.3. Then, following the instructions in Table 3.2, 
verify that the median term for the 20 presidents equals 4.5 years, since 4.5 is the value 
midway between the values (4 and 5) of the two middlemost (10th- and 11th-ranked) 
terms in Table 3.3.

Notice that although the values for median and modal presidential terms are quite 
similar, they have different interpretations. The median term (4.5 years) describes the 
middle-ranked term; the modal term (4 years) describes the most frequent term in the 
distribution.

Progress Check *3.3 Find the median for the following retirement ages: 60, 63, 45, 63, 
65, 70, 55, 63, 60, 65, 63.

Progress Check *3.4 Find the median for the following gas mileage tests: 26.3, 28.7, 
27.4, 26.6, 27.4, 26.9.

Answers on page 424.

0
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3 .3  MEAN

The mean is the most common average, one you have doubtless calculated many 
times.

The mean is found by adding all scores and then dividing by the number of 
scores.

That is,

Mean
sum of all scores

number of scores

To find the mean term for the 20 presidents, add all 20 terms in Table 3.1 (4 + . . . 
+ 4 + 8) to obtain a sum of 112 years, and then divide this sum by 20, the number of 
presidents, to obtain a mean of 5.60 years.

There is no requirement that presidential terms be ranked before calculating the 
mean. Even when large sets of unorganized data are involved, the calculation of the 
mean is usually straightforward, particularly with the aid of a calculator or computer.

Sample  o r  Popu la t i on?

Statisticians distinguish between two types of means—the population mean and the 
sample mean—depending on whether the data are viewed as a population (a complete 
set of scores) or as a sample (a subset of scores). For example, if the terms of the  
20 U.S. presidents are viewed as a population, then 5.60 years qualifies as a population 
mean. On the other hand, if the terms of the 20 U.S. presidents are viewed as a sample 
from the terms of all U.S. presidents, then 5.60 years qualifies as a sample mean. Not 
only is the present distinction entirely a matter of perspective, but it also produces 
exactly the same numerical value of 5.60 for both means. This distinction is introduced 
here because of its importance in later chapters, where the population mean usually 
is unknown but fixed as a constant, while the sample mean is known but varies from 
sample to sample. Until then, unless noted otherwise, you can assume that we are deal-
ing with the sample mean.

Fo rmu la  fo r  Samp le  Mean

It’s usually more efficient to substitute symbols for words in statistical formulas, 
including the word formula given above for the mean. When symbols are used, X des-
ignates the sample mean, and the formula becomes

Population 

A complete set of scores.

Sample 

A subset of scores.

SAMPLE MEAN

 

X
X

n  (3.1)

and reads: “X-bar equals the sum of the variable X divided by the sample size n.” 
[Note that the uppercase Greek letter sigma (Σ) is read as the sum of, not as sigma. To 
avoid confusion, read only the lowercase Greek letter sigma (σ) as sigma since it has 
an entirely different meaning in statistics, as described in Chapter 4.] 

In Formula 3.1, the variable X can be replaced, in turn, by each of the 20 presidential 
terms in Table 3.1, beginning with 4 and ending with 8. The symbol Σ, the uppercase 
Greek letter sigma, specifies that all scores represented by the variable X be added 
(4 +. . . + 4 + 8) to find the sum of 112. (Notice that this sum contains the values of all 

Sample Mean (X ) 

The balance point for a sample, 

found by dividing the sum for the 

values of all scores in the sample 

by the number of scores in the 

sample.

Sample Size (n) 

The total number of scores in the 

sample.
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scores including duplications.) Then divide this sum by n, the sample size—20 in the 
present example—to obtain the mean presidential term of 5.60 years.

Fo rmu la  fo r  Popu la t i on  Mean

The formula for the population mean differs from that for the sample mean only 
because of a change in some symbols. In statistics, Greek symbols usually describe 
population characteristics, such as the population mean, while English letters usually 
describe sample characteristics, such as the sample mean. The population mean is 
represented by μ (pronounced “mu”), the lowercase Greek letter m for mean,

POPULATION MEAN

 

X

N  (3.2)

where the uppercase letter N refers to the population size. Otherwise, the calculations 
are the same as those for the sample mean.

Mean  as  Ba lance  Po in t

The mean serves as the balance point for its frequency distribution.

Imagine that the histogram for the terms of the 20 presidents in Figure 3.1 has been 
constructed out of some rigid material such as wood. Also imagine that, while using 
only one finger placed under its base, you wish to lift the histogram without disturbing 
its horizontal balance. To accomplish this, your finger should be at 5.60, the value of 
the mean, shown as a dot in Figure 3.1. If your finger were to the right of this point, the 
entire histogram would seesaw down to the left; if your finger were to the left of this 
point, the histogram would seesaw down to the right.

The mean serves as the balance point for its distribution because of a special prop-
erty: The sum of all scores, expressed as positive and negative deviations from the 
mean, always equals zero. In the right-hand column of Table 3.3, each presidential term 
 reappears as a deviation from the mean term, obtained by taking each term (including 
duplications) one at a time and subtracting the mean. Terms above the mean of 5.60 
reappear as positive deviations (for example, 12 reappears as a positive deviation of 
6.40 from the mean, since 12 − 5.60 = 6.40). Terms below the mean of 5.60 reappear as 
negative deviations (for example, 2 reappears as a negative deviation of –3.60 from the 
mean, since 2 − 5.60 = –3.60). As suggested in Table 3.3, when the sum of all positive 
deviations, 21.6, is combined with the sum of all negative deviations, –21.6, the resulting 
sum equals zero.

In its role as balance point, the mean describes the single point of equilibrium at 
which, once all scores have been expressed as deviations from the mean, those above 
the mean counterbalance those below the mean. You can appreciate, therefore, why a 
change in the value of a single score produces a change in the value of the mean for the 
entire distribution. The mean reflects the values of all scores, not just those that are mid-
dle ranked (as with the median), or those that occur most frequently (as with the mode).

Progress Check *3.5 Find the mean for the following retirement ages: 60, 63, 45, 63, 65, 
70, 55, 63, 60, 65, 63.

Progress Check *3.6 Find the mean for the following gas mileage tests: 26.3, 28.7, 27.4, 
26.6, 27.4, 26.9.

Answers on page 424.

Population Mean (μ) 

The balance point for a population, 

found by dividing the sum for all 

scores in the population by the 

number of scores in the popula-

tion.

Population Size (N)  

The total number of scores in the 

population.
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3 .4  WHICH  AVERAGE?

I f  D i s t r i bu t ion  I s  No t  Skewed

When a distribution of scores is not too skewed, the values of the mode, median, and 
mean are similar, and any of them can be used to describe the central tendency of the 
distribution. This tends to be the case in Figure 3.1, where the mode of 4 describes the 
typical term; the median of 4.5 describes the middle-ranked term; and the mean of 5.60 
describes the balance point for terms. The slightly larger mean term is caused by a shift 
upward in the balance point to compensate for the large positive deviation of 6.40 years 
for Roosevelt’s lengthy 12-year term.

I f  D i s t r i bu t ion  I s  Skewed

When extreme scores cause a distribution to be skewed, as for the infant death rates 
for selected countries listed in Table 3.4, the values of the three averages can differ 
appreciably. The modal infant death rate of  4 describes the most typical rate (since it 
occurs most frequently, five times, in Table 3.4). The median infant death rate of 7 
describes the middle-ranked rate (since the United States, with a death rate of  7, occu-
pies the middle-ranked, or 10th, position among the 19 ranked countries). Finally, the 
mean infant death rate of 30.00 describes the balance point for all rates (since the sum 
of all rates, 570, divided by the number of countries, 19, equals  30.00).

Unlike the mode and median, the mean is very sensitive to extreme scores, or outli-
ers. Any extreme score, such as the high infant death rate of 182 for Sierra Leone in 
Table 3.4, contributes directly to the calculation of the mean and, with arithmetic inevi-
tability, sways the value of the mean—the balance point for the entire distribution—in 
its direction. In extreme cases, the mean describes the central tendency of a distribution 
only in the more abstract sense of being the balance point of the distribution.

I n te rp re t i ng  D i f fe rences  be tween  Mean  and  Med ian

Ideally, when a distribution is skewed, report both the mean and the median. Appre-
ciable differences between the values of the mean and median signal the presence of 
a skewed distribution. If the mean exceeds the median, as it does for the infant death 
rates, the underlying distribution is positively skewed because of one or more scores 
with relatively large values, such as the very high infant death rates for a number of 
countries, especially Sierra Leone. On the other hand, if the median exceeds the mean, 
the underlying distribution is negatively skewed because of one or more scores with 
relatively small values. Figure 3.2 summarizes the relationship between the various 
averages and the two types of skewed distributions (shown as smoothed curves).

Progress Check *3.7 Indicate whether the following skewed distributions are positively 
skewed because the mean exceeds the median or negatively skewed because the median 
exceeds the mean.

(a) a distribution of test scores on an easy test, with most students scoring high and a few 
students scoring low

(b) a distribution of ages of college students, with most students in their late teens or early 
twenties and a few students in their fifties or sixties

(c) a distribution of loose change carried by classmates, with most carrying less than $1 and 
with some carrying $3 or $4 worth of loose change

(d) a distribution of the sizes of crowds in attendance at a popular movie theater, with most 
audiences at or near capacity

Answers on page 424.

*Rates per 1000 live births.
Source: 2014 World  
Development Indicators.

Table 3.4
INFANT DEATH RATES 

FOR SELECTED 
COUNTRIES (2012)

COUNTRY

INFANT  
DEATH  
RATE*

Sierra Leone 182
Pakistan 86
Ghana 72
India 56
South Africa 45
Cambodia 40 
Mexico 16
China 14
Brazil 14 
United States 7
Cuba 6
United Kingdom 6
Netherlands 4
Israel 4
France 4
Denmark 4
Germany 4
Japan 3
Sweden 3 
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Spec ia l  S ta tus  o f  t he  Mean

As has been seen, the mean sometimes fails to describe the typical or middle-ranked 
value of a distribution. Therefore, it should be used in conjunction with another aver-
age, such as the median. In the long run, however, the mean is the single most preferred 
average for quantitative data. After this chapter, it will be used almost exclusively. 
In the next chapter, the mean serves as a key component in an important statistical 
measure, the standard deviation. Later, in inferential statistics (Part 2), it emerges as a 
well-documented measure to be used when generalizing beyond actual scores in sur-
veys and experiments.

Us ing  the  Word  Ave rage

Strictly speaking, an average can refer to the mode, median, or mean—or even 
to some more exotic average, such as the geometric mean or the harmonic mean. 
 Conventional usage prescribes that average usually signifies mean, and this  connotation 
is often reinforced by the context. For instance, grade point average is virtually 
 synonymous with mean grade point. To our knowledge, even the most enterprising 
grade-point- impoverished student has never attempted to satisfy graduation require-
ments by exchanging a more favorable modal or median grade point for the customary 
mean grade point. Unless context and usage make it clear, however, it’s a good policy 
to specify the particular average being used, even if it requires a short explanation. 
When dealing with controversial topics, it is always wise to insist that the exact type of 
the average be identified.

FIGURE 3.2 

Mode, median, and mean in positively and negatively skewed distributions.
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3 .5  AVERAGES  FOR  QUAL ITAT IVE  AND  RANKED  DATA

Mode  A lways  App rop r ia te  fo r  Qua l i t a t i ve  Da ta

So far, we have been talking about quantitative data for which, in principle, all three 
averages can be used. But when the data are qualitative, your choice among averages is 
restricted. The mode always can be used with qualitative data. For instance, Yes quali-
fies as the modal or most typical response for the Facebook profile question (Table 2.7 
on page 31). By the same token, it would be appropriate to report that PG is the modal 
type of rating for recent films shown in San Francisco (Question 2.8 on page 3) and that 
white is the modal race of Americans (Question 2.12 on page 39).

Median  Somet imes  App rop r ia te

The median can be used whenever it is possible to order qualitative data from 
least to most because the level of measurement is ordinal. It’s easiest to determine the 
median class for ordered qualitative data by using relative frequencies, as in Table 3.5. 
(Otherwise, first convert regular frequencies to relative frequencies.) Cumulate 
the relative frequencies, working up from the bottom of the distribution, until the 
 cumulative percentage first equals or exceeds 50 percent. Since the  corresponding 
class includes the median and, roughly speaking, splits the distribution into an upper 
and a lower half, it is designated as the median or middle-ranked class. For instance, 
the qualitative data in Table 3.5 can be ordered from lieutenant to general. Starting 
at the bottom of Table 3.5 and cumulating upward, we have a percent of  25.5 for the 
class of lieutenant and a cumulative percent 62.5 for the class of captain. Accordingly, 
since it includes a cumulative percent of 50, captain is the median rank of officers in 
the U.S. Army.

One word of caution when you are finding the median for ordered qualitative data. 
Avoid a common error that identifies the median simply with the middle or two middle-
most classes, such as “between captain and major,” without regard to the cumulative 
relative frequencies and the location of the 50th percentile. In other words, do not treat 
the various classes as though they have the same frequencies when they actually have 
different frequencies.

I napp rop r ia te  Ave rages

It would not be appropriate to report a median for unordered qualitative data with 
nominal measurement, such as the ancestries of Americans. Nor would it be  appropriate 

Table 3.5
FINDING THE MEDIAN FOR ORDERED 

QUALITATIVE DATA: RANKS OF OFFICERS IN 
THE U.S. ARMY (PROJECTED 2016)

RANK % CUMULATIVE %

General 0.4
Colonel 16.7
Major 20.4
Captain 37.0  25.5+37.0 = 62.5
Lieutenant    25.5 25.5

100.0  

Source: http://www.Statista.com/statistics
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to report a mean for any qualitative data, such as the ranks of officers in the U.S. Army. 
After all, words cannot be added and then divided, as required by the formula for the 
mean.

Progress Check *3.8 College students were surveyed about where they would most like 
to spend their spring break: Daytona Beach (DB), Cancun, Mexico (C), South Padre Island (SP), 
Lake Havasu (LH), or other (O). The results were as follows:

DB DB C LH DB
C SP LH DB O
O SP C DB LH
DB C DB O DB

Find the mode and, if possible, the median.
Answer on page 424.

Ave rages  fo r  Ranked  Da ta

When the data consist of a series of ranks, with its ordinal level of measurement, the 
median rank always can be obtained. It’s simply the middlemost or average of the two 
middlemost ranks. For example, imagine that Table 1.1 on page 4 displays not weights 
for the 53 male statistics students, but only ranks for their weights, beginning with rank 
1 for the lightest man (133 lbs) and ending with rank 53 for the heaviest man (245 lbs). 
Recalling how to find the median when there is an even number of scores, as described 
in Table 3.2 on page 49, assign the average of the two middlemost ranks (26th and 
27th), that is, 26.5, as the median rank.

The mean and modal ranks tend not to be very informative and will not be  
discussed.

Summary

The mode equals the value of the most frequently occurring or typical score.
The median equals the value of the middle-ranked score (or scores). Since it splits 

frequencies into upper and lower halves, it has a percentile rank of 50.
The value of the mean, whether defined for a sample or for a population, is found 

by summing all the scores and then dividing by the number of scores in the sample 
or population. It always describes the balance point of a distribution, that is, the 
single point about which the sum of positive deviations equals the sum of negative 
deviations.

When frequency distributions are not skewed, the values of all three averages tend 
to be similar and equally representative of the central tendencies within the distribu-
tions. When frequency distributions are skewed, the values of the three averages differ 
appreciably, with the mean being particularly sensitive to extreme scores. Ideally, in 
this case, report both the mean and the median.

The mean is the preferred average for quantitative data and will be used almost 
exclusively in later chapters. It reappears as a key component in other statistical mea-
sures and as a well-documented measure in surveys and experiments.

Conventional usage prescribes that average usually signifies mean, but when deal-
ing with controversial topics, it’s wise to insist that the exact nature of the average be 
specified.

Reminder: 

Mean cannot be used with 

 qualitative data.
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Only the mode can be used with all qualitative data. If qualitative data can be 
ordered from least to most because the level of measurement is ordinal, the median 
also can be used.

The median is the preferred average for ranked data.

Important Terms

Measures of central tendency Bimodal

Mode Median

Sample Population

Sample mean (X ) Population mean (μ )

Sample size (n ) Population size (N )

Key Equation

SAMPLE MEAN

X
X

n

REV IEW QUEST IONS

NOTE ON COMPUTATIONAL ACCURACY

Answers in Appendix B have been produced by rounding any approximate number two digits 
to the right of the decimal point, using the rounding procedure described in Section A.7 of 
Appendix A.

 *3.9 To the question “During your lifetime, how often have you changed your permanent 
residence?” a group of 18 college students replied as follows: 1, 3, 4, 1, 0, 2, 5, 8, 0, 
2, 3, 4, 7, 11, 0, 2, 3, 3. Find the mode, median, and mean.

Answers on page 424.

 3.10 During their first swim through a water maze, 15 laboratory rats made the following 
number of errors (blind alleyway entrances): 2, 17, 5, 3, 28, 7, 5, 8, 5, 6, 2, 12, 10, 4, 3.

 (a) Find the mode, median, and mean for these data.

 (b) Without constructing a frequency distribution or graph, would you characterize the 
shape of this distribution as balanced, positively skewed, or negatively skewed?

 3.11 In some racing events, downhill skiers receive the average of their times for three trials. 
Would you prefer the average time to be the mean or the median if usually you have

 (a) one very poor time and two average times?

 (b) one very good time and two average times?

 (c) two good times and one average time?

 (d) three different times, spaced at about equal intervals?
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 *3.12 During a strike by Northwest Airline pilots a number of years ago, the average sal-
ary for pilots reported by management was $13,000 higher than that reported by 
the pilots’ union. Given the focus of this chapter, what could be the cause of this 
discrepancy?

Answer on page 424.

 3.13 Garrison Keillor, host of the radio program A Prairie Home Companion, concludes 
each story about his mythical hometown with “That’s the news from Lake Wobegon, 
where all the women are strong, all the men are good-looking, and all the children 
are above average.” In what type of distribution, if any, would

 (a) more than half of the children be above average?

 (b) more than half of the children be below average?

 (c) about equal numbers of children be above and below average?

 (d) all the children be above average?

 3.14 The mean serves as the balance point for any distribution because the sum of all 
scores, expressed as positive and negative distances from the mean, always equals 
zero.

 (a) Show that the mean possesses this property for the following set of scores: 3, 6, 2, 
0, 4.

 (b) Satisfy yourself that the mean identifies the only point that possesses this 
 property. More specifically, select some other number, preferably a whole number 
(for  convenience), and then find the sum of all scores in part (a), expressed as 
 positive or negative distances from the newly selected number. This sum should 
not equal zero.

 3.15 If possible, find the median for the film ratings listed in Question 2.8 on page 32.

 3.16 Specify the single average—the mode, median, or mean—described by the  following 
statements.

 (a) It never can be used with qualitative data.

 (b) It sometimes can be used with qualitative data.

 (c) It always can be used with qualitative data.

 (d) It always can be used with ranked data.

 (e) Strictly speaking, it only can be used with quantitative data.

 3.17 Indicate whether each of the following distributions is positively or negatively 
skewed. The distribution of

 (a) incomes of taxpayers has a mean of $48,000 and a median of $43,000.

 (b) GPAs for all students at some college has a mean of 3.01 and a median of 3.20.

 (c) number of “romantic affairs” reported anonymously by young adults has a mean of 
2.6 affairs and a median of 1.9 affairs.  

 (d) daily TV viewing times for preschool children has a mean of 55 minutes and a median 
of 73 minutes.
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 3.18 Given that the mean equals 5, what must be the value of the one missing observation 
from each of the following sets of observations?

 (a) 1, 2, 10

 (b) 2, 4, 1, 5, 7, 7

 (c) 6, 9, 2, 7, 1, 2

 3.19 Indicate whether the following terms or symbols are associated with the population 
mean,  the sample mean, or  both means.

 (a) N

 (b) varies

 (c) ∑
 (c) n

 (d) constant

 (e) subset

 3.20 For Review Exercise 2.17 on page 45, find any averages that are appropriate.
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CHAPTER

4
Describing Variability

4.1 INTUITIVE APPROACH

4.2 RANGE

4.3 VARIANCE

4.4 STANDARD DEVIATION

4.5 DETAILS: STANDARD DEVIATION

4.6 DEGREES OF FREEDOM (df  )

4.7 INTERQUARTILE RANGE (IQR)

4.8 MEASURES OF VARIABILITY FOR QUALITATIVE AND RANKED DATA

Summary / Important Terms / Key Equations / Review Questions

Preview

Averages are important, but they tell only part of the story. Most of us would refuse to 

forge a swift-flowing stream knowing only that the water depth averages 5 feet.

Statistics flourishes because we live in a world of variability; no two people are 

identical, and a few are really far out. When summarizing a set of data, we specify 

not only measures of central tendency, such as the mean, but also measures of 

variability, that is, measures of the amount by which scores are dispersed or scattered 

in a distribution. This chapter describes several measures of variability, including 

the range, the interquartile range, the variance, and most important, the standard 

deviation.

Measures of Variability  

Descriptions of the amount by 

which scores are dispersed or 

scattered in a distribution.
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4 .1  INTU IT IVE  APPROACH

You probably already possess an intuitive feel for differences in variability. 
In Figure 4.1, each of the three frequency distributions consists of seven scores with the 
same mean (10) but with different variabilities. (Ignore the numbers in boxes; their sig-
nificance will be explained later.) Before reading on, rank the three distributions from 
least to most variable. Your intuition was correct if you concluded that distribution A 
has the least variability, distribution B has intermediate variability, and  distribution C 
has the most variability.

If this conclusion is not obvious, look at each of the three distributions, one at a 
time, and note any differences among the values of individual scores. For distribution 
A with the least (zero) variability, all seven scores have the same value (10). For dis-
tribution B with intermediate variability, the values of scores vary slightly (one 9 and 
one 11), and for distribution C with most variability, they vary even more (one 7, two 
9s, two 11s, and one 13).

Impo r tance  o f  Va r iab i l i t y

Variability assumes a key role in an analysis of research results. For example, a 
researcher might ask: Does fitness training improve, on average, the scores of depressed 
patients on a mental-wellness test? To answer this question, depressed patients are 
randomly assigned to two groups, fitness training is given to one group, and well-
ness scores are obtained for both groups. Let’s assume that the mean wellness score 
is larger for the group with fitness training. Is the observed mean difference between 
the two groups real or merely transitory? This decision depends not only on the size of 
the mean difference between the two groups but also on the inevitable variabilities of 
individual scores within each group.

To illustrate the importance of variability, Figure 4.2 shows the outcomes for two 
fictitious experiments, each with the same mean difference of 2, but with the two groups 
in experiment B having less variability than the two groups in experiment C. Notice 
that groups B and C in Figure 4.2 are the same as their counterparts in Figure 4.1. 
Although the new group B* retains exactly the same (intermediate) variability as group 
B, each of its seven scores and its mean have been shifted 2 units to the right. Likewise, 
although the new group C* retains exactly the same (most) variability as group C, each 
of its seven scores and its mean have been shifted 2 units to the right. Consequently, 
the crucial mean difference of 2 (from 12 − 10 = 2) is the same for both experiments.

Before reading on, decide which mean difference of 2 in Figure 4.2 is more appar-
ent. The mean difference for experiment B should seem more apparent because of the 
smaller variabilities within both groups B and B*. Just as it’s easier to hear a phone 
message when static is reduced, it’s easier to see a difference between group means 
when variabilities within groups are reduced.

FIGURE 4.1 

Three distributions with the same mean (10) but different amounts of variability. Numbers 
in the boxes indicate distances from the mean.
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62  DESCRIBING VARIABILITY

As described in later chapters, variabilities within groups assume a key role in infer-
ential statistics. Briefly, the relatively smaller variabilities within groups in experiment 
B translate into more statistical stability for the observed mean difference of 2 when it 
is viewed as just one outcome among many possible outcomes for repeat experiments. 
Therefore, insofar as similar (but not necessarily identical) mean differences would 
reappear in repeat experiments, we can conclude that the observed mean difference of 2 
in experiment B probably reflects a real difference in favor of the treatment.

On the other hand, the relatively larger variabilities within groups in experiment C 
translate into less statistical stability for the observed mean difference of 2 when it is 
viewed as just one outcome among many possible outcomes for repeat experiments. 
Insofar as dissimilar mean differences—even zero or negative mean differences—
would appear in repeat experiments, we can conclude that the observed mean difference 
of 2 fails to reflect a real difference in favor of the treatment in experiment C. Instead, 
since it is most likely a product of chance variability, the observed mean difference of 2 
in experiment C can be viewed as merely transitory and not taken seriously.

Later, Review Question 14.10 on page 269 will permit more definitive conclusions 
about whether each of the mean differences of 2 for experiments B and C should be 
viewed as reflecting a real difference or dismissed as merely transitory. These conclu-
sions will require the use of a measure of variability, the standard deviation, described 
in this chapter, along with tools from inferential statistics described in Part 2.

Progress Check * 4.1 For a given mean difference—say, 10 points—between two 
groups, what degree of variability within each of these groups (small, medium, or large) makes 
the mean difference

(a) ...most conspicuous with more statistical stability? 

(b) ...least conspicuous with less statistical stability?

Answers on page 425.

4 .2  RANGE

Exact measures of variability not only aid communication but also are essential tools 
in statistics. One such measure is the range. The range is the difference between the 
largest and smallest scores. In Figure 4.1, distribution A, the least variable, has the 
smallest range of 0 (from 10 to 10); distribution B, the moderately variable, has an 
intermediate range of 2 (from 11 to 9); and distribution C, the most variable, has the 
largest range of 6 (from 13 to 7), in agreement with our intuitive judgments about dif-
ferences in variability. The range is a handy measure of variability that can readily be 
calculated and understood.

FIGURE 4.2 

Two experiments with the same mean difference but dissimilar variabilities.
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Sho r tcomings  o f  Range

The range has several shortcomings. First, since its value depends on only two 
scores—the largest and the smallest—it fails to use the information provided by the 
remaining scores. Furthermore, the value of the range tends to increase with increases 
in the total number of scores. For instance, the range of adult heights might be 6 or 
8 inches for a half a dozen people, whereas it might be 14 or 16 inches for six dozen 
people. Larger groups are more likely to include very short or very tall people who, of 
course, inflate the value of the range. Instead of being a relatively stable measure of 
variability, the size of the range tends to vary with the size of the group.

4 .3  VAR IANCE

Although both the range and its most important spinoff, the interquartile range (dis-
cussed in Section 4.7), serve as valid measures of variability, neither is among the stat-
istician’s preferred measures of variability. Those roles are reserved for the variance 
and particularly for its square root, the standard deviation, because these measures 
serve as key components for other important statistical measures. Accordingly, the 
variance and standard deviation occupy the same exalted position among measures of 
variability as does the mean among measures of central tendency.

Following the computational procedures described in later sections of this chapter, we 
could calculate the value of the variance for each of the three distributions in Figure 4.1. 
Its value equals 0.00 for the least variable distribution, A, 0.29 for the moderately vari-
able distribution, B, and 3.14 for the most variable distribution, C, in agreement with our 
intuitive judgments about the relative variability of these three distributions.

Recons t ruc t ing  the  Va r iance

To understand the variance better, let’s reconstruct it step by step. Although a measure 
of variability, the variance also qualifies as a type of mean, that is, as the balance point for 
some distribution. To qualify as a type of mean, the values of all scores must be added and 
then divided by the total number of scores. In the case of the variance, each original score 
is re-expressed as a distance or deviation from the mean by subtracting the mean. For each 
of the three distributions in Figure 4.1, the face values of the seven original scores (shown 
as numbers along the X axis) have been re-expressed as deviation scores from their mean 
of 10 (shown as numbers in the boxes). For example, in distribution C, one score coin-
cides with the mean of 10, four scores (two 9s and two 11s) deviate 1 unit from the mean, 
and two scores (one 7 and one 13) deviate 3 units from the mean, yielding a set of seven 
deviation scores: one 0, two –1s, two 1s, one –3, and one 3. (Deviation scores above the 
mean are assigned positive signs; those below the mean are assigned negative signs.)

Mean  o f  t he  Dev ia t i ons  No t  a  Use fu l  Measu re

No useful measure of variability can be produced by calculating the mean of these 
seven deviations, since, as you will recall from Chapter 3, the sum of all deviations 
from their mean always equals zero. In effect, the sum of all negative deviations always 
counterbalances the sum of all positive deviations, regardless of the amount of vari-
ability in the group.*

Range 

The difference between the largest 

and smallest scores.

*A measure of variability, known as the mean absolute deviation (or m.a.d.), can be salvaged 

by summing all absolute deviations from the mean, that is, by ignoring negative signs. However, 

this measure of variability is not preferred because, in the end, the simple act of ignoring negative 

signs has undesirable mathematical and statistical repercussions.

†The square root of a number is the number that, when multiplied by itself, yields the original 

number. For example, the square root of 16 is 4, since 4 × 4 = 16. To extract the square root of 

any number, use a calculator with a square root key, usually denoted by the symbol .
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64  DESCRIBING VARIABILITY

Mean  o f  t he  Squa red  Dev ia t i ons

Before calculating the variance (a type of mean), negative signs must be eliminated 
from deviation scores. Squaring each deviation—that is, multiplying each deviation by 
itself—generates a set of squared deviation scores, all of which are positive. (Remem-
ber, the product of any two numbers with similar signs is always positive.) Now it’s 
merely a matter of adding the consistently positive values of all squared deviation 
scores and then dividing by the total number of scores to produce the mean of all 
squared deviation scores, also known as the variance.

Weakness  o f  Va r iance

In the case of the weights of 53 male students in Table 1.1 on page 4, it is use-
ful to know that the mean for the distribution of weights equals 169.51 pounds, but 
it is confusing to know that, because of the squared deviations, the variance for the 
same distribution equals 544.29 squared pounds. What, you might reasonably ask, are 
squared pounds?

4 .4  STANDARD  DEV IAT ION

To rid ourselves of these mind-boggling units of measurement, simply take the square 
root of the variance.† This produces a new measure, known as the standard deviation, 
that describes variability in the original units of measurement. For example, the stan-
dard deviation for the distribution of weights equals the square root of 544.29 squared 
pounds, that is, 23.33 pounds.

The variance often assumes a special role in more advanced statistical work, includ-
ing that described in Chapters 16, 17, and 18. Otherwise, because of its unintelligible 
units of measurement, the variance serves mainly as a stepping stone, only a square 
root away from a more preferred measure of variability, the standard deviation, the 
square root of the mean of all squared deviations from the mean, that is,

standard deviation variance

S tanda rd  Dev ia t i on :  An  I n te rp re ta t i on

You might find it helpful to think of the standard deviation as a rough measure 
of the average (or standard) amount by which scores deviate on either side of 
their mean.

For distribution C in Figure  4.1, the square root of the variance of 3.14 yields a 
 standard deviation of 1.77. Given this perspective, a standard deviation of 1.77 is a 
rough measure of the average amount by which the seven scores in distribution C (7, 
9, 9, 10, 11, 11, 13) deviate on either side of their mean of 10. In other words, the stan-
dard deviation of 1.77 is a rough measure of the average amount for the seven devia-
tion scores in distribution C, namely, one 0, four 1s, and two 3s. Notice that, insofar 
as it is an average, the value of the standard deviation always should be between the 
largest and smallest deviation scores, as it is for distribution C.

Actua l l y  Exceeds  Mean  Dev ia t i on

Strictly speaking, the standard deviation usually exceeds the mean deviation or, more 
accurately, the mean absolute deviation. (In the case of distribution C in Figure 4.1, 
for example, the standard deviation equals 1.77, while the mean absolute deviation 
equals only 1.43.) Nevertheless, it is reasonable to describe the standard deviation as 
the average amount by which scores deviate on either side of their mean—as long as 
you remember that an approximation is involved.

Variance 

The mean of all squared deviation 

scores.

Standard Deviation 

A rough measure of the average 

(or standard) amount by which 

scores deviate on either side of 

their mean.
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Majo r i t y  o f  Sco res  w i th in  One  S tanda rd  Dev ia t i on

A slightly different perspective makes the standard deviation even more accessible.

For most frequency distributions, a majority (often as many as 68 percent) of all 
scores are within one standard deviation on either side of the mean.

This generalization applies to all of the distributions in Figure 4.1. For instance, among 
the seven deviations in distribution C, a majority of five scores deviate less than one 
standard deviation (1.77) on either side of the mean.

Essentially the same pattern describes a wide variety of frequency distributions 
including the two shown in Figure  4.3, where the lowercase letter s represents the 
standard deviation. As suggested in the top panel of Figure 4.3, if the distribution of IQ 
scores for a class of fourth graders has a mean ( )X  of 105 and a standard deviation (s) 
of 15, a majority of their IQ scores should be within one standard deviation on either 
side of the mean, that is, between 90 and 120. By the same token, as suggested in the 
bottom panel of Figure 4.3, if the distribution of weekly study times for a group of col-
lege students, estimated to the nearest hour, has a mean ( )X  of 27 hours and a standard 
deviation (s) of 10 hours, a majority of their study times should be within one standard 
deviation on either side of the mean, that is, between 17 and 37 hours.

A  Sma l l  M ino r i t y  o f  Sco res  Dev ia te  More  Than  
Two  S tanda rd  Dev ia t i ons

The standard deviation also can be used in a generalization about the extremities or 
tails of frequency distributions:

For most frequency distributions, a small minority (often as small as 5 percent) of 
all scores deviate more than two standard deviations on either side of the mean.

This generalization describes each of the distributions in Figure 4.1. For instance, 
among the seven deviations in distribution C, none deviates more than two standard 
deviations (2 × 1.77 = 3.54) on either side of the mean. As suggested in Figure 4.3, rela-
tively few fourth graders have IQ scores that deviate more than two standard deviations 
(2 × 15 = 30) on either side of the mean of 105, that is, IQ scores less than 75 (105 − 30) 
or more than 135 (105 + 30). Likewise, relatively few college students estimate their 
weekly study times to be more than two standard deviations (2 × 10 = 20) on either side 
of the mean of 27, that is, less than 7 hours (27 − 20) or more than 47 hours (27 + 20).

Genera l i za t i ons  A re  fo r  A l l  D i s t r i bu t ions

These two generalizations about the majority and minority of scores are indepen-
dent of the particular shape of the distribution. In Figure 4.3, they apply to both the bal-
anced distribution of IQ scores and the positively skewed distribution of study times. 
In fact, the balanced distribution of IQ scores approximates an important theoretical 
distribution, the normal distribution. As will be seen in the next chapter, much more 
precise generalizations are possible for normal distributions.

Progress Check * 4.2 Employees of Corporation A earn annual salaries described by a 
mean of $90,000 and a standard deviation of $10,000.

(a) The majority of all salaries fall between what two values?

(b) A small minority of all salaries are less than what value?

(c) A small minority of all salaries are more than what value?

(d) Answer parts (a), (b), and (c) for Corporation B’s employees, who earn annual salaries 
described by a mean of $90,000 and a standard deviation of $2,000.

Answers on page 425.
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66  DESCRIBING VARIABILITY

S tanda rd  Dev ia t i on :  A  Measu re  o f  D i s tance

There’s an important difference between the standard deviation and its indispens-
able co-measure, the mean. The mean is a measure of position, but the standard devia-
tion is a measure of distance (on either side of the mean of the distribution). Figure 4.4 
describes the weight distribution for the males originally shown in Figure 2.1. Note that 
the mean ( )X  of 169.51 lbs has a particular position or location along the horizontal 
axis: It is located at the point, and only at the point, corresponding to 169.51 lbs. On 
the other hand, the standard deviation (s) of 23.33 lbs for the same distribution has no 
particular location along the horizontal axis. Using the standard deviation as a measure 
of distance on either side of the mean, we could describe one person’s weight as two 
standard deviations above the mean, X + 2s, another person’s weight as two-thirds of 
one standard deviation below the mean, X – 2⁄3s, and so on.

Va lue  o f  S tanda rd  Dev ia t i on  Canno t  Be  Nega t i ve

Standard deviation distances always originate from the mean and are expressed 
as positive deviations above the mean or negative deviations below the mean. Note, 
however, that although the actual value of the standard deviation can be zero or a pos-
itive number, it can never be a negative number because any negative deviation disap-
pears when squared. When a negative sign appears next to the standard deviation, as 
in the expression X – 1⁄2s, the negative sign indicates that one-half of a standard devia-
tion unit (always positive) must be subtracted from the mean to identify a weight 
located one-half of a standard deviation below the mean weight. More  specifically, 

FIGURE 4.3 

Some generalizations that apply to most frequency distributions.
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the expression X – 1⁄2s translates into a weight of 158 lbs since 169.51 − 1⁄2 (23.33) = 
169.51 − 11. 67 = 157.83.

Progress Check *4.3 Assume that the distribution of IQ scores for all college students 
has a mean of 120, with a standard deviation of 15. These two bits of information imply which 
of the following?

(a) All students have an IQ of either 105 or 135 because everybody in the distribution is either 
one standard deviation above or below the mean. True or false?

(b) All students score between 105 and 135 because everybody is within one standard devia-
tion on either side of the mean. True or false?

(c) On the average, students deviate approximately 15 points on either side of the mean. True 
or false?

(d) Some students deviate more than one standard deviation above or below the mean. True 
or false?

(e) All students deviate more than one standard deviation above or below the mean. True or false?

(f) Scott’s IQ score of 150 deviates two standard deviations above the mean. True or false?

Answers on page 425.

4 .5  DETA ILS :  STANDARD  DEV IAT ION

As with the mean, statisticians distinguish between population and sample for both the 
variance and the standard deviation, depending on whether the data are viewed as a 
complete set (population) or as a subset (sample). This distinction is introduced here, 
and it will be very important in inferential statistics.

Reminder: 

The value of the standard deviation 

can never be negative.
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FIGURE 4.4 

Weight distribution with mean and standard deviation.
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68  DESCRIBING VARIABILITY

where SS represents the sum of squares, Σ directs us to sum over the expression to its 
right, and (X − μ)2 denotes each of the squared deviation scores. Formula 4.1 should be 
read as “The sum of squares equals the sum of all squared deviation scores.” You can 
reconstruct this formula by remembering the following three steps:

1. Subtract the population mean, μ, from each original score, X, to obtain a devia-
tion score, X − μ.

2. Square each deviation score, (X − μ)2, to eliminate negative signs.

3. Sum all squared deviation scores, Σ (X − μ)2.

Table 4.1 shows how to use the definition formula to calculate the sum of squares 
for distribution C in Figure 4.1 on page 61. (Ignore the last two steps in this table until 
later, when formulas for the variance and standard deviation are introduced.)

The definition formula is cumbersome when, as often occurs, the mean equals some 
complex number, such as 169.51, or the number of scores is large. In these cases, use 
the more efficient computation formula:

Sum o f  S qua res  (SS )

Calculating the standard deviation requires that we obtain first a value for the vari-
ance. However, calculating the variance requires, in turn, that we obtain the sum of 
the squared deviation scores. The sum of squared deviation scores, or more simply 
the sum of squares, symbolized by SS, merits special attention because it’s a major 
component in calculations for the variance, as well as many other statistical measures. 
There are two formulas for the sum of squares: the definition formula, which is easier 
to understand and remember, and the computation formula, which usually is more 
efficient. In addition, we’ll introduce versions of these two formulas for populations 
and for samples.

Sum o f  Squa res  Fo rmu las  fo r  Popu la t i on

The definition formula provides the most accessible version of the population sum 
of squares:

Sum of Squares (SS) 

The sum of squared deviation 

scores.

SUM OF SQUARES (SS ) FOR POPULATION (DEFINITION FORMULA)

 2( )SS X  (4.1)

SUM OF SQUARES (SS ) FOR POPULATION (COMPUTATION FORMULA)

 

2
2 X

SS X
N  (4.2)

where 2 ,X  the sum of the squared X scores, is obtained by first squaring each X score 
and then summing all squared X scores; 2

,X  the square of sum of all X scores, is 
obtained by first adding all X scores and then squaring the sum of all X scores; and N 
is the population size.

We’ll not attempt to demonstrate that the computation formula, with its more com-
plex expressions, can be derived algebraically from the definition formula. However, 
Table 4.2 does confirm that the computation formula yields the same sum of squares 
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of 22 for distribution C as did the defi nition formula in Table 4.1. The tremendous 
effi ciency of the computation formula becomes more apparent when dealing with large 
sets of scores, as in Review Question 4.14.

Sum o f  S qua res  Fo rmu las  fo r  Samp le

Sample notation can be substituted for population notation in the above two formu-
las without causing any essential changes:

Table 4.1
CALCULATION OF POPULATION STANDARD DEVIATION σ 

(DEFINITION FORMULA)

A. COMPUTATION SEQUENCE
 Assign a value to N  1  representing the number of X scores 
 Sum all X scores 2
 Obtain the mean of these scores 3
 Subtract the mean from each X score to obtain a deviation score 4
 Square each deviation score 5
 Sum all squared deviation scores to obtain the sum of squares 6
 Substitute numbers into the formula to obtain population variance, σ2 7
 Take the square root of σ 2 to obtain the population standard deviation, σ 8

B. DATA AND COMPUTATIONS
4 5

X X – μ (X – μ)2

13 3 9
10 0 0
11 1 1

7 –3  9
9 –1  1

11 1 1
9 –1  1

 1  N = 7    2  Σ X = 70  6  SS = Σ (X – μ)2 = 22

 3  μ = 70
7

 = 10

 7  σ 2 = 22 3.14
7

SS
N

    8  22 3.14 1.77
7

SS
N

2
3

4
5

6
7

8

4 5

SUM OF SQUARES (SS ) FOR SAMPLE (DEFINITION FORMULA)

 2( )SS X X  (4.3)

(COMPUTATION FORMULA)

 
SS X

X

n
2

2( )

 (4.4)
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70  DESCRIBING VARIABILITY

where ,X  the sample mean, replaces μ, the population mean, and n, the sample size, 
replaces N, the population size. Notwithstanding these two changes in notation, the 
numerical result for the sample sum of squares (22) is the same as that for the popu-
lation sum of squares in Tables 4.1 and 4.2. Accordingly, the same symbol, SS, will 
represent the sum of squared deviation scores for both populations and samples.

S tanda rd  Dev ia t i on  fo r  Popu la t i on  σ
Recall that, most generally, a mean is defined as the sum of all scores divided by the 

number of scores. Since the variance is the mean of all squared deviation scores, it can 
be defined as the sum of all squared deviation scores divided by the number of scores:

sum of  all squared deviation scores
variance

number of  scores

or, in symbols:

Table 4.2
CALCULATION OF POPULATION STANDARD DEVIATION (σ) (COMPUTATION 

FORMULA)

A. COMPUTATIONAL SEQUENCE
Assign a value to N representing the number of X scores 1
Sum all X scores 2
Square the sum of all X scores 3
Square each X score 4
Sum all squared X scores 5
Substitute numbers into the formula to obtain the sum of squares, SS 6
Substitute numbers into the formula to obtain the population variance, σ 2 7
Take the square root of σ2 to obtain the population standard deviation, σ 8

B. DATA AND COMPUTATIONS
 4 

X X 2

13 169
10 100
11 121
7 49
9 81

11 121
9 81

1  N = 7 2  ∑X = 70     5  ∑X2 = 722

 3  (∑X)2 = 4900

6
 

2
2 4900

722 722 700 22
7

X
SS X

N

7
 

2 22
3.14

7

SS

N
8

 

22
3.14 1.77

7

SS

N

VARIANCE FOR POPULATION

 
2 SS

N  (4.5)
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where σ represents the population standard deviation,  instructs us to take the 
square root of the covered expression, and SS and N are defined above.

By referring to the last two steps in either Table 4.1 or 4.2, you can verify that the 
value of the variance, σ 2, equals 3.14 for distribution C because

2 22
3.14

7

SS

N

and that the value of the standard deviation, σ, equals 1.77 for distribution C because

22
3.14 1.77

7

SS

N

S tanda rd  Dev ia t i on  fo r  Samp le  ( s )

Although the sum of squares term remains essentially the same for both populations 
and samples, there is a small but important change in the formulas for the variance and 
standard deviation for samples. This change appears in the denominator of each for-
mula where N, the population size, is replaced not by n, the sample size, but by n − 1, 
as shown:

where the squared lowercase Greek letter, σ2 (pronounced “sigma squared”), represents 
the population variance, SS is the sum of squared deviations for the population, and N 
is the population size.

To rid us of the bizarre squared units of measurement, take the square root of the 
variance to obtain the standard deviation, that is,

Population Standard Deviation (σ) 

A rough measure of the average 

amount by which scores in the 

population deviate on either side of 

their population mean.
STANDARD DEVIATION FOR POPULATION

 

2 SS

N  (4.6)

VARIANCE FOR SAMPLE

 
2

1

SS
s

n  (4.7)

STANDARD DEVIATION FOR SAMPLE

 
2

1

SS
s s

n  (4.8)

where s2 and s represent the sample variance and sample standard deviation, SS is the 
sample sum of squares as defined in either Formula 4.3 or 4.4, and n is the sample size.*

*As recommended in the Publication Manual of the American Psychological Association, 
authors of current psychological reports often symbolize the sample standard deviation as SD 
instead of s and the sample mean as M instead of X . However, we’ll continue to use s and X , the 

customary symbols in most statistics texts.

Sample Standard Deviation (s) 

A rough measure of the average 

amount by which scores in the 

sample deviate on either side of 

their sample mean.
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72  DESCRIBING VARIABILITY

The reason for using n − 1 will be explained in the next section. But first, spend a 
few moments studying Tables 4.3 and 4.4, which show the calculations for the sample 
standard deviation, using the definition and computation formulas for sample sums of 
squares and a new set of five scores. Notice that, except for changes in notation and 
the smaller (n − 1) denominator, the computational procedures for the sample standard 
deviation in Tables 4.3 and 4.4 are the same as those for the population standard devia-
tion in Tables 4.1 and 4.2.

Computa t iona l  Check

With rare exceptions, the standard deviation should be less than one-half the size of 
the range, and in most cases, it will be an even smaller fraction (one-third to one-sixth) 
the size of the range. Use this rule of thumb to detect sizable computation errors. The 
only foolproof method for detecting smaller errors—whether you’re calculating the 
standard deviation manually or electronically—is to calculate everything twice and to 
proceed only if your numerical results agree.

Progress Check * 4.4 Using the definition formula for the sum of squares, calculate the 
sample standard deviation for the following four scores: 1, 3, 4, 4.

Reminder: 

Replace n with n − 1 only when 

dividing SS to obtain s2 and s.

Table 4.3
CALCULATION OF SAMPLE STANDARD DEVIATION (S  ) 

(DEFINITION FORMULA)

A. COMPUTATION SEQUENCE
Assign a value to n 1  representing the number of X scores
Sum all X scores 2
Obtain the mean of these scores 3
Subtract the mean from each X score to obtain a deviation score 4
Square each deviation score 5
Sum all squared deviation scores to obtain the sum of squares 6
Substitute numbers into the formula to obtain the sample variance, s 2 7
Take the square root of s2 to obtain the sample standard deviation, s 8

B. DATA AND COMPUTATIONS
 4  5

X X − X (X − X )2

7 4 16
3 0 0
1 –2 4
0 –3 9
4 1 1

 1   n = 5        2  ΣX = 15

  3   
15

3
5

X

    6  SS = Σ(X − X)2 = 30

 7  
 

2 30
7.50

1 4

SS
s

n
       8

 

30
7.50 2.74

1 4

SS
s

n
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Progress Check * 4.5 Using the computation formula for the sum of squares, calculate 
the population standard deviation for the scores in (a) and the sample standard deviation for 
the scores in (b).

(a) 1, 3, 7, 2, 0, 4, 7, 3  (b) 10, 8, 5, 0, 1, 1, 7, 9, 2

Progress Check *4.6 Days absent from school for a sample of 10 first-grade children are: 
8, 5, 7, 1, 4, 0, 5, 7, 2, 9.

a) Before calculating the standard deviation, decide whether the definitional or computa-
tional formula would be more efficient. Why?

b) Use the more efficient formula to calculate the sample standard deviation. 

Answers on page 425.

Why  n  −  1?

Using n − 1 in the denominator of Formulas 4.7 and 4.8 solves a problem in infer-
ential statistics associated with generalizations from samples to populations. The 
adequacy of these generalizations usually depends on accurately estimating unknown 
variability in the population with known variability in the sample. But if we were to use 

Table 4.4
CALCULATION OF SAMPLE STANDARD DEVIATION (S ) 

(COMPUTATION FORMULA)

A. COMPUTATIONAL SEQUENCE
Assign a value to n representing the number of X scores  1
Sum all X scores  2
Square the sum of all X scores  3
Square each X score  4
Sum all squared X scores  5
Substitute numbers into the formula to obtain the sum of squares, SS  6
Substitute numbers into the formula to obtain the sample variance, s 2  7
Take the square root of s2 to obtain the sample standard deviation, s  8

B. DATA AND COMPUTATIONS
 4

X X 2

7 49
3 9
1 1
0 0
4 16

                1  n = 5   2  ΣX = 15         5  ΣX 2 = 75

               3  (ΣX )2 = 225

 6
 

2
2 225

75 75 45 30
5

X
SS X

n

7  2 30
7.50

1 4

SS
s

n
 8  

30
7.50 2.74

1 4

SS
s

n
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n rather than n − 1 in the denominator of our estimates, they would tend to underesti-
mate variability in the population because n is too large. This tendency would compro-
mise any subsequent generalizations, such as whether observed mean differences are 
real or merely transitory. On the other hand, when the denominator is made smaller by 
using n − 1, variability in the population is estimated more accurately, and subsequent 
generalizations are more likely to be valid.

Assume that the five scores (7, 3, 1, 0, 4) in Table 4.3 are a random sample from 
some population whose unknown variability is to be estimated with the sample vari-
ability. To understand why n − 1 works, let’s look more closely at deviation scores. 
Formula 4.3, the definition formula for the sample sum of squares, specifies that each 
of the five original scores, X, be expressed as positive or negative deviations from their 
sample mean, X, of 3. At this point, a subtle mathematical restriction causes a com-
plication. It’s always true, as demonstrated on the left-hand side of Table 4.5, that the 
sum of all scores, when expressed as deviations about their own mean, equals zero. (If 
you’re skeptical, recall the discussion on page 52 about the mean as a balance point that 
equalizes the sums of all positive and negative deviations.) Given values for any four of 
the five deviations on the left-hand side of Table 4.5, the value of the remaining devia-
tion is not free to vary. Instead, its value is completely fixed because it must comply 
with the mathematical restriction that the sum of all deviations about their own mean 
equals zero. For instance, given the sum for the four top deviations on the left-hand 
side of Table 4.5, that is, [4 + 0 + (–2) + (–3) = –1], the value of the bottom deviation 
must equal 1, as it does, because of the zero-sum restriction, that is, [–1 + 1 = 0]. Or 
since this mathematical restriction applies to any four of the five deviations, given the 
sum for the four bottom deviations in Table 4.5, that is, [0 + (–2) + (–3) + 1 = – 4], the 
value of the top deviation must equal 4 because [– 4 + 4 = 0].

I f  μ  I s  Known

For the sake of the present discussion, now assume that we know the value of the 
population mean, μ —let’s say it equals 2. (Any value assigned to μ other than 3, the 
value of ,X  would satisfy the current argument. It’s reasonable to assume that the 
values of μ and X will differ because a random sample exactly replicates its popula-
tion rarely, if at all.) Furthermore, assume that we take a random sample of n = 5 

Table 4.5
TWO ESTIMATES OF POPULATION VARIABILITY

WHEN μ IS UNKNOWN WHEN μ IS KNOWN

(X  = 3) (μ = 2)

X X − X (X − X )2 X X − μ (X − μ)2

7 7 − 3 =  4 16 7 7 − 2 =  5 25
3 3 − 3 =  0 0 3 3 − 2 =  1 1
1 1 − 3 = –2 4 1 1 − 2 = –1 1
0 0 − 3 = –3 9 0 0 − 2 = –2 4
4 4 − 3 =  1 1 4 4 − 2 =  2 4

Σ(X − X ) =  0  Σ(X − X )2 = 30

df = n − 1 = 5 − 1 = 4

            Σ(X − μ) = 5    Σ(X − μ)2 = 35

df = n = 5

2

2

1 4

30
( 1) 7.50

X X

n
s df n

2

2 35
( ) 7. 0

5
0

X
s

n
df n
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 population deviation scores, X − μ. Then these five known deviation scores will serve 
as the initial basis for estimating the unknown variability in the population. As dem-
onstrated on the right-hand side of Table 4.5, the sum of the five deviations about μ, 
that is, [5 + 1 + (–1) + (–2) + 2], equals not 0 but 5. The zero-sum restriction applies 
only if the five deviations are expressed around their own mean—that is, the sample 
mean, ,X  of 3. It does not apply when the five deviations are expressed around some 
other mean, such as the population mean, μ, of 2 for the entire population. In this case, 
since all five deviations are free to vary, each provides valid information about the 
variability in the population. Therefore, when calculating the sample variance based 
on a random sample of five population deviation scores, X − μ, it would be appropriate 
to divide this sample sum of squares by the n of 5, as shown on the right-hand side of 
Table 4.5.

I f  μ  I s  Unknown

It would be most efficient if, as above, we could use a random sample of n devia-
tions expressed around the population mean, X − μ, to estimate variability in the popu-
lation. But this is usually impossible because, in fact, the population mean is unknown. 
Therefore, we must substitute the known sample mean, ,X  for the unknown population 
mean, μ, and we must use a random sample of n deviations expressed around their 
own sample mean, X –X, to estimate variability in the population. Although there are 
n = 5 deviations in the sample, only n − 1 = 4 of these deviations are free to vary 
because the sum of the n = 5 deviations from their own sample mean always equals 
zero.

Only n − 1 of the sample deviations supply valid information for estimating vari-
ability. One bit of valid information has been lost because of the zero-sum restriction 
when the sample mean replaces the population mean. And that’s why we divide the 
sum of squares for X – X by n − 1, as on the left-hand side of Table 4.5.

4 .6  DEGREES  OF  FREEDOM ( d f )

Technically, we have been discussing a very important notion in inferential statistics 
known as degrees of freedom.

Degrees of freedom (df) refers to the number of values that are free to vary, 
given one or more mathematical restrictions, in a sample being used to esti-
mate a population characteristic.

The concept of degrees of freedom is introduced only because we are using scores in 
a sample to estimate some unknown characteristic of the population. Typically, when 
used as an estimate, not all observed values in the sample are free to vary because of 
one or more mathematical restrictions. As has been noted, when n deviations about the 
sample mean are used to estimate variability in the population, only n − 1 are free to 
vary. As a result, there are only n − 1 degrees of freedom, that is, df = n − 1. One df is 
lost because of the zero-sum restriction.

If the sample sum of squares were divided by n, it would tend to underestimate vari-
ability in the population. (In Table 4.5, when μ is unknown, division by n instead of  
n − 1 would produce a smaller estimate of 6.00 instead of 7.50.) This would occur 
because there are only n − 1 independent deviations (estimates of variability) in the 
sample sum of squares. A more accurate estimate is obtained when the denominator 
term reflects the number of independent deviations—that is, the number of degrees of 

Degrees of Freedom (df ) 

The number of values free to vary, 

given one or more mathematical 

restrictions.
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freedom—in the numerator, as in the formulas for s2 and s. In fact, we can use degrees 
of freedom to rewrite the formulas for the sample variance and standard deviation:

where s2 and s represent the sample variance and standard deviation, SS is the sum of 
squares as defined in either Formula 4.3 or 4.4, and df is the degrees of freedom and 
equals n − 1.

Othe r  Ma themat ica l  Res t r i c t i ons

The notion of degrees of freedom is used extensively in inferential statistics. We’ll 
encounter other mathematical restrictions, and sometimes more than one degree of 
freedom will be lost. In any event, however, degrees of freedom (df ) always indicate 
the number of values that are free to vary, given one or more mathematical restrictions, 
in a set of values used to estimate some unknown population characteristic.

Progress Check *4.7 As a first step toward modifying his study habits, Phil keeps daily 
records of his study time.

(a) During the first two weeks, Phil’s mean study time equals 20 hours per week. If he studied 
22 hours during the first week, how many hours did he study during the second week?

(b) During the first four weeks, Phil’s mean study time equals 21 hours. If he studied 22, 18, 
and 21 hours during the first, second, and third weeks, respectively, how many hours did 
he study during the fourth week?

(c) If the information in (a) and (b) is to be used to estimate some unknown population char-
acteristic, the notion of degrees of freedom can be introduced. How many degrees of 
freedom are associated with (a) and (b)?

(d) Describe the mathematical restriction that causes a loss of degrees of freedom in (a) and (b).

Answers on page 425.

4 .7  INTERQUART ILE  RANGE  ( IQR )

The most important spinoff of the range, the interquartile range (IQR), is simply the 
range for the middle 50 percent of the scores. More specifically, the IQR equals the 
distance between the third quartile (or 75th percentile) and the first quartile (or 25th 
percentile), that is, after the highest quarter (or top 25 percent) and the lowest quarter 
(or bottom 25 percent) have been trimmed from the original set of scores. Since most 
distributions are spread more widely in their extremities than their middle, the IQR 
tends to be less than half the size of the range.

Interquartile Range (IQR) 

The range for the middle 50 per-

cent of the scores.

VARIANCE FOR SAMPLE

 
2

1

SS SS
s

n df  
(4.9)

STANDARD DEVIATION FOR SAMPLE

 1

SS SS
s

n df  (4.10)
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The calculation of the IQR is relatively straightforward, as you can see by studying 
Table 4.6. This table shows that the IQR equals 2 for distribution C (7, 9, 9, 10, 11, 11, 
13) shown in Figure 4.1.

Not  Sens i t i ve  to  Ex t reme  Sco res

A key property of the IQR is its resistance to the distorting effect of extreme scores, 
or outliers. For example, if the smallest score (7) in distribution C of Figure 4.1 were 
replaced by a much smaller score (for instance, 1), the value of the IQR would remain 
the same (2), although the value of the original range (6) would be larger (12). Thus, if 
you are concerned about possible distortions caused by extreme scores, or outliers, use 
the IQR as the measure of variability, along with the median (or second quartile) as the 
measure of central tendency.

Progress Check *4.8 Determine the values of the range and the IQR for the following 
sets of data.

(a) Retirement ages: 60, 63, 45, 63, 65, 70, 55, 63, 60, 65, 63

(b) Residence changes: 1, 3, 4, 1, 0, 2, 5, 8, 0, 2, 3, 4, 7, 11, 0, 2, 3, 4

Answers on page 425.

Table 4.6
CALCULATION OF THE IQR

A. INSTRUCTIONS
1 Order scores from least to most.
2  To determine how far to penetrate the set of ordered scores, begin at either end, 

then add 1 to the total number of scores and divide by 4. If necessary, round the 
result to the nearest whole number.

3  Beginning with the largest score, count the requisite number of steps (calculated 
in step 2) into the ordered scores to find the location of the third quartile.

4  The third quartile equals the value of the score at this location.
5  Beginning with the smallest score, again count the requisite number of steps into 

the ordered scores to find the location of the first quartile.
6  The first quartile equals the value of the score at this location.
7  The IQR equals the third quartile minus the first quartile.

B. EXAMPLE
1 7, 9, 9, 10, 11, 11, 13
2  (7 + 1)/4 = 2
3  7, 9, 9, 10, 11, 11, 13

      
        2    1

4  third quartile = 11
5  7, 9, 9, 10, 11, 11, 13

 1  2

6  first quartile = 9
7  IQR = 11 − 9 = 2
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4 .8  MEASURES  OF  VAR IAB IL ITY  FOR  QUAL ITAT IVE  
AND  RANKED  DATA

Qua l i ta t i ve  Da ta

Measures of variability are virtually nonexistent for qualitative or nominal data. It is 
probably adequate to note merely whether scores are evenly divided among the various 
classes (maximum variability), unevenly divided among the various classes (intermedi-
ate variability), or concentrated mostly in one class (minimum variability). For exam-
ple, if the ethnic composition of the residents of a city is about evenly divided among 
several groups, the variability with respect to ethnic groups is maximum; there is con-
siderable heterogeneity. (An inspection of county population data from the 2010 census, 
available on the Internet at http://factfinder.census.gov, reveals that the greatest ethnic 
variability occurs in large urban counties, such as Bronx County in New York and San 
Francisco County in California.) At the other extreme, if almost all the residents are 
concentrated in a single ethnic group, the variability will be minimum; there is little het-
erogeneity. (According to the previous source, virtually no ethnic variability occurs in 
sparsely populated rural counties, such as Hooker County in Nebraska and King County 
in Texas, with an almost exclusively white population.) If the ethnic composition falls 
between these two extremes—because of an uneven division among several large ethnic 
groups—the variability will be intermediate, as is true of many U.S. cities and counties.

Orde red  Qua l i t a t i ve  and  Ranked  Da ta

If qualitative data can be ordered because measurement is ordinal (or if the data are 
ranked), then it’s appropriate to describe variability by identifying extreme scores (or 
ranks). For instance, the active membership of an officers’ club might include no one 
with a rank below first lieutenant or above brigadier general.

Summary

Measures of variability reflect the amount by which observations are dispersed or 
scattered in a distribution. These measures assume a key role in the analysis of research 
results.

The simplest measure of variability, the range, is readily calculated and understood, 
but it has two shortcomings.

Among measures of variability, the variance and particularly the standard devia-
tion occupy the same exalted position as does the mean among measures of central 
tendency.

The variance is a type of mean, that is, the mean of all squared deviations about their 
mean. To avoid mind-boggling squared units of measurement, we take the square root 
of the variance to obtain the standard deviation.

The standard deviation is a rough measure of the average or typical amount by 
which scores deviate on either side of their mean.

For most frequency distributions, a majority of all scores are within one standard 
deviation of their mean, and a small minority of all scores deviate more than two stan-
dard deviations on either side of their mean.

Unlike the mean, which is a measure of position, the standard deviation is a measure 
of distance.

Calculation of either the population standard deviation (σ) or the sample standard 
deviation (s) requires three steps:

1. Calculate the sum of all squared deviation scores (SS) using either the definition 
or computation formula.
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2. Divide the SS by N, the population size, to obtain the population variance (σ 2) 
or divide the SS by n − 1, the sample size minus 1, to obtain the sample vari-
ance (s2).

3. Take the square root of the variance to obtain the population standard deviation 
(σ) or the sample standard deviation (s).

The denominator of the formulas for sample variance and standard deviation reflects 
the fact that, because of the zero-sum restriction, only n − 1 of the sample deviation 
scores provide valid estimates of population variability.

Whenever we estimate unknown population characteristics, we must be concerned 
about the number of degrees of freedom (df) associated with our estimate. Degrees of 
freedom specify the number of values that are free to vary, given one or more math-
ematical restrictions. When estimating the population variance and standard deviation, 
degrees of freedom equal n − 1.

The interquartile range (IQR) is resistant to the distorting effects of extreme scores.
Measures of variability are virtually nonexistent for qualitative and ranked data.

Important Terms

Measures of variability Variance

Range Sum of squares (SS)

Standard deviation Sample standard deviation (s)

Population standard deviation (σ) Interquartile range (IQR)

Degrees of freedom (df )

Key Equations

STANDARD DEVIATION FOR SAMPLE

1

SS SS
s

n df

where            
2

2 X
SS X

n

REV IEW QUEST IONS

 *4. 9 For each of the following pairs of distributions, first decide whether their standard 
deviations are about the same or different. If their standard deviations are different, 
indicate which distribution should have the larger standard deviation. Hint: The 
distribution with the more dissimilar set of scores or individuals should produce the 
larger standard deviation regardless of whether, on average, scores or individuals in 
one distribution differ from those in the other distribution.

 (a) SAT scores for all graduating high school seniors (a
1
) or all college freshmen (a

2
)

 (b) Ages of patients in a community hospital (b
1
) or a children’s hospital (b

2
)
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80  DESCRIBING VARIABILITY

 (c) Motor skill reaction times of professional baseball players (c
1
) or college  

students (c
2
)

 (d) GPAs of students at some university as revealed by a random sample (d
1
) or a census 

of the entire student body (d
2
)

 (e) Anxiety scores (on a scale from 0 to 50) of a random sample of college students 
taken from the senior class (e

1
) or those who plan to attend an anxiety-reduction 

clinic (e
2
)

 (f) Annual incomes of recent college graduates (f
1
) or of 20-year alumni (f

2
)

Answers on page 425.

 4.10 When not interrupted artificially, the duration of human pregnancies can be described, 
we’ll assume, by a mean of 9 months (270 days) and a standard deviation of one-half 
month (15 days).

 (a) Between what two times, in days, will a majority of babies arrive?

 (b) A small minority of all babies will arrive sooner than ______.

 (c) A small minority of all babies will arrive later than ______.

 (d) In a paternity suit, the suspected father claims that, since he was overseas during 
the entire 10 months prior to the baby’s birth, he could not possibly be the father. Any 
comment?

 4.11 Add 10 to each of the scores in Question 4.4 (1, 3, 4, 4) to produce a new distribution 
(11, 13, 14, 14). Would you expect the value of the sample standard deviation to be 
the same for both the original and new distributions? Explain your answer, and then 
calculate s for the new distribution.

 4.12 Add 10 to only the smallest score in Question 4.4 (1, 3, 4, 4) to produce another new 
distribution (11, 3, 4, 4). Would you expect the value of s to be the same for both the 
original and new distributions? Explain your answer, and then calculate s for the new 
distribution.

 *4.13 (a) While in office, a former governor of California proposed that all state employ-
ees receive the same pay raise of $70 per month. What effect, if any, would this 
raise have had on the mean and the standard deviation for the distribution of 
monthly wages in existence before the proposed raise? Hint: Imagine the effect of 
adding $70 to the monthly wages of each state employee on the mean and on the 
standard deviation (or on a more easily visualized measure of variability, such as the 
range).

 (b) Other California officials suggested that all state employees receive a pay raise 
of 5 percent. What effect, if any, would this raise have had on the mean and the 
standard deviation for the distribution of monthly wages in existence before the 
proposed raise? Hint: Imagine the effect of multiplying the monthly wages of each 
state employee by 5 percent on the mean and on the standard deviation or on the 
range.

Answers on page 426.

 4.14 (a) Using the computation formula for the sample sum of squares, verify that the 
sample standard deviation, s, equals 23.33 lbs for the distribution of 53 weights in 
Table 1.1.
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 (b) Verify that a majority of all weights fall within one standard deviation of the mean 
(169.51) and that a small minority of all weights deviate more than two standard 
deviations from the mean.

 4.15 In what sense is the variance

 (a) a type of mean?

 (b) not a readily understood measure of variability?

 (c) a stepping stone to the standard deviation?

 4.16 Specify an important difference between the standard deviation and the mean.

 4. 17 Why can’t the value of the standard deviation ever be negative?

 *4. 18 Indicate whether each of the following statements about degrees of freedom is true 
or false.

 (a) Degrees of freedom refer to the number of values free to vary in the population.

 (b) One degree of freedom is lost because, when expressed as a deviation from the 
sample mean, the final deviation in the sample fails to supply information about 
population variability.

 (c) Degrees of freedom makes sense only if we wish to estimate some unknown char-
acteristic of a population.

 (d) Degrees of freedom reflect the poor quality of one or more observations.

Answers on page 426.

 4. 19 Referring to Review Question 2.18 on page 46, would you describe the distribution 
of majors for all male graduates as having maximum, intermediate, or minimum 
 variability?
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CHAPTER

5
Normal Distributions and 
Standard (z) Scores

5.1 THE NORMAL CURVE

5.2 z SCORES

5.3 STANDARD NORMAL CURVE

5.4 SOLVING NORMAL CURVE PROBLEMS

5.5 FINDING PROPORTIONS

5.6 FINDING SCORES

5.7 MORE ABOUT z SCORES 

Summary / Important Terms / Key Equations / Review Questions

Preview

The familiar bell-shaped normal curve describes many observed frequency 

distributions, including scores on IQ tests, slight measurement errors made by a 

succession of people who attempt to measure precisely the same thing, the useful 

lives of 100-watt electric light bulbs, and even the heights of stalks in a field of corn. 

As will become apparent in later chapters, the normal curve also describes some 

important theoretical distributions in inferential statistics.

Thanks to the standard normal table, we can answer questions about any normal 

distribution whose mean and standard deviation are known. In the long run, this proves 

to be both more accurate and more efficient than dealing directly with each observed 

frequency distribution. Use of the standard normal table requires a familiarity with z 

scores. Regardless of the original measurements—whether IQ points, measurement 

errors in millimeters, or reaction times in milliseconds— z scores are “pure” or unit-

free numbers that indicate how many standard deviation units an observation is above 

or below the mean.
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In the classic movie The President’s Analyst, the director of the Federal Bureau of 
Investigation, rather short himself, encourages the recruitment of similarly short FBI 
agents. If, in fact, FBI agents are to be selected only from among applicants who are 
no taller than exactly 66 inches, what proportion of all of the original applicants will be 
eligible? This question can’t be answered without additional information.

One source of additional information is the relative frequency distribution of heights 
for the 3091 men shown in Figure 5.1. To find the proportion of men who are a par-
ticular height, merely note the value of the vertical scale that corresponds to the top of 
any bar in the histogram. For example, .10 of these men, that is, one-tenth of 3091, or 
about 309 men, are 70 inches tall.

When expressed as a proportion, any conclusion based on the 3091 men can be gen-
eralized to other comparable sets of men, even sets containing an unspecified number. 
For instance, if the distribution in Figure 5.1 is viewed as representative of all men 
who apply for FBI jobs, we can estimate that .10 of all applicants will be 70 inches tall. 
Or, given the director’s preference for shorter agents, we can use the same distribution 
to estimate the proportion of applicants who will be eligible. To obtain the estimated 
proportion of eligible applicants (.165) from Figure 5.1, add the values associated with 
the shaded bars. (Only half of the bar at 66 inches is shaded to adjust for the fact that 
any height between 65.5 and 66.5 inches is reported as 66 inches, whereas eligible 
applicants must be shorter than exactly 66 inches, that is, 66.0 inches.)

The distribution in Figure 5.1 has an obvious limitation: It is based on a group of 
just 3091 men that, at most, only resembles the distributions for other groups of men, 
including the group of FBI applicants. Therefore, any generalization will contain inac-
curacies due to chance irregularities in the original distribution.

5 .1  THE  NORMAL  CURVE

More accurate generalizations usually can be obtained from distributions based on 
larger numbers of men. A distribution based on 30,910 men usually is more accu-
rate than one based on 3091, and a distribution based on 3,091,000 usually is even 
more accurate. But it is prohibitively expensive in both time and money to even 
survey 30,910 people. Fortunately, it is a fact that the distribution of heights for all 

FIGURE 5.1 

Relative frequency distribution for heights of 3091 men.
Source: National Center for Health Statistics, 1960–62, Series 11, No.14. Mean 
updated by authors.
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American men—not just 3091 or even 3,091,000—approximates the normal curve, 
a well- documented theoretical curve.

In Figure 5.2, the idealized normal curve has been superimposed on the original 
distribution for 3091 men. Irregularities in the original distribution, most likely due 
to chance, are ignored by the smooth normal curve. Accordingly, any generalizations 
based on the smooth normal curve will tend to be more accurate than those based on 
the original distribution.

I n te rp re t i ng  the  Shaded  A rea

The total area under the normal curve in Figure 5.2 can be identified with all FBI 
applicants. Viewed relative to the total area, the shaded area represents the proportion 
of applicants who will be eligible because they are shorter than exactly 66 inches. This 
new, more accurate proportion will differ from that obtained from the original histo-
gram (.165) because of discrepancies between the two distributions.

F ind ing  a  P ropo r t i on  fo r  t he  Shaded  A rea

To find this new proportion, we cannot rely on the vertical scale in Figure  5.2, 
because it describes as proportions the areas in the rectangular bars of histograms, 
not the areas in the various curved sectors of the normal curve. Instead, in Section 5.3 
we will learn how to use a special table to find the proportion represented by any area 
under the normal curve, including that represented by the shaded area in Figure 5.2.

Prope r t i es  o f  t he  No rma l  Cu rve

Let’s note several important properties of the normal curve:

 ■ Obtained from a mathematical equation, the normal curve is a theoretical curve 
defined for a continuous variable, as described in Section 1.6, and noted for its 
symmetrical bell-shaped form, as revealed in Figure 5.2.

 ■ Because the normal curve is symmetrical, its lower half is the mirror image of 
its upper half.

 ■ Being bell shaped, the normal curve peaks above a point midway along the hor-
izontal spread and then tapers off gradually in either direction from the peak 
(without actually touching the horizontal axis, since, in theory, the tails of a nor-
mal curve extend infinitely far).

 ■ The values of the mean, median (or 50th percentile), and mode, located at a point 
midway along the horizontal spread, are the same for the normal curve.

Normal Curve 

A theoretical curve noted for its 

symmetrical bell-shaped form.

FIGURE 5.2 

Normal curve superimposed on the distribution of heights.
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 5.1 THE NORMAL CURVE  85

Impor tance  o f  Mean  and  S tanda rd  Dev ia t i on

When you’re using the normal curve, two bits of information are indispensable: 
values for the mean and the standard deviation. For example, before the normal curve 
can be used to answer the question about eligible FBI applicants, it must be established 
that, for the original distribution of 3091 men, the mean height equals 69 inches and the 
standard deviation equals 3 inches.

Di f fe ren t  No rma l  Cu rves

Having established that a particular normal curve has a mean of 69 inches and a stan-
dard deviation of 3 inches, we can’t arbitrarily change these values, as any change in the 
value of either the mean or the standard deviation (or both) would create a new normal 
curve that no longer describes the original distribution of heights. Nevertheless, as a theo-
retical exercise, it is instructive to note the various types of normal curves that are produced 
by an arbitrary change in the value of either the mean (μ) or the standard deviation (σ).*

For example, changing the mean height from 69 to 79  inches produces a new nor-
mal curve that, as shown in panel A of Figure 5.3, is displaced 10 inches to the right of 
the original curve. Dramatically new normal curves are produced by changing the 
value of the standard deviation. As shown in panel B of Figure 5.3, changing the stan-
dard deviation from 3 to 1.5 inches produces a more peaked normal curve with smaller 
variability, whereas changing the standard deviation from 3 to 6 inches produces a 
shallower normal curve with greater variability.

Obvious differences in appearance among normal curves are less important than 
you might suspect. Because of their common mathematical origin, every normal 
curve can be interpreted in exactly the same way once any distance from the mean is 
expressed in standard deviation units. For example, .68, or 68 percent of the total area 
under a normal curve—any normal curve—is within one standard deviation above and 
below the mean, and only .05, or 5 percent, of the total area is more than two standard 
deviations above and below the mean. And this is only the tip of the iceberg. Once any 
distance from the mean has been expressed in standard deviation units, we will be able 
to  consult the standard normal table, described in Section 5.3, to determine the corre-
sponding proportion of the area under the normal curve.

*Since the normal curve is an idealized curve that is presumed to describe a complete set of 

observations or a population, the symbols μ and σ, representing the mean and standard deviation 

of the population, respectively, will be used in this chapter.

FIGURE 5.3 

Different normal curves.

μ = 69μ = 69
μ = 73μ = 73

σ = 3

σ = 1.5

μ = 73μ = 73
σ = 3

μ = 73μ = 73
σ = 6

μ = 79μ = 79

σ = 3

79

A. Different Means, Same Standard Deviation B. Same Mean, Different Standard Deviations

7369
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86  NORMAL DISTRIBUTIONS AND STANDARD (z)  SCORES

where X is the original score and μ and σ are the mean and the standard deviation, 
respectively, for the normal distribution of the original scores. Since identical units 
of measurement appear in both the numerator and denominator of the ratio for z, the 
original units of measurement cancel each other and the z score emerges as a unit-free 
or standardized number, often referred to as a standard score.

A z score consists of two parts:

1. a positive or negative sign indicating whether it’s above or below the mean; and

2. a number indicating the size of its deviation from the mean in standard deviation 
units.

A z score of 2.00 always signifies that the original score is exactly two standard devia-
tions above its mean. Similarly, a z score of –1.27 signifies that the original score is 
exactly 1.27 standard deviations below its mean. A z score of 0 signifies that the origi-
nal score coincides with the mean.

Conve r t i ng  to  z Sco res

To answer the question about eligible FBI applicants, replace X with 66 (the maxi-
mum permissible height), μ with 69 (the mean height), and σ with 3 (the standard 
deviation of heights) and solve for z as follows:

66 69 3
1

3 3  

This informs us that the cutoff height is exactly one standard deviation below the mean. 
Knowing the value of z, we can use the table for the standard normal curve to find 
the proportion of eligible FBI applicants. First, however, we’ll make a few comments 
about the standard normal curve.

Progress Check *5.1 Express each of the following scores as a z score:

(a) Margaret’s IQ of 135, given a mean of 100 and a standard deviation of 15

(b) a score of 470 on the SAT math test, given a mean of 500 and a standard deviation of 100

(c) a daily production of 2100 loaves of bread by a bakery, given a mean of 2180 and a stan-
dard deviation of 50

5 .2  z SCORES

A z score is a unit-free, standardized score that, regardless of the original units 
of measurement, indicates how many standard deviations a score is above or 
below the mean of its distribution.

To obtain a z score, express any original score, whether measured in inches, millisec-
onds, dollars, IQ points, etc., as a deviation from its mean (by subtracting its mean) 
and then split this deviation into standard deviation units (by dividing by its standard 
deviation), that is,

z Score 

A unit-free, standardized score that 

indicates how many standard devi-

ations a score is above or below 

the mean of its distribution.

z SCORE

 

X
z

 (5.1)
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 5.3 STANDARD NORMAL CURVE  87

(d) Sam’s height of 69 inches, given a mean of 69 and a standard deviation of 3

(e) a thermometer-reading error of –3 degrees, given a mean of 0 degrees and a standard 
deviation of 2 degrees

Answers on page 426.

5 .3  STANDARD  NORMAL  CURVE

If the original distribution approximates a normal curve, then the shift to standard or z 
scores will always produce a new distribution that approximates the standard normal 
curve. This is the one normal curve for which a table is actually available. It is a math-
ematical fact—not proven in this book—that the standard normal curve always has a 
mean of 0 and a standard deviation of 1. However, to verify (rather than prove) that the 
mean of a standard normal distribution equals 0, replace X in the z score formula with 
μ, the mean of any (nonstandard) normal distribution, and then solve for z:

0
Mean of 0

X
z

Likewise, to verify that the standard deviation of the standard normal distribution equals 
1, replace X in the z score formula with μ + 1σ, the value corresponding to one standard 
deviation above the mean for any (nonstandard) normal distribution, and then solve for z:

1 1
Standard deviation of 1

X
z

Although there is an infinite number of different normal curves, each with its 
own mean and standard deviation, there is only one standard normal curve, 
with a mean of 0 and a standard deviation of 1.

Figure 5.4 illustrates the emergence of the standard normal curve from three different 
normal curves: that for the men’s heights, with a mean of 69 inches and a standard 
deviation of 3 inches; that for the useful lives of 100-watt electric light bulbs, with a 
mean of 1200 hours and a standard deviation of 120 hours; and that for the IQ scores of 
fourth graders, with a mean of 105 points and a standard deviation of 15 points.

Standard Normal Curve 

The tabled normal curve for z 

scores, with a mean of 0 and a 

standard deviation of 1.

FIGURE 5.4 

Converting three normal curves to the standard normal curve.

Useful Lives
(hours)

Heights
(inches)

IQ
Scores

XX

z –3 –2 –1 0 1 2 3 z–3–3 –2 –1 0 1 2 3 –2 –1 0 1 2 3

1200
1320

1440
1560

960
840

1080
60 63 66 69 72 75 78 60 75 90 105 120 135 150
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88  NORMAL DISTRIBUTIONS AND STANDARD (z)  SCORES

Converting all original observations into z scores leaves the normal shape intact but 
not the units of measurement. Shaded observations of 66 inches, 1080 hours, and 90 IQ 
points all reappear as a z score of –1.00. Verify this by using the z score formula. Show-
ing no traces of the original units of measurement, this z score contains the one cru-
cial bit of information common to the three original observations: All are located one 
standard deviation below the mean. Accordingly, to find the proportion for the shaded 
areas in Figure 5.4 (that is, the proportion of applicants who are less than exactly 66 
inches tall, or light bulbs that burn for fewer than 1080 hours, or fourth graders whose 
IQ scores are less than 90), we can use the same z score of –1.00 when referring to the 
table for the standard normal curve, the one table for all normal curves.

S tanda rd  No rma l  Tab le

Essentially, the standard normal table consists of columns of z scores coordinated 
with columns of proportions. In a typical problem, access to the table is gained through 
a z score, such as –1.00, and the answer is read as a proportion, such as the proportion 
of eligible FBI applicants.

Us ing  the  Top  Legend  o f  t he  Tab le

Table 5.1 shows an abbreviated version of the standard normal curve, while Table A 
in Appendix C on page 458 shows a more complete version of the same curve. Notice 
that columns are arranged in sets of three, designated as A, B, and C in the legend at 
the top of the table. When using the top legend, all entries refer to the upper half of 
the standard normal curve. The entries in column A are z scores, beginning with 0.00 
and ending (in the full-length table of Appendix C) with 4.00. Given a z score of zero 
or more, columns B and C indicate how the z score splits the area in the upper half of 
the normal curve. As suggested by the shading in the top legend, column B indicates 
the proportion of area between the mean and the z score, and column C indicates the 
proportion of area beyond the z score, in the upper tail of the standard normal curve.

Us ing  the  Bo t tom  Legend  o f  t he  Tab le

Because of the symmetry of the normal curve, the entries in Table 5.1 and Table A 
of Appendix C also can refer to the lower half of the normal curve. Now the columns 
are designated as A′, B′, and C′ in the legend at the bottom of the table. When using the 
bottom legend, all entries refer to the lower half of the standard normal curve.

Imagine that the nonzero entries in column A′ are negative z scores, beginning 
with –0.01 and ending (in the full-length table of Appendix C) with –4.00. Given a 
negative z score, columns B′ and C′ indicate how that z score splits the lower half 
of the normal curve. As suggested by the shading in the bottom legend of the table, 
column B′ indicates the proportion of area between the mean and the negative z score, 
and column C′ indicates the proportion of area beyond the negative z score, in the 
lower tail of the standard normal curve.

Progress Check *5.2 Using Table A in Appendix C, find the proportion of the total area 
identified with the following statements:

(a) above a z score of 1.80

(b) between the mean and a z score of –0.43

(c) below a z score of –3.00

(d) between the mean and a z score of 1.65

(e) between z scores of 0 and –1.96

Answers on page 426.
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 5.4 SOLVING NORMAL CURVE PROBLEMS  89

TABLE 5.1 
PROPORTIONS (OF AREAS) UNDER THE STANDARD NORMAL CURVE 

 FOR VALUES OF z (FROM TABLE A OF APPENDIX C)

0.00 .0000 .5000 0.40 .1554 .3446 0.80 .2881 .2119

0.01 .0040 .4960 0.41 .1591 .3409 0.81 .2910 .2090

• • • • • • • • •

      • • •

      • • •

      • • •

• • • • • • • • •

      0.99 .3389 .1611

      1.00 .3413 .1587

• • • • • • 1.01 .3438 .1562

      • • •

      • • •

• • • • • • • • •

0.38 .1480 .3520 0.78 .2823 .2711 1.18 .3810 .1190

0.39 .1517 .3483 0.79 .2852 .2148 1.19 .3830 .1170

CB

z

A CB

z

ACB

z

A

CBA

–z

CBA

–z

CBA

–z

Reminder: 

Use of a standard normal table 

always involves z scores.

5 .4  SOLV ING  NORMAL  CURVE  PROBLEMS

Sections 5.5 and 5.6 give examples of two main types of normal curve problems. In the 
first type of problem, we use a known score (or scores) to find an unknown proportion. 
For instance, we use the known score of 66 inches to find the unknown proportion of 
eligible FBI applicants. In the second type of problem, the procedure is reversed. Now 
we use a known proportion to find an unknown score (or scores). For instance, if the 
FBI director had specified that applicants’ heights must not exceed the 25th percentile 
(the shortest .25) of the population, we would use the known proportion of .25 to find 
the unknown cutoff height in inches.

So l ve  P rob lems  Log ica l l y

Do not rush through these examples, memorizing solutions to particular prob-
lems or looking for some magic formula. Concentrate on the logic of the solution, 
using rough graphs of normal curves as an aid to visualizing the solution. Only after 
thinking through to a solution should you do any calculations and consult the normal 
tables. Then, with just a little practice, you will view the wide variety of normal 
curve problems not as a bewildering assortment but as many slight variations on two 
distinctive types.
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90  NORMAL DISTRIBUTIONS AND STANDARD (z)  SCORES

Key  Fac ts  to  Remember

When using the standard normal table, it is important to remember that for any z 
score, the corresponding proportions in columns B and C (or columns B′ and C′) always 
sum to .5000. Similarly, the total area under the normal curve always equals 1.0000, the 
sum of the proportions in the lower and upper halves, that is, .5000 + .5000. Finally, 
although a z score can be either positive or negative, the proportions of area under the 
curve are always positive or zero but never negative (because an area cannot be nega-
tive). Figure 5.5 summarizes how to interpret the normal curve table in this book.

5 .5  F IND ING  PROPORT IONS

Example :  F ind ing  P ropo r t i ons  fo r  One  Sco re

Now we’ll use a step-by-step procedure, adopted throughout this chapter, to find the 
proportion of all FBI applicants who are shorter than exactly 66 inches, given that the 
distribution of heights approximates a normal curve with a mean of 69 inches and a 
standard deviation of 3 inches.

1. Sketch a normal curve and shade in the target area, as in the left part of 
Figure 5.6. Being less than the mean of 69, 66 is located to the left of the mean. 
Furthermore, since the unknown proportion represents those applicants who are 
shorter than 66 inches, the shaded target sector is located to the left of 66.

2. Plan your solution according to the normal table. Decide precisely how you 
will find the value of the target area. In the present case, the answer will be 
obtained from column C′ of the standard normal table, since the target area coin-
cides with the type of area identified with column C′, that is, the area in the lower 
tail beyond a negative z.

3. Convert X to z. Express 66 as a z score:

66 69 3
1

3 3

X
z

Reminder: 

z scores can be negative, but areas 

under the normal curve cannot.

FIGURE 5.5 

Interpretation of Table A, Appendix C.

.5000.5000

1.0000

Col. B'

Col. A' Col. A

Col. C'

Col. B

Col. C

–3 –2 –1 0 1 2 3
z
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 5.5 FINDING PROPORTIONS  91

4. Find the target area. Refer to the standard normal table, using the bottom leg-
end, as the z score is negative. The arrows in Table 5.1 show how to read the 
table. Look up column A’ to 1.00 (representing a z score of –1.00), and note the 
corresponding proportion of .1587 in column C’: This is the answer, as suggested 
in the right part of Figure 5.6. It can be concluded that only .1587 (or .16) of all 
of the FBI applicants will be shorter than 66  inches. 

A  C la r i f i ca t ion

Because the normal curve is defined for continuous variables, such as height, the 
same proportion of .1587 would describe not only FBI applicants who are shorter 
than 66  inches, but also FBI applicants who are shorter than or equal to 66  inches. If 
you think about it, equal to 66  inches translates into a height of exactly 66 inches—
that is, 66.0000  with a string of zeros out to infinity! No measured height can coin-
cide with exactly 66  inches since, in theory, however long the string of zeros for 
someone’s height, measurement always can be carried additional steps until a non-
zero appears.

Exactly 66 inches translates into a point along the horizontal base of the normal 
curve. The vertical line through this point defines one side of the desired area—the 
portion below 66  inches—but the line itself has no area. Therefore, when doing normal 
curve problems, you need not agonize over, for example, whether the desired propor-
tion is below exactly 66 inches or below and equal to exactly 66 inches. The answer 
is the same.

Read  Ca re fu l l y

Carefully read normal curve problems. A single word can change the entire prob-
lem as, for example, if you had been asked to find the proportion of applicants who 
are taller than 66 inches. Now we must find the total area to the right, not to the 
left, of 66 inches (or a z score of –1.00) in Figure 5.6. This requires that we add the 
proportions for two sectors: the unshaded sector between 66 inches and the mean of 
69 inches and the unshaded sector above the mean of 69 inches. To find the propor-
tion between 66 and 69  inches, refer to the standard normal table. Use the bottom 
legend, as the z score is negative; look up column A′ to 1.00 (representing a z score 
of –1.00); and note the proportion of .3438 in column B′ (which corresponds to the 
sector between 66 and 69 inches). Recalling that .5000 always equals the proportion 
in the upper half of the curve (above the mean of 69 inches), add these two propor-
tions (.3438 + .5000 = .8438) to determine that .8438 of all FBI applicants will be 
taller than 66 inches.

FIGURE 5.6 

Finding proportions.

Find: Proportion Below 66

Target Area

6966 0–1.00

.1587Answer:

Solution:

.1587
(from column C' )

zX
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Reminder  about  In terpret ing  Areas

When read from left to right, the X and z scales along the base of the normal curve, 
as in Figure  5.6, always increase in value. Accordingly, the area under the normal 
curve to the left of any given score represents the proportion of shorter applicants (or, 
more generally, smaller or lower scores), and the area to the right of any given score 
represents the proportion of taller applicants (or larger or higher scores).

Progress Check *5.3 Assume that GRE scores approximate a normal curve with a mean 

of 500 and a standard deviation of 100.

(a) Sketch a normal curve and shade in the target area described by each of the following 
statements:

(i) less than 400

(ii) more than 650

(iii) less than 700

(b) Plan solutions (in terms of columns B, C, B′, or C′ of the standard normal table, as well as 
the fact that the proportion for either the entire upper half or lower half always equals 
.5000) for the target areas in part (a).

(c) Convert to z scores and find the proportions that correspond to the target areas in part (a).

Answers on page 426.

Examp le :  F ind ing  P ropo r t i ons  be tween  Two  Sco res

Assume that, when not interrupted artificially, the gestation periods for human fetuses 
approximate a normal curve with a mean of 270 days (9 months) and a standard devia-
tion of 15 days. What proportion of gestation periods will be between 245 and 255 days?

1. Sketch a normal curve and shade in the target area, as in the top panel of 
Figure 5.7. Satisfy yourself that, in fact, the shaded area represents just those 
gestation periods between 245 and 255 days.

2. Plan your solution according to the normal table. This type of problem requires 
more effort to solve because the value of the target area cannot be read directly 
from Table A. As suggested in the bottom two panels of Figure 5.7, the basic idea 
is to identify the target area with the difference between two overlapping areas 
whose values can be read from column C′ of Table A. The larger area (less than 
255 days) contains two sectors: the target area (between 245 and 255 days) and 
a remainder (less than 245 days). The smaller area contains only the remainder 
(less than 245 days). Subtracting the smaller area (less than 245 days) from the 
larger area (less than 255 days), therefore, eliminates the common remainder 
(less than 245 days), leaving only the target area (between 245 and 255 days).

3. Convert X to z by expressing 255 as

255 270 15
1.00

15 15
z

and by expressing 245 as

245 270 25
1.67

15 15
z
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4. Find the target area. Look up column A′ to a negative z score of –1.00 
(remember, you must imagine the negative sign), and note the corresponding 
proportion of .1587 in column C′. Likewise, look up column A′ to a z score of 
–1.67, and note the corresponding proportion of .0475 in column C′. Subtract 
the smaller proportion from the larger proportion to obtain the answer, .1112. 
Thus, only .11, or 11 percent, of all gestation periods will be between 245 and 
255 days.

Warn ing :  En te r  Tab le  On l y  w i th  S ing le  z Sco re

When solving problems with two z scores, as above, resist the temptation to subtract 
one z score directly from the other and to enter Table A with this difference. Table A is 
designed only for individual z scores, not for differences between z scores.

Progress Check 5.4 The previous problem can be solved in another way, using 
entries from column B′ rather than column C′. Visualize this alternative solution as a 
graph of the normal curve, and verify that, even though column B′ is used, the answer 
still equals .1112.

Examp le :  F ind ing  P ropo r t i ons  beyond  Two  Sco res

Assume that high school students’ IQ scores approximate a normal distribution with 
a mean of 105 and a standard deviation of 15. What proportion of IQs are more than 30 
points either above or below the mean?

1. Sketch a normal curve and shade in the two target areas, as in the top panel 
of Figure 5.8.

2. Plan your solution according to the normal table. The solution to this type of 
problem is straightforward because each of the target areas can be read directly 
from Table A. The target area in the tail to the right can be obtained from column 
C, and that in the tail to the left can be obtained from column C′, as shown in the 
bottom two panels of Figure 5.8.

FIGURE 5.7 

Finding proportions.

X

z z

Solution:

Find: Proportion Between 245 and 255

.0475
(from column C' )

Target Area

0 0–1.67–1.00

   .1587
– .0475
   .1112

Answer:

270255245

.1587
(from column C' )

–
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3. Convert X to z by expressing IQ scores of 135 and 75 as

135 105 30
2.00

15 15

75 105 30
2.00

15 15

z

z

4. Find the target area. In Table A, locate a z score of 2.00 in column A, and note 
the corresponding proportion of .0228 in column C. Because of the symmetry of 
the normal curve, you need not enter the table again to find the proportion below 
a z score of –2.00. Instead, merely double the above proportion of .0228 to obtain 
.0456, which represents the proportion of students with IQs more than 30 points 
either above or below the mean.

Semant ic  A le r t

“More than 30 points either above or below the mean” translates into two target areas, 
one in each tail of the normal curve. “Within 30 points either above or below the mean” 
translates into two entirely new target areas corresponding to the two unshaded sectors in 
Figure 5.8. These “within” sectors share a common boundary at the mean, but one sector 
extends 30 points above the mean and the other sector extends 30 points below the mean.

Progress Check *5.5 Assume that SAT math scores approximate a normal curve with a 

mean of 500 and a standard deviation of 100.

(a) Sketch a normal curve and shade in the target area(s) described by each of the following 
statements:

(i) more than 570

(ii) less than 515

(iii) between 520 and 540

FIGURE 5.8 

Finding proportions.

X

z z

Solution:

Find: Proportion Beyond 30 Points from Mean

.0228
(from column C)

.0228
(from column C' )

Target Area

0 0–2.00

Target Area

   .0228
+ .0228
   .0456

Answer:

10575 135

2.00

+
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   (iv) between 470 and 520

      (v) more than 50 points above the mean

   (vi) more than 100 points either above or below the mean

(vii) within 50 points either above or below the mean</RLLNL>

(b) Plan solutions (in terms of columns B, C, B′, and C′) for the target areas in part (a).

(c) Convert to z scores and find the target areas in part (a).

Answers on page 426.

5 .6  F IND ING  SCORES

So far, we have concentrated on normal curve problems for which Table A must be 
consulted to find the unknown proportion (of area) associated with some known score 
or pair of known scores. For instance, given a GRE score of 650, we found that the 
unknown proportion of scores larger than 650 equals .07. Now we will concentrate on 
the opposite type of normal curve problem for which Table A must be consulted to find 
the unknown score or scores associated with some known proportion. For instance, 
given that a GRE score must be in the upper 25 percent of the distribution (in order 
for an applicant to be considered for admission to graduate school), we must find the 
unknown minimum GRE score. Essentially, this type of problem requires that we 
reverse our use of Table A by entering proportions in columns B, C, B′, or C′ and find-
ing z scores listed in columns A or A′.

Examp le :  F ind ing  One  Sco re

Exam scores for a large psychology class approximate a normal curve with a mean 
of 230 and a standard deviation of 50. Furthermore, students are graded “on a curve,” 
with only the upper 20 percent being awarded grades of A. What is the lowest score on 
the exam that receives an A?

1. Sketch a normal curve and, on the correct side of the mean, draw a line repre-
senting the target score, as in Figure 5.9. This is often the most difficult step, and 
it involves semantics rather than statistics. It’s often helpful to visualize the target 

FIGURE 5.9 

Finding scores.

z z

Solution:Find: Lowest Score in Upper 20%
.2995
(nearest entry to
.3000 in column B)

.2005
(nearest entry to
.2000 in column C)

.8000 to
the left

.2000 to
the right

0 ? 0 0.84
(from column A)

X = μ + (z)(σ)
   = 230 + (0.84)(50)
   = 230 + 42
   = 272

Answer:
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where X is the target score, expressed in original units of measurement; μ and σ are the 
mean and the standard deviation, respectively, for the original normal curve; and z is 
the standard score read from column A or A′ of Table A. When appropriate numerical 
substitutions are made, as shown in the bottom of Figure 5.9, 272 is found to be the 
answer, in agreement with our earlier conclusion.

score as splitting the total area into two sectors—one to the left of (below) the target 
score and one to the right of (above) the target score. For example, in the present 
case, the target score is the point along the base of the curve that splits the total area 
into 80 percent, or .8000 to the left, and 20 percent, or .2000 to the right. The mean 
of a normal curve serves as a valuable frame of reference since it always splits the 
total area into two equal halves—.5000 to the left of the mean and .5000 to the right 
of the mean. Since more than .5000—that is, .8000—of the total area is to the left 
of the target score, this score must be on the upper or right side of the mean. On the 
other hand, if less than .5000 of the total area had been to the left of the target score, 
this score would have been placed on the lower or left side of the mean.

2. Plan your solution according to the normal table. In problems of this type, 
you must plan how to find the z score for the target score. Because the target 
score is on the right side of the mean, concentrate on the area in the upper half of 
the normal curve, as described in columns B and C. The right panel of Figure 5.9 
indicates that either column B or C can be used to locate a z score in column A. 
It is crucial, however, to search for the single value (.3000) that is valid for col-
umn B or the single value (.2000) that is valid for column C. Note that we look 
in column B for .3000, not for .8000. Table A is not designed for sectors, such as 
the lower .8000, that span the mean of the normal curve.

3. Find z. Refer to Table A. Scan column C to find .2000. If this value does not 
appear in column C, as typically will be the case, approximate the desired value 
(and the correct score) by locating the entry in column C nearest to .2000. If 
adjacent entries are equally close to the target value, use either entry—it is your 
choice. As shown in the right panel of Figure 5.9, the entry in column C clos-
est to .2000 is .2005, and the corresponding z score in column A equals 0.84. 
Verify this by checking Table A. Also note that exactly the same z score of 0.84 
would have been identified if column B had been searched to find the entry 
(.2995) nearest to .3000. The z score of 0.84 represents the point that separates 
the upper 20 percent of the area from the rest of the area under the normal curve.

4. Convert z to the target score. Finally, convert the z score of 0.84 into an exam 
score, given a distribution with a mean of 230 and a standard deviation of 50. 
You’ll recall that a z score indicates how many standard deviations the original 
score is above or below its mean. In the present case, the target score must be 
located .84 of a standard deviation above its mean. The distance of the target 
score above its mean equals 42 (from .84 × 50), which, when added to the mean 
of 230, yields a value of 272. Therefore, 272 is the lowest score on the exam that 
receives an A.

When converting z scores to original scores, you will probably find it more efficient to 
use the following equation (derived from the z score equation on page 86):

CONVERTING z SCORE TO ORIGINAL SCORE

 ( )( )X z  (5.2)
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Comment :  P lace  Ta rge t  Sco re  on  Co r rec t  S ide  o f  Mean

When finding scores, it is crucial that the target score be placed on the correct side 
of the mean. This placement dictates how the normal table will be read—whether down 
from the top legend, with entries in column A interpreted as positive z scores, or up 
from the bottom legend, with entries in column A′ interpreted as negative z scores. In 
the previous problem, the incorrect placement of the target score on the left side of the 
mean would have led to a z score of –0.84, rather than 0.84, and an erroneous answer 
of 188 (230 − 42), rather than the correct answer of 272 (230 + 42).

To make correct placements, you must properly interpret the specifications for the 
target score. Expand potentially confusing one-sided specifications, such as the “upper 
20 percent, or upper .2000,” into “left .8000 and right .2000.” Having identified the left 
and right areas of the target score, which sum to 1.0000, you can compare the specifica-
tions of the target score with those of the mean. Remember that the mean of a normal 
curve always splits the total area into .5000 to the left of the mean and .5000 to the right 
of the mean. Accordingly, if the area to the left of the target score is more than .5000, 
the target score should be placed on the upper or right side of the mean. Otherwise, 
if the area to the left of the target score is less than .5000, the target score should be 
placed on the lower or left side of the mean.

Examp le :  F ind ing  Two  Sco res

Assume that the annual rainfall in the San Francisco area approximates a normal 
curve with a mean of 22 inches and a standard deviation of 4 inches. What are the 
rainfalls for the more atypical years, defined as the driest 2.5 percent of all years and 
the wettest 2.5 percent of all years?

1. Sketch a normal curve. On either side of the mean, draw two lines repre-
senting the two target scores, as in Figure 5.10. The smaller (driest) target score 
splits the total area into .0250 to the left and .9750 to the right, and the larger 
(wettest) target score does the exact opposite.

2. Plan your solution according to the normal table. Because the smaller target 
score is located on the lower or left side of the mean, we will concentrate on the 
area in the lower half of the normal curve, as described in columns B′ and C′. The 
target z score can be found by scanning either column B′ for .4750 or column C′ 

FIGURE 5.10 

Finding scores.

z z

Solution:Find: Pairs of Scores for the Extreme 2.5%

.0250 to
the right

.0250 to
the left

0 ?? 0 1.96
(from column A)

–1.96
(from column A' )

(entry in column C' )
.0250

(entry in column C)
.0250

Xmin = μ + (z)(σ)
        = 22 + (–1.96)(4)
        = 22 – 7.84
        = 14.16

Answer: Xmax = μ + (z)(σ)
         = 22 + (1.96)(4)
         = 22 + 7.84
         = 29.84

Answer:
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for .0250. After finding the smaller target score, we will capitalize on the sym-
metrical properties of normal curves to find the value of the larger target score.

3. Find z. Referring to Table A, we can scan column B′ for .4750, or the entry 
nearest to .4750. In this case, .4750 appears in column B′, and the corresponding 
z score in column A′ equals –1.96. The same z score of –1.96 would have been 
obtained if column C′ had been searched for a value of .0250.

4. Convert z to the target score. When the appropriate numbers are substituted 
in Formula 5.2, as shown in the bottom panel of Figure 5.10, the smaller target 
score equals 14.16 inches, the amount of annual rainfall that separates the driest 
2.5 percent of all years from all of the other years.

The location of the larger target score is the mirror image of that for the smaller 
target score. Therefore, we need not even consult Table A to establish that its z score 
equals 1.96—that is, the same value as the smaller target score, but without the nega-
tive sign. When 1.96 is converted to inches of rainfall, as shown in the bottom of 
Figure 5.10, the larger target equals 29.84 inches, the amount of annual rainfall that 
separates the wettest 2.5 percent of all years from all other years.

Comment :  Common  and  Ra re  Even ts

In the previous problem, we drew attention to the atypical, or rare years, by con-
cluding that 2.5 percent of the driest years registered less than 14.16 inches of rainfall, 
whereas 2.5 percent of the wettest years registered more than 29.84 inches. Had we 
wished, we could also have drawn attention to the typical, or common years, by con-
cluding that the most moderate, “middle” 95 percent of all years registered between 
14.16 and 29.84 inches of rainfall. The middle 95 percent straddles the line perpendicu-
lar to the mean, or 50th percentile, with half, or 47.5 percent, above this line and the 
other half, or 47.5 percent, below this line.

Later in inferential statistics, we’ll judge whether, for instance, an observed mean 
difference is real or transitory. As you’ll see, this decision will depend on whether 
the one observed mean difference can be viewed as a common outcome or as a rare 
outcome in the distribution of all possible mean differences that could happen just by 
chance. Since common events tend to be identified with the middle 95 percent of the 
area under the normal curve and rare events with the extreme 2.5 percent in each tail, 
you’ll often use z scores of ±1.96 in inferential statistics.

Progress Check *5.6 Assume that the burning times of electric light bulbs approximate 
a normal curve with a mean of 1200 hours and a standard deviation of 120 hours. If a large 
number of new lights are installed at the same time (possibly along a newly opened freeway), 
at what time will

(a) 1 percent fail? (Hint: This splits the total area into .0100 to the left and .9900 to the right.)

(b) 50 percent fail?

(c) 95 percent fail?

(d) If a new inspection procedure eliminates the weakest 8 percent of all lights before they 
are marketed, the manufacturer can safely offer customers a money-back guarantee on 
all lights that fail before _____ hours of burning time.

Answers on page 427.
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Gu ide l i nes  fo r  No rma l  Cu rve  P rob lems

You now have the necessary information for solving most normal curve problems, 
but there is no substitute for actually working problems, such as those offered at the 
end of this chapter. For your convenience, a complete set of guidelines appears in the 
“Doing Normal Curve Problems” box on this page. Before reading on, spend a few 
moments studying it, and then refer back to it whenever necessary.

Reminder: 

Refer to the “Doing Normal Curve 

Problems” box when doing normal 

curve problems.

DOING NORMAL CURVE PROBLEMS

Read the problem carefully to determine whether a proportion

or a score is to be found.

1. Sketch the normal curve and shade in the target area.

2. Plan the solution in terms of the normal table.

3. Convert X to z:

Examples: To Left of Mean

          (area to left less than .5000)

To Right of Mean

(area to left more than .5000)

4. Find the target area by entering either column A or A' with z, and

    noting the corresponding proportion from column B, C, B', or C'.

1. Sketch the normal curve and, on the correct side of the mean,

    draw a line representing the target score.

3. Find z by locating the entry nearest to that desired in column

    B, C, B', or C' and reading out the corresponding z score.

2. Plan the solution in terms of the normal table.

4. Convert z to the target score: X = μ + (z)(σ)

Examples: One Area Two Areas

FINDING PROPORTIONS

C  B' larger B – smaller B 5000 + B B' + B C' + C

z =
X – μ

? ?

C' or B'

–z z

B or C

FINDING SCORES

σ
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5 .7  MORE  ABOUT  z SCORES

z Sco res  fo r  Non -no rma l  D i s t r i bu t ions

z scores are not limited to normal distributions. Non-normal distributions also can be 
transformed into sets of unit-free, standardized z scores. In this case, the standard 
normal table cannot be consulted, since the shape of the distribution of z scores is the 
same as that for the original non-normal distribution. For instance, if the original distri-
bution is positively skewed, the distribution of z scores also will be positively skewed. 
Regardless of the shape of the distribution, the shift to z scores always produces a 
distribution of standard scores with a mean of 0 and a standard deviation of 1.

I n te rp re t i ng  Tes t  Sco res

Under most circumstances, z scores provide efficient descriptions of relative perfor-
mance on one or more tests. Without additional information, it is meaningless to know 
that Sharon earned a raw score of 159 on a math test, but it is very informative to know 
that she earned a z score of 1.80. The latter score suggests that she did relatively well on 
the math test, being almost two standard deviation units above the mean. More precise 
interpretations of this score could be made, of course, if it is known that the test scores 
approximate a normal curve.

The use of z scores can help you identify a person’s relative strengths and weak-
nesses on several different tests. For instance, Table  5.2 shows Sharon’s scores on 
college achievement tests in three different subjects. The evaluation of her test per-
formance is greatly facilitated by converting her raw scores into the z scores listed in 
the final column of Table 5.2. A glance at the z scores suggests that although she did 
relatively well on the math test, her performance on the English test was only slightly 
above average, as indicated by a z score of 0.50, and her performance on the psychol-
ogy test was slightly below average, as indicated by a z score of –0.67.

Impo r tan ce  o f  Re fe rence  G roup

Remember that z scores reflect performance relative to some group rather than an 
absolute standard. A meaningful interpretation of z scores requires, therefore, that the 
nature of the reference group be specified. In the present example, it is important to 
know whether Sharon’s scores were relative to those of the other students at her col-
lege or to those of students at a wide variety of colleges, as well as to any other special 
characteristics of the reference group.

Progress Check *5.7 Convert each of the following test scores to z scores:

TEST SCORE MEAN STANDARD DEVIATION

(a) 53 50 9
(b) 38 40 10
(c) 45 30 20
(d) 28 20 20

Table 5.2
SHARON’S ACHIEVEMENT TEST SCORES

SUBJECT RAW SCORE MEAN STANDARD DEVIATION z SCORE

Math 159 141 10 1.80
English 83 75 16 0.50
Psych 23 27 6 –0.67

Witte11e_c05.indd   100 11/18/2016   9:19:35 PM



 5.7 MORE ABOUT z  SCORES  101

Progress Check *5.8 

(a) Referring to Question 5.7, which one test score would you prefer?

(b) Referring to Question 5.7, if Carson had earned a score of 64 on some test, which of the 
four distributions (a, b, c, or d) would have permitted the most favorable interpretation of this 
score?

Answers on page 427.

S tanda rd  Sco re

Whenever any unit-free scores are expressed relative to a known mean and a known 
standard deviation, they are referred to as standard scores. Although z scores qualify 
as standard scores because they are unit-free and expressed relative to a known mean 
of 0 and a known standard deviation of 1, other scores also qualify as standard scores.

T rans fo rmed  S tanda rd  Sco res

Being by far the most important standard score, z scores are often viewed as synony-
mous with standard scores. For convenience, particularly when reporting test results 
to a wide audience, z scores can be changed to transformed standard scores, other 
types of unit-free standard scores that lack negative signs and decimal points. These 
transformations change neither the shape of the original distribution nor the relative 
standing of any test score within the distribution. For example, a test score located one 
standard deviation below the mean might be reported not as a z score of –1.00 but as a 
T score of 40 in a distribution of T scores with a mean of 50 and a standard deviation of 
10. The important point to realize is that although reported as a score of 40, this T score 
accurately reflects the relative location of the original z score of –1.00: A T score of 40 
is located at a distance of one standard deviation (of size 10) below the mean (of size 
50). Figure 5.11 shows the values of some of the more common types of transformed 
standard scores relative to the various portions of the area under the normal curve.

Standard Score 

Any unit-free scores expressed 

relative to a known mean and a 

known standard deviation.

Transformed Standard Score 

A standard score that, unlike a z 

score, usually lacks negative signs 

and decimal points.

FIGURE 5.11 

Common transformed standard scores associated with normal curves.

–3σ

–3 –2 –1 0 1 2 3

20 30 40 50 60 70 80

55 70 85 100 115 130 145
IQ

GRE
200 300 400 500 600 700 800

–2σ –1σ 1σ 2σ 3σ0σ
Standard Deviations

Standard Scores

z

T

Witte11e_c05.indd   101 11/18/2016   9:19:35 PM



102 NORMAL DISTRIBUTIONS AND STANDARD (z)  SCORES

where z′ (called z prime) is the transformed standard score and z is the original stan-
dard score.

For instance, if you wish to convert a z score of –1.50 into a new distribution of z’ 
scores for which the desired mean equals 500 and the desired standard deviation equals 
100, substitute these numbers into Formula 5.3 to obtain

z 500 1 50 100

500 150

350

( . ) ( )

Again, notice that the transformed standard score accurately reflects the relative loca-
tion of the original standard score of –1.50: The transformed score of 350 is located at a 
distance of 1.5 standard deviation units (each of size 100) below the mean (of size 500). 
The change from a z score of −1.50 to a z′ score of 350 eliminates negative signs and 
decimal points without distorting the relative location of the original score, expressed 
as a distance from the mean in standard deviation units.

Subs t i tu te  Pa i r s  o f  Conven ien t  Numbers

You could substitute any mean or any standard deviation in Formula 5.3 to gener-
ate a new distribution of transformed scores. Traditionally, substitutions have been 
limited mainly to the pairs of convenient numbers shown in Figure 5.11: a mean of 
50 and a standard deviation of 10 (T scores), a mean of 100 and a standard devia-
tion of 15 (IQ scores), and a mean of 500 and a standard deviation of 100 (GRE 
scores). The substitution of other arbitrary pairs of numbers serves no purpose; 
indeed, because of their peculiarity, they might make the new distribution, even 
though it lacks the negative signs and decimal points common to z scores, slightly 
less comprehensible to people who have been exposed to the traditional pairs of 
numbers.

Progress Check *5.9 Assume that each of the raw scores listed originates from a distri-
bution with the specified mean and standard deviation. After converting each raw score into a 
z score, transform each z score into a series of new standard scores with means and standard 
deviations of 50 and 10, 100 and 15, and 500 and 100, respectively. (In practice, you would 
transform a particular z into only one new standard score.)

RAW SCORE MEAN STANDARD DEVIATION

(a) 24 20 5
(b) 37 42 3

Answers on page 427.

Conve r t i ng  to  T rans fo rmed  S tanda rd  Sco res

Use the following formula to convert any original standard score, z, into a trans-
formed standard score, z′ , having a distribution with any desired mean and standard 
deviation.

TRANSFORMED STANDARD SCORE

 z zdesired mean desired standard deviation( ) ( ) (5.3)
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Summary

Many observed frequency distributions approximate the well-documented normal 
curve, an important theoretical curve noted for its symmetrical bell-shaped form. The 
normal curve can be used to obtain answers to a wide variety of questions.

Although there are infinite numbers of normal curves, each with its own mean and 
standard deviation, there is only one standard normal curve, with its mean of 0 and its 
standard deviation of 1. Only the standard normal curve is actually tabled. The stan-
dard normal table (Table A in Appendix C) requires the use of z scores, that is, original 
scores expressed as deviations, in standard deviation units, above or below its mean.

There are two general types of normal curve problems: (1) those that require you to 
find the unknown proportion (of area) associated with some score or pair of scores and 
(2) those that require you to find the unknown score or scores associated with some 
area. Answers to the first type of problem usually require you to convert original scores 
into z scores (Formula 5.1), and answers to the second type of problem usually require 
you to translate a z score back into an original score Formula 5.2).

Even when distributions fail to approximate normal curves, z scores can provide 
efficient descriptions of relative performance on one or more tests.

When reporting test results, z scores are often transformed into other types of stan-
dard scores that lack negative signs and decimal points. These conversions change 
neither the shape of the original distribution nor the relative standing of any test score 
within the original distribution.

Important Terms

Normal curve Standard normal curve

z score Transformed standard score

Standard score

Key Equations

z SCORE

X
z

CONVERTING z TO X

X z

REV IEW QUEST IONS

 *5.10 Fill in the blank spaces.

To identify a particular normal curve, you must know the      (a)      and      (b)      for 
that distribution. To convert a particular normal curve to the standard normal curve, 

you must convert original scores into      (c)      scores. A z score indicates how many      
(d)      a score is      (e)      or      (f)      the mean of the distribution. Although there 

are infinite numbers of normal curves, there is      (g)      standard normal curve. The 

standard normal curve has a      (h)      of 0 and a      (i)      of 1.

Witte11e_c05.indd   103 11/18/2016   9:19:35 PM



104 NORMAL DISTRIBUTIONS AND STANDARD (z)  SCORES

The total area under the standard normal curve equals      (j)     . When using 
the standard normal table, it is important to remember that for any z score, the cor-

responding proportions in columns B and C (or columns B′ and C′) always sum to      
(k)     . Furthermore, the proportion in column B (or B′) always specifies the propor-

tion of area between the      (l)      and the z score, while the proportion in column 

C (or C′) always specifies the proportion of area      (m)      the z score. Although 
any z score can be either positive or negative, the proportions of area, specified in 

columns B and C (or columns B′ and C′), are never      (n)     .

Standard scores are unit-free scores expressed relative to a known      (o)      and 

      (p)     . The most important standard score is a      (q)      score. Unlike z scores, 

transformed standard scores usually lack      (r)      signs and      (s)      points. 
Transformed standard scores accurately reflect the relative standing of the original 

      (t)      score.

Answers on page 427. 

F ind ing  P ropo r t i ons

 5.11 Scores on the Wechsler Adult Intelligence Scale (WAIS) approximate a normal 
curve with a mean of 100 and a standard deviation of 15. What proportion of IQ 
scores are

 (a) above Kristen’s 125?

 (b) below 82?

 (c) within 9 points of the mean?

 (d) more than 40 points from the mean?

 5.12 Suppose that the burning times of electric light bulbs approximate a normal curve 
with a mean of 1200 hours and a standard deviation of 120 hours. What proportion 
of lights burn for

 (a) less than 960 hours?

 (b) more than 1500 hours?

 (c) within 50 hours of the mean?

 (d) between 1300 and 1400 hours?

F ind ing  Sco res

 5.13 IQ scores on the WAIS test approximate a normal curve with a mean of 100 and a 
standard deviation of 15. What IQ score is identified with

 (a) the upper 2 percent, that is, 2 percent to the right (and 98 percent to the left)?

 (b) the lower 10 percent?

 (c) the upper 60 percent?

 (d) the middle 95 percent? [Remember, the middle 95 percent straddles the line perpen-
dicular to the mean (or the 50th percentile), with half of 95 percent, or 47.5 percent, 
above this line and the remaining 47.5 percent below this line.]

 (e) the middle 99 percent?
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 5.14 For the normal distribution of burning times of electric light bulbs, with a mean equal 
to 1200 hours and a standard deviation equal to 120 hours, what burning time is 
identified with the

 (a) upper 50 percent?

 (b) lower 75 percent?

 (c) lower 1 percent?

 (d) middle 90 percent?

F ind ing  P ropo r t i ons  and  Sco res

IMPORTANT NOTE: When doing Questions 5.15 and 5.16, remember to decide first whether a 
proportion or a score is to be found.

 *5. 15 An investigator polls common cold sufferers, asking them to estimate the number of 
hours of physical discomfort caused by their most recent colds. Assume that their 
estimates approximate a normal curve with a mean of 83 hours and a standard 
deviation of 20 hours.

 (a) What is the estimated number of hours for the shortest-suffering 5 percent?

 (b) What proportion of sufferers estimate that their colds lasted longer than 48 hours?

 (c) What proportion suffered for fewer than 61 hours?

 (d) What is the estimated number of hours suffered by the extreme 1 percent either 
above or below the mean?

 (e) What proportion suffered for between 1 and 3 days, that is, between 24 and 72 hours?

 (f) What is the estimated number of hours suffered by the middle 95 percent? [See the 
comment about “middle 95 percent” in Question 5.13(d).]

 (g) What proportion suffered for between 2 and 4 days?

 (h) A medical researcher wishes to concentrate on the 20 percent who suffered the 
most. She will work only with those who estimate that they suffered for more than 
——— hours.

 (i) Another researcher wishes to compare those who suffered least with those who suf-
fered most. If each group is to consist of only the extreme 3 percent, the mild group 
will consist of those who suffered for fewer than _____ hours, and the severe group 
will consist of those who suffered for more than _____ hours.

 (j) Another survey found that people with colds who took daily doses of vitamin C suf-
fered, on the average, for 61 hours. What proportion of the original survey (with a mean 
of 83 hours and a standard deviation of 20 hours) suffered for more than 61 hours?

 (k) What proportion of the original survey suffered for exactly 61 hours? (Be careful!)

Answers on page 427.

 5.16 Admission to a state university depends partially on the applicant’s high school GPA. 
Assume that the applicants’ GPAs approximate a normal curve with a mean of 3.20 
and a standard deviation of 0.30.

 (a) If applicants with GPAs of 3.50 or above are automatically admitted, what proportion 
of applicants will be in this category?
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 (b) If applicants with GPAs of 2.50 or below are automatically denied admission, what 
proportion of applicants will be in this category?

 (c) A special honors program is open to all applicants with GPAs of 3.75 or better. What 
proportion of applicants are eligible?

 (d) If the special honors program is limited to students whose GPAs rank in the upper 
10 percent, what will Brittany’s GPA have to be for admission to this program?

 5.17 For each of the following scores, convert into transformed z scores with means and 
standard deviations of 50 and 10, of 100 and 15, and of 500 and 100, respectively.

 (a) score of 34 in distribution with a mean of 41 and a standard deviation of 5

 (b) score of 880 in a distribution with a mean of 700 and a standard deviation of 120

 (c) score of −3 in a distribution with a mean of 12 and a standard deviation of 10

 *5.18 The body mass index (BMI) measures body size in people by dividing weight (in 
pounds) by the square of height (in inches) and then multiplying by a factor of 703. 
A BMI less than 18.5 is defined as underweight; between 18.5 to 24.9 is normal; 
between 25 and 29.9 is overweight; and 30 or more is obese. It is well established 
that Americans have become heavier during the last half century. Assume that the 
positively skewed distribution of BMIs for adult American males has a mean of 28 
with a standard deviation of 4.

 (a) Would the median BMI score exceed, equal, or be exceeded by the mean BMI score 
of 28? 

 (b) What z score defines overweight?

 (c) What z score defines obese?

Answers on page 427.

 5.19 When describing test results, someone objects to the conversion of raw scores into 
standard scores, claiming that this constitutes an arbitrary change in the value of the 
test score. How might you respond to this objection?
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CHAPTER

6
Describing Relationships: 
Correlation

6.1 AN INTUITIVE APPROACH

6.2 SCATTERPLOTS

6.3 A CORRELATION COEFFICIENT FOR QUANTITATIVE DATA: r
6.4 DETAILS: COMPUTATION FORMULA FOR r
6.5 OUTLIERS AGAIN

6.6 OTHER TYPES OF CORRELATION COEFFICIENTS

6.7 COMPUTER OUTPUT

Summary / Important Terms and Symbols / Key Equations / Review Questions

Preview

Is there a relationship between your IQ and the wealth of your parents? Between your 

computer skills and your GPA? Between your anxiety level and your perceived social 

attractiveness? Answers to these questions require us to describe the relationship 

between pairs of variables. The original data must consist of actual pairs of 

observations, such as, IQ scores and parents’ wealth for each member of the freshman 

class. Two variables are related if pairs of scores show an orderliness that can be 

depicted graphically with a scatterplot and numerically with a correlation coefficient.
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108 DESCRIBING RELATIONSHIPS:  CORRELATION

Does the familiar saying “You get what you give” accurately describe the exchange 
of holiday greeting cards? An investigator suspects that a relationship exists between 
the number of greeting cards sent and the number of greeting cards received by indi-
viduals. Prior to a full-fledged survey—and also prior to any statistical analysis based 
on variability, as described later in Section 15.9—the investigator obtains the estimates 
for the most recent holiday season from five friends, as shown in Table 6.1. (The data 
in Table 6.1 represent a very simple observational study with two dependent variables, 
as defined in Section 1.6, since numbers of cards sent and received are not under the 
investigator’s control.)

6 .1  AN  INTU IT IVE  APPROACH

If the suspected relationship does exist between cards sent and cards received, then an 
inspection of the data might reveal, as one possibility, a tendency for “big senders” 
to be “big receivers” and for “small senders” to be “small receivers.” More gener-
ally, there is a tendency for pairs of scores to occupy  similar relative positions in their 
respective distributions.

Pos i t i ve  Re la t i onsh ip

Trends among pairs of scores can be detected most easily by constructing a list of 
paired scores in which the scores along one variable are arranged from largest to small-
est. In panel A of Table 6.2, the five pairs of scores are arranged from the largest (13) 
to the smallest (1) number of cards sent. This table reveals a pronounced tendency for 
pairs of scores to occupy similar relative positions in their respective distributions. 
For example, John sent relatively few cards (1) and received relatively few cards (6), 
whereas Doris sent relatively many cards (13) and received relatively many cards (14). 
We can conclude, therefore, that the two variables are related. Furthermore, this rela-
tionship implies that “You get what you give.” Insofar as relatively low values are 
paired with relatively low values, and relatively high values are paired with relatively 
high values, the relationship is positive.

In panels B and C of Table  6.2, each of the five friends continues to send the 
same number of cards as in panel A, but new pairs are created to illustrate two other 
 possibilities—a negative relationship and little or no relationship. (In real applications, 
of course, the pairs are fixed by the data and cannot be changed.)

Negat i ve  Re la t i onsh ip

Notice the pattern among the pairs in panel B. Now there is a pronounced ten-
dency for pairs of scores to occupy dissimilar and opposite relative positions in their 
respective distributions. For example, although John sent relatively few cards (1), he 
received relatively many (18). From this pattern, we can conclude that the two vari-
ables are related. Furthermore, this relationship implies that “You get the opposite of 
what you give.” Insofar as relatively low values are paired with relatively high values, 
and relatively high values are paired with relatively low values, the relationship is 
negative.

L i t t l e  o r  No  Re la t i onsh ip

No regularity is apparent among the pairs of scores in panel C. For instance, although 
both Andrea and John sent relatively few cards (5 and 1, respectively), Andrea received 
relatively few cards (6) and John received relatively many cards (14). Given this lack 
of regularity, we can conclude that little, if any, relationship exists between the two 
variables and that “What you get has no bearing on what you give.”

Table 6.1
GREETING CARDS  

SENT AND  
RECEIVED BY FIVE 

FRIENDS

NUMBER  
OF CARDS

FRIEND SENT RE  CEIVED

Andrea 5 10
Mike 7 12
Doris 13 14
Steve 9 18
John 1 6

Positive Relationship 

Occurs insofar as pairs of scores 

tend to occupy similar relative 

positions (high with high and low 

with low) in their respective  

distributions.

Negative Relationship 

Occurs insofar as pairs of scores 

tend to occupy dissimilar relative 

positions (high with low and vice 

versa) in their respective  

distributions.
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Rev iew

Whether we are concerned about the relationship between cards sent and cards 
received, years of heavy smoking and life expectancy, educational level and annual 
income, or scores on a vocational screening test and subsequent ratings as a police 
officer,

two variables are positively related if pairs of scores tend to occupy similar rela-
tive positions (high with high and low with low) in their respective distributions, 
and they are negatively related if pairs of scores tend to occupy dissimilar rela-
tive positions (high with low and vice versa) in their respective distributions.

The remainder of this chapter deals with how best to describe and interpret a rela-
tionship between pairs of variables. The intuitive method of searching for regularity 
among pairs of scores is cumbersome and inexact when the analysis involves more than 
a few pairs of scores. Although this technique has much appeal, it must be abandoned 
in favor of several other, more efficient and exact statistical techniques, namely, a 
special graph known as a scatterplot and a measure known as a correlation coefficient.

It will become apparent in the next chapter that once a relationship has been iden-
tified, it can be used for predictive purposes. Having established that years of heavy 
smoking is negatively related to length of life (because heavier smokers tend to have 
shorter lives), we can use this relationship to predict the life expectancy of someone 
who has smoked heavily for the past 10 years. This type of prediction could serve a 
variety of purposes, such as calculating a life insurance premium or supplying extra 
motivation in an antismoking workshop.

Progress Check *6.1 Indicate whether the following statements suggest a positive or 
negative relationship:

(a) More densely populated areas have higher crime rates.

(b) Schoolchildren who often watch TV perform more poorly on academic achievement tests.

(c) Heavier automobiles yield poorer gas mileage.

(d) Better-educated people have higher incomes.

(e) More anxious people voluntarily spend more time performing a simple repetitive task.

Answers on pages 427 and 428.

6 .2  SCATTERPLOTS

A scatterplot is a graph containing a cluster of dots that represents all pairs of scores. 
With a little training, you can use any dot cluster as a preview of a fully measured 
relationship.

Cons t ruc t ion

To construct a scatterplot, as in Figure 6.1, scale each of the two variables along the 
horizontal (X) and vertical (Y) axes, and use each pair of scores to locate a dot within 
the scatterplot. For example, the pair of numbers for Mike, 7 and 12, define points 
along the X and Y axes, respectively. Using these points to anchor lines perpendicular 
(at right angles) to each axis, locate Mike’s dot where the two lines intersect. Repeat 
this process, with imaginary lines, for each of the four remaining pairs of scores to cre-
ate the scatterplot of Figure 6.1.

Table 6.2
THREE TYPES OF 
RELATIONSHIPS

A.  POSITIVE  
RELATIONSHIP

FRIEND SENT RE CEIVED
Doris 13 14
Steve 9 18
Mike 7 12
Andrea 5 10
John 1 6

B.  NEGATIVE 
RELATIONSHIP

FRIEND SENT RE CEIVED
Doris 13 6
Steve 9 10
Mike 7 14
Andrea 5 12
John 1 18

C.  LITTLE OR NO  
RELATIONSHIP

FRIEND SENT RE CEIVED
Doris 13 10
Steve 9 18
Mike 7 12
Andrea 5 6
John 1 14

Scatterplot 

A graph containing a cluster of 

dots that represents all pairs of 

scores.
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110 DESCRIBING RELATIONSHIPS:  CORRELATION

Our simple example involving greeting cards has shown the basic idea of correla-
tion and the construction of a scatterplot. Now we’ll examine more complex sets of 
data in order to learn how to interpret scatterplots.

Pos i t i ve ,  Nega t i ve ,  o r  L i t t l e  o r  No  Re la t i onsh ip?

The first step is to note the tilt or slope, if any, of a dot cluster. A dot cluster that 
has a slope from the lower left to the upper right, as in panel A of Figure 6.2, reflects 
a positive relationship. Small values of one variable are paired with small values of the 
other variable, and large values are paired with large values. In panel A, short people 
tend to be light, and tall people tend to be heavy.

On the other hand, a dot cluster that has a slope from the upper left to the lower 
right, as in panel B of Figure 6.2, reflects a negative relationship. Small values of 
one variable tend to be paired with large values of the other variable, and vice versa. 
In panel B, people who have smoked heavily for few years or not at all tend to have 
longer lives, and people who have smoked heavily for many years tend to have shorter 
lives.

Finally, a dot cluster that lacks any apparent slope, as in panel C of Figure 6.2, 
reflects little or no relationship. Small values of one variable are just as likely to be 
paired with small, medium, or large values of the other variable. In panel C, notice that 
the dots are strewn about in an irregular shotgun fashion, suggesting that there is little 
or no relationship between the height of young adults and their life expectancies.

S t rong  o r  Weak  Re la t i onsh ip?

Having established that a relationship is either positive or negative, note how closely 
the dot cluster approximates a straight line. The more closely the dot cluster approxi-
mates a straight line, the stronger (the more regular) the relationship will be. Figure 6.3 
shows a series of scatterplots, each representing a different positive relationship between 
IQ scores for pairs of people whose backgrounds reflect different degrees of genetic 
overlap, ranging from minimum overlap between foster parents and foster children 
to maximum overlap between identical twins. (Ignore the parenthetical  expressions 

FIGURE 6.1 

Scatterplot for greeting card exchange.
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 6.2 SCATTERPLOTS  111

involving r, to be discussed later.) Notice that the dot cluster more closely approximates 
a straight line for people with greater degrees of genetic overlap—for parents and chil-
dren in panel B of Figure 6.3 and even more so for identical twins in panel C.

Per fec t  Re la t i onsh ip

A dot cluster that equals (rather than merely approximates) a straight line reflects a 
perfect relationship between two variables. In practice, perfect relationships are most 
unlikely.

Curv i l i nea r  Re la t i onsh ip

The previous discussion assumes that a dot cluster approximates a straight line and, 
therefore, reflects a linear relationship. But this is not always the case. Sometimes a 
dot cluster approximates a bent or curved line, as in Figure 6.4, and therefore reflects 
a curvilinear relationship. Descriptions of these relationships are more complex than 
those of linear relationships. For instance, we see in Figure 6.4 that physical strength, 
as measured by the force of a person’s  handgrip, is less for children, more for adults, 
and then less again for older people. Otherwise, the scatterplot can be interpreted as 
before—that is, the more closely the dot cluster approximates a curved line, the stron-
ger the curvilinear relationship will be.

Linear Relationship 

A relationship that can be 

described best with a straight line.

Curvilinear Relationship 

A relationship that can be 

described best with a curved line.

FIGURE 6.2 

Three types of relationships.
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FIGURE 6.3 

Three positive relationships. (Scatterplots simulated from a 50-year literature survey.)
Source: Erlenmeyer-Kimling, L., & Jarvik, L. F. (1963). “Genetics and Intelligence: A 
Review.” Science, 142, 1477–1479.
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112 DESCRIBING RELATIONSHIPS:  CORRELATION

Look again at the scatterplot in Figure 6.1 for the greeting card data. Although the 
small number of dots in Figure 6.1 hinders any interpretation, the dot cluster appears 
to approximate a straight line, stretching from the lower left to the upper right. This 
suggests a positive relationship between greeting cards sent and received, in agreement 
with the earlier intuitive analysis of these data.

Progress Check *6.2 Critical reading and math scores on the SAT test for students A, B, 
C, D, E, F, G, and H are shown in the following scatterplot:

C
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(a) Which student(s) scored about the same on both tests?

(b) Which student(s) scored higher on the critical reading test than on the math test?

(c) Which student(s) will be eligible for an honors program that requires minimum scores of 
700 in critical reading and 500 in math?

(d) Is there a negative relationship between the critical reading and math scores?

Answers on page 428.

FIGURE 6.4 

Curvilinear relationship.

30

20

10

0 20 40

Age (years)

60

P
h
y
s
ic

a
l 
S

tr
e
n
g
th

 (
p
o
u
n
d
s
)

Witte11e_c06.indd   112 11/18/2016   9:20:14 PM



 6.3 A CORRELATION COEFFICIENT FOR QUANTITATIVE DATA:  r   113

6 .3  A  CORRELAT ION  COEFF IC IENT  
FOR  QUANT ITAT IVE  DATA :  r
A correlation coefficient is a number between –1 and 1 that describes the relationship 
between pairs of variables.

In the next few sections we concentrate on the type of correlation coefficient, 
designated as r, that describes the linear relationship between pairs of variables for 
quantitative data. Many other types of correlation coefficients have been introduced to 
handle specific types of data, including ranked and qualitative data, and a few of these 
will be described briefly in Section 6.6.

Key  P rope r t i es  o f  r

Named in honor of the British scientist Karl Pearson, the Pearson correlation coef-
ficient, r, can equal any value between –1.00 and +1.00. Furthermore, the following 
two properties apply:

1. The sign of r indicates the type of linear relationship, whether positive or negative.

2. The numerical value of r, without regard to sign, indicates the strength of the 
linear relationship.

S ign  o f  r

A number with a plus sign (or no sign) indicates a positive relationship, and a num-
ber with a minus sign indicates a negative relationship. For example, an r with a plus 
sign describes the positive relationship between height and weight shown in panel A 
of Figure 6.2, and an r with a minus sign describes the negative relationship between 
heavy smoking and life expectancy shown in panel B.

Numer ica l  Va lue  o f  r

The more closely a value of r approaches either –1.00 or +1.00, the stronger (more 
regular) the relationship. Conversely, the more closely the value of r approaches 0, the 
weaker (less regular) the relationship. For example, an r of –.90 indicates a stronger 
relationship than does an r of –.70, and an r of –.70 indicates a stronger relationship 
than does an r of .50. (Remember, if no sign appears, it is understood to be plus.) In 
Figure 6.3, notice that the values of r shift from .75 to .27 as the analysis for pairs of 
IQ scores shifts from a relatively strong relationship for identical twins to a relatively 
weak relationship for foster parents and foster children.

From a slightly different perspective, the value of r is a measure of how well a 
straight line (representing the linear relationship) describes the cluster of dots in 
the scatterplot. Again referring to Figure  6.3, notice that an imaginary straight line 
describes the dot cluster less well as the values of r shift from .75 to .27.

I n te rp re ta t i on  o f  r

Located along a scale from –1.00 to +1.00, the value of r supplies information about 
the direction of a linear relationship—whether positive or negative—and, generally, 
information about the relative strength of a linear relationship—whether relatively 
weak (and a poor describer of the data) because r is in the vicinity of 0, or relatively 
strong (and a good describer of the data) because r deviates from 0 in the direction of 
either +1.00 or –1.00.

If, as usually is the case, we wish to generalize beyond the limited sample of actual 
paired scores, r can’t be interpreted at face value. Viewed as the product of chance 

Correlation Coefficient 

A number between –1 and 1 that 

describes the relationship between 

pairs of variables.

Pearson Correlation Coefficient (r) 

A number between –1.00 and 

+1.00 that describes the linear 

relationship between pairs of 

 quantitative variables.
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114 DESCRIBING RELATIONSHIPS:  CORRELATION

sampling variability (see Section 15.9), the value of r must be evaluated with tools from 
inferential statistics to establish whether the relationship is real or merely transitory. This 
evaluation depends not only on the value of r but also on the actual number of pairs of 
scores used to calculate r. On the assumption that reasonably large numbers of pairs  
of scores are involved (preferably hundreds and certainly many more than the five pairs 
of scores in our purposely simple greeting card example), an r of .50 or more, in either 
the positive or the negative direction, would represent a very strong relationship in most 
areas of behavioral and educational research.* But there are exceptions. An r of at least 
.80 or more would be expected when correlation coefficients measure “test reliability,” 
as determined, for example, from pairs of IQ scores for people who take the same IQ test 
twice or take two forms of the same test (to establish that any person’s two scores tend 
to be similar and, therefore, that the test scores are reproducible, or “reliable”).

r  I s  I ndependen t  o f  Un i t s  o f  Measu rement

The value of r is independent of the original units of measurement. In fact, the same 
value of r describes the correlation between height and weight for a group of adults, 
regardless of whether height is measured in inches or centimeters or whether weight 
is measured in pounds or grams. In effect, the value of r depends only on the pattern 
among pairs of scores, which in turn show no traces of the units of measurement for the 
original X and Y scores. If you think about it, this is the same as saying that

a positive value of r reflects a tendency for pairs of scores to occupy similar 
relative locations (high with high and low with low) in their respective dis-
tributions, while a negative value of r reflects a tendency for pairs of scores 
to occupy dissimilar relative locations (high with low and vice versa) in their 
respective distributions.

Range  Res t r i c t i ons

Except for special circumstances, the value of the correlation coefficient declines 
whenever the range of possible X or Y scores is restricted. Range restriction is analogous 
to magnifying a subset of the original dot cluster and, in the process, losing much of the 
orderly and predictable pattern in the original dot cluster. For example, Figure 6.5 shows 
a dot cluster with an obvious slope, represented by an r of .70 for the positive relation-
ship between height and weight for all college students. If, however, the range of heights 
along Y is restricted to students who stand over 6 feet 2 inches (or 74 inches) tall, the 
abbreviated dot cluster loses its obvious slope because of the more homogeneous weights 
among tall students. Therefore, as depicted in Figure 6.5, the value of r drops to .10.

Sometimes it’s impossible to avoid a range restriction. For example, some colleges 
only admit students with SAT test scores above some minimum value. Subsequently, 
the value of any correlation between SAT scores and college GPAs for these students 
will be lower because of the absence of any students with SAT scores below the mini-
mum score required for admission. Always check for any possible restriction on the 
ranges of X or Y scores—whether by design or accident—that could lower the value of r.

Caut ion

Be careful when interpreting the actual numerical value of r. An r of .70 for height 
and weight doesn’t signify that the strength of this relationship equals either .70 or 70 

*In his landmark book [Cohen, Jacob. (1988). Statistical Power Analysis for the Behavioral 
Sciences (2nd ed). Hillsdale, NJ: Erlbaum.], Cohen suggests that a value of r in the vicinity of .10 

or less reflects a small (weak) relationship; a value in the vicinity of .30 reflects a medium (mod-

erate) relationship; and a value in the vicinity of .50 or more reflects a large (strong) relationship.
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percent of the strength of a perfect relationship. The value of r can’t be interpreted as 
a proportion or percentage of some perfect relationship.

Verba l  Desc r ip t i ons

When interpreting a brand new r, you’ll find it helpful to translate the  numerical 
value of r into a verbal description of the relationship. An r of .70 for the height and 
weight of college students could be translated into “Taller students tend to weigh more” 
(or some other equally valid statement, such as “Lighter students tend to be shorter”); 
an r of –.42 for time spent taking an exam and the subsequent exam score could be 
translated into “Students who take less time tend to make higher scores”; and an r in the 
neighborhood of 0 for shoe size and IQ could be translated into “Little, if any, relation-
ship exists between shoe size and IQ.”

If you have trouble verbalizing the value of r, refer back to the original scatterplot 
or, if necessary, visualize a rough scatterplot corresponding to the value of r. Use any 
detectable dot cluster to think your way through the relationship. Does the dot cluster 
have a slope from the lower left to the upper right—that is, does low go with low and 
high go with high? Or does the dot cluster have a slope from the upper left to the lower 
right—that is, does low go with high and vice versa? It is crucial that you translate 
abstractions such as “Low goes with low and high goes with high” into concrete terms 
such as “Shorter students tend to weigh less, and taller students tend to weigh more.”

Progress Check *6.3 Supply a verbal description for each of the following correlations. 
(If necessary, visualize a rough scatterplot for r, using the scatterplots in Figure 6.3 as a frame 
of reference.)

(a) an r of –.84 between total mileage and automobile resale value

(b) an r of –.35 between the number of days absent from school and performance on a math 
achievement test

(c) an r of .03 between anxiety level and college GPA

(d) an r of .56 between age of schoolchildren and reading comprehension

Answers on page 428.

FIGURE 6.5 

Effect of range restriction on the value of r.
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116 DESCRIBING RELATIONSHIPS:  CORRELATION

Cor re la t i on  No t  Necessa r i l y  Cause -E f fec t

Given a correlation between the prevalence of poverty and crime in U.S. cities, you 
can speculate that poverty causes crime—that is, poverty produces crime with the same 
degree of inevitability as the flip of a light switch illuminates a room. According to this 
view, any widespread reduction in poverty should cause a corresponding decrease in 
crime. As suggested in Chapter 1, you can also speculate that a common cause such as 
inadequate education, overpopulation, racial discrimination, etc., or some combination 
of these factors produces both poverty and crime. According to this view, a widespread 
reduction in poverty should have no effect on crime. Which speculation is correct? 
Unfortunately, this issue cannot be resolved merely on the basis of an observed cor-
relation.

A correlation coefficient, regardless of size, never provides information about 
whether an observed relationship reflects a simple cause-effect relationship or 
some more complex state of affairs.

In the past, the interpretation of the correlation between cigarette smoking and lung 
cancer was vigorously disputed. American Cancer Society representatives interpreted 
the correlation as a causal relationship: Smoking produces lung cancer. On the other 
hand, tobacco industry representatives interpreted the correlation as, at most, an indica-
tion that both the desire to smoke cigarettes and lung cancer are caused by some more 
basic but yet unidentified factor or factors, such as the body metabolism or personal-
ity of some people. According to this reasoning, people with a high body metabolism 
might be more prone to smoke and, quite independent of their smoking, more vulner-
able to lung cancer. Therefore, smoking correlates with lung cancer because both are 
effects of some common cause or causes.

Ro le  o f  Expe r imenta t ion

Sometimes experimentation can resolve this kind of controversy. In the present 
case, laboratory animals were trained to inhale different amounts of tobacco tars and 
were then euthanized. Autopsies revealed that the observed incidence of lung cancer 
(the dependent variable) varied directly with the amount of inhaled tobacco tars (the 
independent variable), even though possible “contaminating” factors, such as different 
body metabolisms or personalities, had been neutralized either through experimental 
control or by random assignment of the subjects to different test conditions. As was 
noted in Chapter 1, experimental confirmation of a correlation can provide strong evi-
dence in favor of a cause-effect interpretation of the observed relationship; indeed, 
in the smoking-cancer controversy, cumulative experimental findings overwhelmingly 
support the conclusion that smoking causes lung cancer.

Progress Check *6.4 Speculate on whether the following correlations reflect simple 
cause-effect relationships or more complex states of affairs. (Hint: A cause-effect relation-
ship implies that, if all else remains the same, any change in the causal variable should always 
produce a predictable change in the other variable.)

(a) caloric intake and body weight

(b) height and weight

(c) SAT math score and score on a calculus test

(d) poverty and crime

Answers on page 428.
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6 .4  DETA ILS :  COMPUTAT ION  FORMULA  FOR  r
Calculate a value for r by using the following computation formula:

CORRELATION COEFFICIENT (COMPUTATION FORMULA)

 

r
SP

SS SS

xy

x y  (6.1)

where the two sum of squares terms in the denominator are defined as

SS X X X
X

n

SS Y Y Y
Y

n

x
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2 2

2

2 2

2

and the sum of the products term in the numerator, SP
xy

, is defined in Formula 6.2.

SUM OF PRODUCTS (DEFINITION AND COMPUTATION FORMULAS)

 
SP X X Y Y XY

X Y

nxy
 (6.2)

In the case of SP
xy

, instead of summing the squared deviation scores for either X or Y, 

as with SS
x 
and SS

y
, we find the sum of the products for each pair of deviation scores. 

Notice in Formula 6.1 that, since the terms in the denominator must be positive, only the 

sum of the products, SP
xy

, determines whether the value of r is positive or negative. Fur-

thermore, the size of SP
xy

 mirrors the strength of the relationship; stronger relationships 

are associated with larger positive or negative sums of products. Table 6.3 illustrates 

the calculation of r for the original greeting card data by using the computation formula.

Progress Check *6.5 Couples who attend a clinic for first pregnancies are asked to esti-
mate (independently of each other) the ideal number of children. Given that X and Y represent 
the estimates of females and males, respectively, the results are as follows:

COUPLE X Y
A 1 2
B 3 4
C 2 3
D 3 2
E 1 0
F 2 3

Calculate a value for r, using the computation formula (6.1).

Answer on page 428.
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118 DESCRIBING RELATIONSHIPS:  CORRELATION

Table 6.3
CALCULATION OF r: COMPUTATION FORMULA

A. COMPUTATIONAL SEQUENCE
Assign a value to n (1), representing the number of pairs of scores.
Sum all scores for X (2 ) and for Y (3 ).
Find the product of each pair of X and Y scores (4 ), one at a time, then add all of these 
products (5 ).
Square each X score (6 ), one at a time, then add all squared X scores (7 ).
Square each Y score (8 ), one at a time, then add all squared Y scores (9 ).
Substitute numbers into formulas (10 ) and solve for SP

xy
, SS

x
, and SS

y
.

Substitute into formula (11) and solve for r.

B. DATA AND COMPUTATIONS

CARDS 4 6 8

FRIEND SENT, X RECEIVED, Y XY X 2 Y 2

Doris 13 14 182 169 196
Steve 9 18 162 81 324
Mike 7 12 84 49 144
Andrea 5 10 50 25 100
John 1 6 6 1 36

1  n = 5  2  ΣX = 35  3  ΣY = 60  5  ΣXY = 484  7  ΣX 2  = 325  9  ΣY 2 = 800

10
  
SP XY

X Y

n
xy 484

35 60

5
484 420 64

( )( )

SS X
X

n

SS Y
Y

n

x

y

2

2 2

2

2

325
35

5
325 245 80

800
60

( )

( ))2

5
800 720 80

11

  

r
SP

SS SS

xy

x y

64

80 80

64

80
80

( )( )
.

6 .5  OUTL IERS  AGA IN

In Section 2.3, outliers were defined as very extreme scores that require special atten-
tion because of their potential impact on a summary of data. This is also true when 
outliers appear among sets of paired scores. Although quantitative techniques can be 
used to detect these outliers, we simply focus on dots in scatterplots that deviate con-
spicuously from the main dot cluster.

Gree t ing  Ca rd  S tudy  Rev i s i ted

Figure 6.6 shows the effect of each of two possible outliers, substituted one at a 
time for Doris’s dot (13, 14), on the original value of r (.80) for the greeting card data. 
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Although both outliers A and B deviate conspicuously from the dot cluster, they have 
radically different effects on the value of r. Outlier A (33, 34) contributes to a new value 
of .98 for r that merely reaffirms the original positive relationship between cards sent 
and received. On the other hand, outlier B (13, 4) causes a dramatically new value of 
.04 for r that entirely neutralizes the original positive relationship. Neither of the values 
for outlier B, taken singularly, is extreme. Rather, it is their unusual  combination—13 
cards sent and only 4 received—that yields the radically different value of .04 for r, 
indicating that the new dot cluster is not remotely approximated by a straight line.

Dea l ing  w i th  Ou t l i e r s

Of course, serious investigators would use many more than five pairs of scores, and 
therefore the effect of outliers on the value of r would tend not to be as dramatic as the 
one above. Nevertheless, outliers can have a considerable impact on the value of r and, 
therefore, pose problems of interpretation. Unless there is some reason for discarding 
an outlier—because of a failed accuracy check or because, for example, you establish 
that the friend who received only 4 cards had sent 13 cards that failed to include an 
expected monetary gift—the most defensible strategy is to report the values of r both 
with and without any outliers.

6 .6  OTHER  TYPES  OF  CORRELAT ION  COEFF IC IENTS

There are many other types of correlation coefficients, but we will discuss only several 
that are direct descendants of the Pearson correlation coefficient. Although designed 
originally for use with quantitative data, the Pearson r has been extended, sometimes 
under the guise of new names and customized versions of Formula 6.1, to other kinds 
of situations. For example, to describe the correlation between ranks assigned indepen-
dently by two judges to a set of science projects, simply substitute the numerical ranks 
into Formula 6.1, then solve for a value of the Pearson r (also referred to as  Spearman’s 
rho coefficient for ranked or ordinal data). To describe the correlation between quan-
titative data (for example, annual income) and qualitative or nominal data with only 
two categories (for example, male and female), assign arbitrary numerical codes, such 
as 1 and 2, to the two qualitative categories, then solve Formula 6.1 for a value of the 
Pearson r (also referred to as a point biserial correlation coefficient). Or to describe 
the relationship between two ordered qualitative variables, such as the attitude toward 
legal abortion (favorable, neutral, or opposed) and educational level (high school only, 

FIGURE 6.6 

Effect of each of two outliers on the value of r.
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120 DESCRIBING RELATIONSHIPS:  CORRELATION

some college, college graduate), assign any ordered numerical codes, such as 1, 2, and 
3, to the categories for both qualitative variables, then solve Formula 6.1 for a value of 
the Pearson r (also referred to as Cramer’s phi coefficient).

Most computer outputs would simply report each of these correlations as a Pearson 
r. Given the widespread use of computers, the more specialized names for the Pearson 
r will probably survive, if at all, as artifacts of an earlier age, when calculations were 
manual and some computational relief was obtained by customizing Formula 6.1 for 
situations involving ranks and qualitative data.

6 .7  COMPUTER  OUTPUT

Most analyses in this book are performed by hand on small batches of data. When 
analyses are based on large batches of data, as often happens in practice, it is much 
more efficient to use a computer. Although we will not show how to enter commands 
and data into a computer, we will describe the most relevant portions of some computer 
outputs. Once you have learned to ignore irrelevant details and references to more 
advanced statistical procedures, you’ll find that statistical results produced by comput-
ers are as easy to interpret as those produced by hand.

Three of the most widely used statistical programs—Minitab, SPSS (Statistical 
Package for the Social Sciences), and SAS (Statistical Analysis System)—generate the 
computer outputs in this book. As interpretive aids, some outputs are cross-referenced 
with explanatory comments at the bottom of the printout. Since these outputs are based 
on data already analyzed by hand, computer- produced results can be compared with 
familiar results. For example, the computer- produced scatterplot, as well as the correla-
tion of .800 in Table 6.4 can be compared with the manually produced scatterplot in 
Figure 6.1 and the correlation of .80 in Table 6.3.

I N T E R N E T  S I T E S
Go to the website for this book (http://www.wiley.com/college/witte). Click on the Stu-
dent Companion Site, then Internet Sites, and finally Minitab, SPSS, or SAS to obtain 
more information about these statistical packages, as well as demonstration software.

WWW

When every possible pairing of variables is reported, as in lower half of the out-
put in Table 6.4, a correlation matrix is produced. The value of .800 occurs twice 
in the matrix, since the correlation is the same whether the relationship is described 
as that between cards sent and cards received or vice versa. The value of 1.000, 
which also occurs twice, reflects the trivial fact that any variable correlates perfectly 
with itself.

Read ing  a  La rge r  Co r re la t i on  Mat r i x

 Since correlation matrices can be expanded to incorporate any number of variables, 
they are useful devices for showing correlations between all possible pairs of variables 
when, in fact, many variables are being studied. For example, in Table 6.5, four vari-
ables generate a correlation matrix with 4 × 4, or 16, correlation coefficients. The four 
perfect (but trivial) correlations of 1.000, produced by pairing each variable with itself, 

Correlation Matrix 

Table showing correlations for all 

possible pairs of variables.
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Table 6.4
SPSS OUTPUT: SCATTERPLOT AND CORRELATION  

FOR GREETING CARD DATA

GRAPH
 1

CORRELATIONS

SENT RECEIVED

Sent Pearson Correlation 1.000 .800
Sig. (2-tailed) – .104
N 5 5

Received Pearson Correlation  2  .800 1.000
Sig. (2-tailed)  3  .104 –
N  4       5 5

Comments:
1.  Scatterplot for greeting card data (using slightly different scales than in Figure 6.1).
2 .  The correlation for cards sent and cards received equals .800, in agreement with the 
 calculations in Table 6.3.
3.  The value of Sig. helps us interpret the statistical significance of a correlation by evaluating 
the observed value of r relative to the actual number of pairs of scores used to calculate r. Dis-
cussed later in Section 14.6, Sig.-values are referred to as p-values in this book. At this point, 
perhaps the easiest way to view a Sig.-value is as follows: The smaller the value of Sig. (on a 
scale from 0 to 1), the more likely that you would observe a correlation with the same sign, 
either positive or negative, if the study were repeated with new observations. Investigators 
often focus only on those correlations with Sig.-values smaller than .05.
4 .  Number of cases or paired scores.
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Table 6.5
SPSS OUTPUT: CORRELATION MATRIX FOR FOUR VARIABLES (BASED ON  

336 STATISTICS STUDENTS)

CORRELATIONS

AGE
COLLEGE 

GPA

HIGH 
SCHOOL 

GPA
GENDER

AGE Pearson Correlation 1.000 .2228 –.0376 .0813
Sig. (2-tailed) — .000 .511 .138
N 335 333 307 335

COLLEGE GPA Pearson Correlation .2228 1.000 .2521 .2069
Sig. (2-tailed) .000 — .000 .000
N 333 334 306 334

HIGH SCHOOL GPA Pearson Correlation –.0376 .2521 1.000 .2981
Sig. (2-tailed) .511 .000 — .000
N 307 306 307 307

GENDER Pearson Correlation .0813 .2069 .2981 1.000
Sig. (2-tailed) .138 .000 .000 —
N 335 334 307 336

split the remainder of the matrix into two triangular sections, each containing six non-
trivial correlations. Since the correlations in these two sectors are mirror images, you 
can attend to just the values of the six correlations in one sector in order to evaluate all 
relevant correlations among the four original variables.

I n te rp re t i ng  a  La rge r  Co r re la t i on  Mat r i x

Three of the six shaded correlations in Table  6.5 involve GENDER. GENDER 
qualifies for a correlation analysis once arbitrary numerical codes (1 for male and 2 for 
female) have been assigned. Looking across the bottom row, GENDER is positively 
correlated with AGE (.0813); with COLLEGE GPA (.2069); and with HIGH SCHOOL 
GPA (.2981). Looking across the next row, HIGH SCHOOL GPA is negatively cor-
related with AGE (–.0376) and positively correlated with COLLEGE GPA (.2521). 
Lastly, COLLEGE GPA is positively correlated with AGE (.2228).

As suggested in Comment 3 at the bottom of Table 6.4, values of Sig. help us judge 
the statistical significance of the various correlations. A smaller value of Sig. implies 
that if the study were repeated, the same positive or negative sign of the corresponding 
correlation would probably reappear, even though calculations are based on an entirely 
new group of similarly selected students. Therefore, we can conclude that the four 
correlations with Sig.-values close to zero (.000) probably would reappear as positive 
relationships. In a new group, female students would tend to have higher high school 
and college GPAs, and students with higher college GPAs would tend to have higher 
high school GPAs and to be older. Because of the larger Sig.-value of .138 for the cor-
relation between GENDER and AGE we cannot be as confident that female students 
would be older than male students. Because of the even larger Sig.-value of .511 for 
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the small negative correlation between AGE and HIGH SCHOOL GPA, this correla-
tion would be just as likely to reappear as either a positive or negative relationship and 
should not be taken seriously.

Finally, the numbers in the last row of each cell in Table 6.5 show the total number 
of cases actually used to calculate the corresponding correlation. Excluded from these 
totals are those cases in which students failed to supply the requested information.

Progress Check *6.6 Refer to Table 6.5 when answering the following questions.

(a) Would the same positive correlation of .2981 have been obtained between  
GENDER and HIGH SCHOOL GPA if the assignment of codes had been reversed, with 
females being coded as 1 and males coded as 2? Explain your answer.

(b) Given the new coding of females as 1 and males as 2, would the results still permit you to 
conclude that females tend to have higher high school GPAs than do males?

(c) Would the original positive correlation of .2981 have been obtained if, instead of the origi-
nal coding of males as 1 and females as 2, males were coded as 10 and females as 20? 
Explain your answer.

(d) Assume that the correlation matrix includes a fifth variable. What would be the total num-
ber of relevant correlations in the expanded matrix?

Answers on page 428.

Summary

The presence of regularity among pairs of X and Y scores indicates that the two vari-
ables are related, and the absence of any regularity suggests that the two variables are, 
at most, only slightly related. When the regularity consists of relatively low X scores 
being paired with relatively low Y scores and relatively high X scores being paired with 
relatively high Y scores, the relationship is positive. When it consists of relatively low 
X scores being paired with relatively high Y scores and vice versa, the relationship is 
negative.

A scatterplot is a graph with a cluster of dots that represents all pairs of scores. 
A dot cluster that has a slope from the lower left to the upper right reflects a positive 
relationship, and a dot cluster that has a slope from the upper left to the lower right 
reflects a negative relationship. A dot cluster that lacks any apparent slope reflects little 
or no relationship.

In a positive or negative relationship, the more closely the dot cluster approximates 
a straight line, the stronger the relationship will be.

When the dot cluster approximates a straight line, the relationship is linear; when it 
approximates a bent line, the relationship is curvilinear.

Located on a scale from –1.00 to +1.00, the value of r indicates both the direc-
tion of a linear relationship—whether positive or negative—and, generally, the relative 
strength of a linear relationship. Values of r in the general vicinity of either –1.00 or 
+1.00 indicate a relatively strong relationship, and values of r in the neighborhood of 
0 indicate a relatively weak relationship.

 Although the value of r can be used to formulate a verbal description of the relation-
ship, the numerical value of r does not indicate a proportion or percentage of a perfect 
relationship.

Always check for any possible restriction on the ranges of X and Y scores that could 
lower the value of r.
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124 DESCRIBING RELATIONSHIPS:  CORRELATION

The presence of a correlation, by itself, does not resolve the issue of whether it 
reflects a simple cause-effect relationship or a more complex state of affairs.

The Pearson correlation coefficient, r, describes the linear relationship between 
pairs of variables for quantitative data. Outliers can have a considerable impact on the 
value of r and, therefore, pose problems of interpretation.

Although designed originally for use with quantitative data, the Pearson r has been 
extended to other kinds of situations, including those with ranked and qualitative data.

Whenever there are more than two variables, correlation matrices can be useful 
devices for showing correlations between all possible pairs of variables.

Important Terms and Symbols

Positive relationship Negative relationship

Scatterplot Linear relationship

Curvilinear relationship Correlation coefficient

Pearson correlation coefficient (r ) Correlation matrix

Key Equations

CORRELATION COEFFICIENT

r
SP

SS SS

xy

x y

where SP X X Y Y XY
X Y

nxy

REV IEW QUEST IONS

 6.7 (a) Estimate whether the following pairs of scores for X and Y reflect a positive rela-
tionship, a negative relationship, or no relationship. Hint: Note any tendency for pairs 
of X and Y scores to occupy similar or dissimilar relative locations.

X Y
64 66
40 79
30 98
71 65
55 76
31 83
61 68
42 80
57 72

 (b) Construct a scatterplot for X and Y. Verify that the scatterplot does not describe a 
pronounced curvilinear trend.

 (c) Calculate r using the computation formula (6.1).
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 6.8 Calculate the value of r using the computational formula (6.1) for the following data. 

X Y
2 8
4 6
5 2
3 3
1 4
7 1
2 4

 6.9 Indicate whether the following generalizations suggest a positive or negative rela-
tionship. Also speculate about whether or not these generalizations reflect simple 
cause-effect relationships.

 (a) Preschool children who delay gratification (postponing eating one marshmallow to win 
two) subsequently receive higher teacher evaluations of adolescent competencies. 

 (b) College students who take longer to finish a test perform more poorly on that test.

 (c) Heavy smokers have shorter life expectancies.

 (d) Infants who experience longer durations of breastfeeding score higher on IQ tests in 
later childhood. 

 *6.10 On the basis of an extensive survey, the California Department of Education reported 
an r of –.32 for the relationship between the amount of time spent watching TV and 
the achievement test scores of schoolchildren. Each of the following statements rep-
resents a possible interpretation of this finding. Indicate whether each is True or False.

 (a) Every child who watches a lot of TV will perform poorly on the achievement tests.

 (b) Extensive TV viewing causes a decline in test scores.

 (c) Children who watch little TV will tend to perform well on the tests.

 (d) Children who perform well on the tests will tend to watch little TV.

 (e) If Gretchen’s TV-viewing time is reduced by one-half, we can expect a substantial 
improvement in her test scores.

 (f) TV viewing could not possibly cause a decline in test scores.

Answers on page 428.

 6.11 Assume that an r of .80 describes the relationship between daily food intake, mea-
sured in ounces, and body weight, measured in pounds, for a group of adults. Would 
a shift in the units of measurement from ounces to grams and from pounds to 
 kilograms change the value of r ? Justify your answer.

 6.12 An extensive correlation study indicates that a longer life is experienced by people 
who follow the seven “golden rules” of behavior, including moderate drinking, no 
smoking, regular meals, some exercise, and eight hours of sleep each night. Can we 
conclude, therefore, that this type of behavior causes a longer life?
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CHAPTER

7
Regression

7.1 TWO ROUGH PREDICTIONS

7.2 A REGRESSION LINE

7.3 LEAST SQUARES REGRESSION LINE

7.4 STANDARD ERROR OF ESTIMATE, s
y|x

7.5 ASSUMPTIONS

7.6 INTERPRETATION OF r 2 

7.7 MULTIPLE REGRESSION EQUATIONS

7.8 REGRESSION TOWARD THE MEAN

Summary / Important Terms / Key Equations / Review Questions

Preview

If two variables are correlated, description can lead to prediction. For 
example, if computer skills and GPAs are related, level of computer skills 
can be used to predict GPAs. Predictive accuracy increases with the 
strength of the underlying correlation.

Also discussed is a prevalent phenomenon known as “regression toward the 

mean.” It often occurs over time to subsets of extreme observations, such as after 

the superior performance of professional athletes or after the poor performance of 

learning-challenged children. If misinterpreted as a real effect, regression toward the 

mean can lead to erroneous conclusions.
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A correlation analysis of the exchange of greeting cards by five friends for the most 
recent holiday season suggests a strong positive relationship between cards sent and 
cards received. When informed of these results, another friend, Emma, who enjoys 
receiving greeting cards, asks you to predict how many cards she will receive during 
the next holiday season, assuming that she plans to send 11 cards.

7 .1  TWO  ROUGH  PRED ICT IONS

Pred ic t  “Re la t i ve l y  La rge  Number”

You could offer Emma a very rough prediction by recalling that cards sent and 
received tend to occupy similar relative locations in their respective distributions. 
Therefore, Emma can expect to receive a relatively large number of cards, since she 
plans to send a relatively large number of cards.

Pred ic t  “be tween  14  and  18  Ca rds”

To obtain a slightly more precise prediction for Emma, refer to the scatter plot for 
the original five friends shown in Figure 7.1. Notice that Emma’s plan to send 11 cards 
locates her along the X axis between the 9 cards sent by Steve and the 13 sent by Doris. 
Using the dots for Steve and Doris as guides, construct two strings of arrows, one 
beginning at 9 and ending at 18 for Steve and the other beginning at 13 and ending at 
14 for Doris. [The direction of the arrows reflects our attempt to predict cards received 
(Y) from cards sent (X). Although not required, it is customary to predict from X to Y.] 
Focusing on the interval along the Y axis between the two strings of arrows, you could 
predict that Emma’s return should be between 14 and 18 cards, the numbers received 
by Doris and Steve.

FIGURE 7.1 

A rough prediction for Emma (using dots for Steve and Doris).
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128 REGRESSION

The latter prediction might satisfy Emma, but it would not win any statistical awards. 
Although each of the five dots in Figure 7.1 supplies valuable information about the 
exchange of greeting cards, our prediction for Emma is based only on the two dots for 
Steve and Doris.

7 .2  A  REGRESS ION  L INE

All five dots contribute to the more precise prediction, illustrated in Figure 7.2, that 
Emma will receive 15.20 cards. Look more closely at the solid line designated as the 
regression line in Figure 7.2, which guides the string of arrows, beginning at 11, toward 
the predicted value of 15.20. The regression line is a straight line rather than a curved 
line because of the linear relationship between cards sent and cards received. As will 
become apparent, it can be used repeatedly to predict cards received. Regardless of 
whether Emma decides to send 5, 15, or 25 cards, it will guide a new string of arrows, 
beginning at 5 or 15 or 25, toward a new predicted value along the Y axis.

Placement  o f  L i ne

For the time being, forget about any prediction for Emma and concentrate on how 
the five dots dictate the placement of the regression line. If all five dots had defined a 
single straight line, placement of the regression line would have been simple; merely let 
it pass through all dots. When the dots fail to define a single straight line, as in the scat-
terplot for the five friends, placement of the regression line represents a compromise. It 
passes through the main cluster, possibly touching some dots but missing others.

Pred ic t i ve  E r ro r s

Figure 7.3 illustrates the predictive errors that would have occurred if the regression 
line had been used to predict the number of cards received by the five friends. Solid 
dots reflect the actual number of cards received, and open dots, always located along 

FIGURE 7.2 

Prediction of 15.20 for Emma (using the regression line).
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 7.2 A REGRESSION LINE  129

the regression line, reflect the predicted number of cards received. (To avoid clutter in 
Figure 7.3, the strings of arrows have been omitted. However, you might find it helpful 
to imagine a string of arrows, ending along the Y axis, for each dot, whether solid or 
open.) The largest predictive error, shown as a broken vertical line, occurs for Steve, 
who sent 9 cards. Although he actually received 18 cards, he should have received 
slightly fewer than 14 cards, according to the regression line. The smallest predictive 
error—none whatsoever—occurs for Mike, who sent 7 cards. He actually received the 
12 cards that he should have received, according to the regression line.

To ta l  P red ic t i ve  E r ro r

We engage in the seemingly silly activity of predicting what is known already for 
the five friends to check the adequacy of our predictive effort. The smaller the total 
for all predictive errors in Figure 7.3, the more favorable will be the prognosis for our 
predictions. Clearly, it is desirable for the regression line to be placed in a position 
that minimizes the total predictive error, that is, that minimizes the total of the vertical 
discrepancies between the solid and open dots shown in Figure 7.3.

Progress Check *7.1 To check your understanding of the first part of this chapter, make 
predictions using the following graph.
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where Y´ represents the predicted value (the predicted number of cards that will be 
received by any new friend, such as Emma); X represents the known value (the known 
number of cards sent by any new friend); and b and a represent numbers calculated 
from the original correlation analysis, as described next.*

F ind ing  Va lues  o f  b  and  a

To obtain a working regression equation, solve each of the following expressions, 
first for b and then for a, using data from the original correlation analysis. The expres-
sion for b reads:

*You might recognize that the least squares equation describes a straight line with a slope of 

b and a Y-intercept of a.

(a) Predict the approximate rate of inflation, given an unemployment rate of 5 percent.

(b) Predict the approximate rate of inflation, given an unemployment rate of 15 percent.

Answers on page 428.

7 .3  LEAST  SQUARES  REGRESS ION  L INE

To avoid the arithmetic standoff of zero always produced by adding positive and neg-
ative predictive errors (associated with errors above and below the regression line, 
respectively), the placement of the regression line minimizes not the total predictive 
error but the total squared predictive error, that is, the total for all squared predictive 
errors. When located in this fashion, the regression line is often referred to as the least 
squares regression line. Although more difficult to visualize, this approach is consis-
tent with the original aim—to minimize the total predictive error or some version of the 
total predictive error, thereby providing a more favorable prognosis for our predictions.

Need  a  Mathemat ica l  So lu t i on

Without the aid of mathematics, the search for a least squares regression line would 
be frustrating. Scatterplots would be proving grounds cluttered with tentative regres-
sion lines, discarded because of their excessively large totals for squared discrepancies. 
Even the most time-consuming, conscientious effort would culminate in only a close 
approximation to the least squares regression line.

Leas t  Squa res  Reg ress ion  Equa t ion

Happily, an equation pinpoints the exact least squares regression line for any scat-
terplot. Most generally, this equation reads:

LEAST SQUARES REGRESSION EQUATION

 Y´  bX + a (7.1)

SOLVING FOR b

       
y

x

SS
b r

SS   (7.2)
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where Y  and X refer to the sample means for all Y and X scores, respectively, and b is 
defined by the preceding expression.

The values of all terms in the expressions for b and a can be obtained from the 
original correlation analysis either directly, as with the value of r, or indirectly, as with 
the values of the remaining terms: SS

y′ SS
x′ Y , and X. Table 7.1 illustrates the computa-

tional sequence that produces a least squares regression equation for the greeting card 
example, namely,

.80( ) 6.40Y X

where .80 and 6.40 represent the values computed for b and a, respectively.

where r represents the correlation between X and Y (cards sent and received by the five 
friends); SS

y
 represents the sum of squares for all Y scores (the cards received by the 

five friends); and SS
x
 represents the sum of squares for all X scores (the cards sent by 

the five friends).
The expression for a reads:

SOLVING FOR a

 a Y bX  (7.3)

Table 7.1
DETERMINING THE LEAST SQUARES REGRESSION EQUATION

A. COMPUTATIONAL SEQUENCE
Determine values of SS

x′ SS
y′ and r (1) by referring to the original correlation analysis 

in Table 6.3.
Substitute numbers into the formula (2 ) and solve for b.
Assign values to X  and Y  (3 ) by referring to the original correlation analysis in 
Table 6.3.

Substitute numbers into the formula (4 ) and solve for a.
Substitute numbers for b and a in the least squares regression equation (5 ).

B. COMPUTATIONS
1  SS

x
  80*

   SS
y
  80*

  r .80

2
       

80
.80 .80

80
Y

X

SS
b r

SS

3
        

**

**

7

12

X

Y

4      ( )( ) 12 (.80)(7) 12 5.60 6.40a Y b X

5

     

( )( )

(.80)( ) 6.40

Y b X a

X

'

*Computations not shown. Verify, if you wish, using Formula 4.4.
**Computations not shown. Verify, if you wish, using Formula 3.1.

Witte11e_c07.indd   131 11/18/2016   7:08:01 PM



132 REGRESSION

Key  P rop e r t y

Once numbers have been assigned to b and a, as just described, the least squares 
regression equation emerges as a working equation with a most desirable property: It 
automatically minimizes the total of all squared predictive errors for known Y scores 
in the original correlation analysis.

So l v ing  fo r  Y′
In its present form, the regression equation can be used to predict the number of 

cards that Emma will receive, assuming that she plans to send 11 cards. Simply substi-
tute 11 for X and solve for the value of Y′ as follows:

.80(11) 6.40

8.80 6.40

15.20

Y

Notice that the predicted card return for Emma, 15.20, qualifies as a genuine predic-
tion, that is, a forecast of an unknown event based on information about some known 
event. This prediction appeared earlier in Figure 7.2.

Our working regression equation provides an inexhaustible supply of predictions 
for the card exchange. Each prediction emerges simply by substituting some value for 
X and solving the equation for Y′, as described. Table 7.2 lists the predicted card returns 
for a number of different card investments. Verify that you can obtain a few of the Y′ 
values shown in Table 7.2 from the regression equation.

Notice that, even when no cards are sent (X = 0), we predict a return of 6.40 cards 
because of the value of a. Also, notice that sending each additional card translates into 
an increment of only .80 in the predicted return because of the value of b. In other 
words, whenever b has a value less than 1.00, increments in the predicted return will 
lag—by an amount equal to the value of b, that is, .80 in the present case—behind 
increments in cards sent. If the value of b had been greater than 1.00, then increments 
in the predicted return would have exceeded increments in cards sent. (If the value 
of b had been negative, because of an underlying negative correlation, then sending 
additional cards would have triggered decrements, not increments, in the predicted 
return—and the tradition of sending holiday greeting cards probably would disappear.)

A  L im i ta t i on

Emma might survey these predicted card returns before committing herself to a 
particular card investment. However, this strategy could backfire because there is no 
evidence of a simple cause-effect relationship between cards sent and cards received. 
The desired effect might be completely missing if, for instance, Emma expands her 
usual card distribution to include casual acquaintances and even strangers, as well as 
her friends and relatives.

Progress Check *7.2 Assume that an r of .30 describes the relationship between edu-
cational level (highest grade completed) and estimated number of hours spent reading each 
week. More specifically:

EDUCATIONAL LEVEL (X) WEEKLY READING TIME (Y)

X  = 13 Y  =   8
SS

x
 = 25 SS

y
 = 50

r = .30

Least Squares Regression  

Equation 

The equation that minimizes 

the total of all squared predic-

tion errors for known Y scores 

in the original correlation 

analysis.

Table 7.2
PREDICTED CARD 
RETURNS (Y ′) FOR 
DIFFERENT CARD 
INVESTMENTS (X )

X Y ′
0 6.40
4 9.60
8 12.80

10 14.40
12 16.00
20 22.40
30 30.40
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where the sum of squares term in the numerator, SS
y|x

, represents the sum of the squares 
for predictive errors, Y − Y′, and the degrees of freedom term in the denominator,  
n − 2, reflects the loss of two degrees of freedom because any straight line, including 
the regression line, can be made to coincide with two data points. The symbol s

y|x
 is 

read as “s sub y given x.”
Although we can estimate the overall predictive error by dealing directly with pre-

dictive errors, Y − Y′, it is more efficient to use the following computation formula:

(a) Determine the least squares equation for predicting weekly reading time from educational 
level.

(b) Faith’s education level is 15. What is her predicted reading time?

(c) Keegan’s educational level is 11. What is his predicted reading time?

Answers on page 428.

Graphs  o r  Equa t ions?

Encouraged by Figures 7.2 and 7.3, you might be tempted to generate predictions 
from graphs rather than equations. However, unless constructed skillfully, graphs yield 
less accurate predictions than do equations. In the long run, it is more accurate and 
easier to generate predictions from equations.

7 .4  STANDARD  ERROR  OF  EST IMATE, s
y |x

 

Although we predicted that Emma’s investment of 11 cards will yield a return of 15.20 
cards, we would be surprised if she actually received 15 cards. It is more likely that 
because of the imperfect relationship between cards sent and cards received, Emma’s 
return will be some number other than 15. Although designed to minimize predictive 
error, the least squares equation does not eliminate it. Therefore, our next task is to 
estimate the amount of error associated with our predictions. The smaller the estimated 
error is, the better the prognosis will be for our predictions.

F ind ing  the  S tanda rd  E r ro r  o f  Es t imate

The estimate of error for new predictions reflects our failure to predict the number 
of cards received by the original five friends, as depicted by the discrepancies between 
solid and open dots in Figure 7.3. Known as the standard error of estimate and symbol-
ized as s

y|x
, this estimate of predictive error complies with the general format for any 

sample standard deviation, that is, the square root of a sum of squares term divided by 
its degrees of freedom. (See Formula 4.10 on page 76.) The formula for s

y|x
 reads:

STANDARD ERROR OF ESTIMATE (DEFINITION FORMULA)

 

2
|

|
2 2

y x
y x

SS Y Y
s

n n  (7.4)

STANDARD ERROR OF ESTIMATE (COMPUTATION FORMULA)

 

2

|

1

2

y
y x

SS r
s

n  (7.5)
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where SS
y
 is the sum of the squares for Y scores (cards received by the five friends), 

that is,

2
2( )y

Y
SS Y Y Y

n

and r is the correlation coefficient (cards sent and received).

Key  P rop e r t y

The standard error of estimate represents a special kind of standard deviation that 
reflects the magnitude of predictive error.

You might find it helpful to think of the standard error of estimate, sy|x, as a 
rough measure of the average amount of predictive error—that is, as a rough 
measure of the average amount by which known Y values deviate from their 
predicted Y  values.*

The value of 3.10 for s
y|x

, as calculated in Table 7.3, represents the standard devia-

tion for the discrepancies between known and predicted card returns originally shown 

in Figure 7.3. In its role as an estimate of predictive error, the value of s
y|x

 can be 

attached to any new prediction. Thus, a concise prediction statement may read: “The 

predicted card return for Emma equals 15.20 ± 3.10,” in which the latter term serves 

as a rough estimate of the average amount of predictive error, that is, the average 

amount by which 15.20 will either overestimate or underestimate Emma’s true card 

return.

Standard Error of Estimate (s
y|x 

) 

A rough measure of the aver-

age amount of predictive error.

*Strictly speaking, the standard error of estimate exceeds the average predictive error by 10 

to 20 percent. Nevertheless, it is reasonable to describe the standard error in this fashion—as 

long as you remember that, as with the corresponding definition for the standard deviation in 

Chapter 4, an approximation is involved.

Table 7.3
CALCULATION OF THE STANDARD ERROR OF ESTIMATE, S

y  |x 

A. COMPUTATIONAL SEQUENCE
 Assign values to SS

y
 and r (1) by referring to previous work with the least squares 

regression equation in Table 7.1.
Substitute numbers into the formula (2 ) and solve for s

y|x
.

B. COMPUTATIONS

1

  

ySS

r

80

.80

2

  

y
y x

SS r
s

n

2
2

|

80 1 .80(1 ) 80(.36) 28.80
9.60

2 5 2 3 3

3.10
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Impor tance  o f  r

To appreciate the importance of the correlation coefficient in any predictive effort, 
let’s substitute a few extreme values for r in the numerator of Formula 7.5 and note the 
resulting effect on the sum of squares for predictive errors, SS

y|x
. Substituting a value 

of 1 for r, we obtain

2 2
| (1 ) [1 (1) ] [1 1] [0] 0y x y y y ySS SS r SS SS SS

As expected, when predictions are based on perfect relationships, the sum of squares 
for predictive errors equals zero, and there is no predictive error. At the other extreme, 
substituting a value of 0 for r in the numerator of Formula 7.5, we obtain

2 2
| (1 ) [1 (0) ] [1 0] [1]y x y y y y ySS SS r SS SS SS SS

Again, as expected, when predictions are based on a nonexistent relationship, the sum 
of squares for predictive errors equals SS

y
, the sum of squares of Y scores about Y , and 

there is no reduction in predictive error. Clearly, the prognosis for a predictive effort 
is most favorable when predictions are based on strong relationships, as reflected by a 
sizable positive or negative value of r. The prognosis is most dismal—and a predictive 
effort should not even be attempted—when predictions must be based on a weak or 
nonexistent relationship, as reflected by a value of r near 0.

Progress Check *7.3 

(a) Calculate the standard error of estimate for the data in Question 7.2 on page 132, assum-
ing that the correlation of .30 is based on n = 35 pairs of observations.

(b) Supply a rough interpretation of the standard error of estimate.

Answers on page 428.

7 .5  ASSUMPT IONS

L inea r i t y

Use of the regression equation requires that the underlying relationship be linear. 
You need to worry about violating this assumption only when the scatterplot for the 
original correlation analysis reveals an obviously bent or curvilinear dot cluster, such 
as illustrated in Figure 6.4 on page 112. In the unlikely event that a dot cluster describes 
a pronounced curvilinear trend, consult more advanced statistics books for appropriate 
procedures.

Homoscedas t ic i t y

Use of the standard error of estimate, s
y|x

, assumes that except for chance, the dots 
in the original scatterplot will be dispersed equally about all segments of the regres-
sion line. You need to worry about violating this assumption, officially known by 
its tongue-twisting designation as the assumption of homoscedasticity (pronounced 
“ ho-mo-skee-das-ti-ci-ty”), only when the scatterplot reveals a dramatically different 
type of dot cluster, such as that shown in Figure 7.4. At the very least, the standard 
error of estimate for the data in Figure 7.4 should be used cautiously, since its value 
overestimates the variability of dots about the lower half of the regression line and 
underestimates the variability of dots about the upper half of the regression line.
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7 .6  INTERPRETAT ION  OF  r 2

The squared correlation coefficient, r2, provides us with not only a key interpretation 
of the correlation coefficient but also a measure of predictive accuracy that supple-
ments the standard error of estimate, s

y|x
. Understanding r2 requires that we return to 

the problem of predicting the number of greeting cards received by the five friends in 
Chapter 6. (Remember, we engage in the seemingly silly activity of predicting that 
which we already know not as an end-in-itself, but as a way to check the adequacy 
of our predictive effort.) Paradoxically, even though our ultimate goal is to show the 
relationship between r2 and predictive accuracy, we will initially concentrate on two 
kinds of predictive errors—those due to the repetitive prediction of the mean and those 
due to the regression equation.

Repet i t i ve  P red ic t i on  o f  t he  Mean 

For the sake of the present argument, pretend that we know the Y scores (cards 
received), but not the corresponding X scores (cards sent), for each of the five friends. 
Lacking information about the relationship between X and Y scores, we could not con-
struct a regression equation and use it to generate a customized prediction, Y′, for each 
friend. We could, however, mount a primitive predictive effort by always predicting 
the mean, Y , for each of the five friends’ Y scores. [Given the present restricted circum-
stances, statisticians recommend repetitive predictions of the mean, Y , for a  variety of 
reasons, including the fact that, although the predictive error for any  individual might 
be quite large, the sum of all of the resulting five predictive errors (deviations of Y 
scores about Y ) always equals zero, as you may recall from Section 3.3.]  Most impor-
tant for our purposes, using the repetitive prediction of Y  for each of the Y scores of 
all five friends will supply us with a frame of reference against which to evaluate our 
customary predictive effort based on the correlation between cards sent (X) and cards 
received (Y). Any predictive effort that capitalizes on an existing correlation between 
X and Y should be able to generate a smaller error variability—and, conversely, more 

FIGURE 7.4 

Violation of homoscedasticity assumption. (Dots lack equal 
variability about all line segments.)

Regression Line

Y

X
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accurate predictions of Y—than a primitive effort based only on the repetitive predic-
tion of Y . 

Pred ic t i ve  E r ro r s 

Panel A of Figure 7.5 shows the predictive errors for all five friends when the mean 
for all five friends, Y , of 12 (shown as the mean line) is always used to predict each 
of their five Y scores. Panel B shows the corresponding predictive errors for all five 
friends when a series of different Y′ values, obtained from the least squares equation 
(shown as the least squares line), is used to predict each of their five Y scores. For 
example, panel A of Figure 7.5 shows the error for John when the mean for all five 
friends, Y , of 12 is used to predict his Y score of 6. Shown as a broken vertical line, the 
error of −6 for John (from Y − Y  = 6 − 12 = −6) indicates that Y  overestimates John’s 
Y score by 6 cards. Panel B shows a smaller error of −1.20 for John when a Y′ value of 
7.20 is used to predict the same Y score of 6. This Y’ value of 7.20 is obtained from the 
least squares equation, 

.80( ) 6.40

.80(1) 6.40

7.20

Y X

where the number of cards sent by John, 1, has been substituted for X.
Positive and negative errors indicate that Y scores are either above or below their 

corresponding predicted scores. Overall, as expected, errors are smaller when custom-
ized predictions of Y′ from the least squares equation can be used (because X scores 
are known) than when only the repetitive prediction of Y  can be used (because X scores 
are ignored.) As with most statistical phenomena, there are exceptions: The predictive 
error for Doris is slightly larger when the least squares equation is used.

E r ro r  Va r iab i l i t y  ( Sum o f  Squa res )

To more precisely evaluate the accuracy of our two predictive efforts, we need some 
measure of the collective errors produced by each effort. It probably will not surprise 
you that the sum of squares qualifies for this role. The sum of squares of any set of 
deviations, now called errors, can be calculated by first squaring each error (to elimi-
nate negative signs), then summing all squared errors. 

The error variability for the repetitive prediction of the mean can be designated as 
SS

y
, since each Y score is expressed as a squared deviation from Y  and then summed, 

that is

2( )ySS Y Y

Using the errors for the five friends shown in Panel A of Figure 7.5, this becomes   

2 2 2 2 2[( 6) ( 2) 0 6 2 ] 80ySS

 The error variability for the customized predictions from the least squares equation 
can be designated as SS

y|x
, since each Y score is expressed as a squared deviation from 

its corresponding Y’ and then summed, that is

2
| (Y Y )y xSS

Using the errors for the five friends shown in Panel B of Figure 7.5, we obtain: 

2 2 2 2 2
| [( 1.2) ( 0.4) 0 (4.4) ( 2.8) ] 28.8y xSS
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FIGURE 7.5 

Predictive errors for five friends.
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where the one new sum of squares term, SS
y′, is simply the variability explained by or 

predictable from the regression equation, that is, 

2( )ySS Y Y

Accordingly, r2 provides us with a straightforward measure of the worth of our least 
squares predictive effort.*

Propo r t i on  o f  Pred ic ted  Va r iab i l i t y

If you think about it, SSy measures the total variability of Y scores that occurs after 
only primitive predictions based on Y  are made (because X scores are ignored), while 
SS

y|x
 measures the residual variability of Y scores that remains after customized least 

square predictions are made (because X scores are used). The error variability of 28.8 
for the least squares predictions is much smaller than the error variability of 80 for the 
repetitive prediction of Y , confirming the greater accuracy of the least squares predic-
tions apparent in Figure 7.5. 

To obtain an SS measure of the actual gain in accuracy due to the least squares 
predictions,  subtract the residual variability from the total variability, that is, subtract 
SS

y|x
 from SS

y
, to obtain 

80 28.8 51.2y y|xSS SS

To express this difference, 51.2, as a gain in accuracy relative to the original error 
variability for the repetitive prediction of ,Y  divide the above difference by SS

y
, that is,

      

| 80 28.8   51.2
.64

80

   

80

y y x

y

SS SS

SS

This result, .64 or 64 percent, represents the proportion or percent gain in predictive 
accuracy when the repetitive prediction of Y  is replaced by a series of customized Y′ 
predictions based on the least squares equation. In other words, .64 or 64 percent rep-
resents the proportion or percent of the total variability of SS

y
 that is predictable from 

its relationship with the X variable.
     

To the delight of statisticians, when squared, the value of the correlation coefficient 
equals this proportion of predictable variability. Recalling that an r of .80 was obtained 
for the correlation between cards sent and cards received by the five friends, we can 
verify that r2 = (.80)(.80) = .64, which, of course, also is the proportion of predictable 
variability. Given this perspective, 

the square of the correlation coefficient, r2, always indicates the proportion of 
total variability in one variable that is predictable from its relationship with the 
other variable.    

Expressing the equation for r2 in symbols, we have: 

Squared Correlation  

Coefficient (r 2) 

The  proportion of the total 

variability in one variable 

that is predictable from its 

 relationship with the other 
 variable.

r 2 INTERPRETATION

 

2 |' Y Y XY

Y Y

SS SSSS
r

SS SS  (7.6)

*To actually calculate the value of r, never use Formula 7.6, designed only as an aid to 

understanding the interpretation of r2. Instead, always use the vastly more efficient formulas on  

page 117.
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r 2 Does  No t  App l y  t o  I nd i v idua l  Sco res

Do not attempt to apply the variability interpretation of r² to individual scores. For 
instance, the fact that 64 percent of the variability in cards received by the five friends 
(Y) is predictable from their cards sent (X) does not signify, therefore, that 64 percent of 
the five friends′ Y scores can be predicted perfectly. As can be seen in Panel B of Fig-
ure 7.5, only one of the Y scores for the five friends, the 12 cards received by Mike, was 
predicted perfectly (because it coincides with the regression line for the least squares 
equation), and even this perfect prediction is not guaranteed just because r2 equals .64. 
To the contrary, the 64 percent must be interpreted as applying to the variability for the 
entire set of Y scores. The total variability of all Y scores—as measured by SS

Y
—can be 

reduced by 64 percent when each Y score is replaced by its corresponding predicted Y’ 
score and then expressed as a squared deviation from the mean of all observed scores. 
Thus, the 64 percent represents a reduction in the total variability for the five Y scores 
when they are replaced by a succession of predicted scores, given the least squares 
equation and various values of X.

Smal l  Va lues  o f  r 2

When transposed from r to r2, Cohen’s guidelines, mentioned on page 114, state that 
a value of r2 in the vicinity of .01, .09, or .25 reflects a weak, moderate, or strong rela-
tionship, respectively.  Do not expect to routinely encounter large values of r2 in behav-
ioral and educational research. In these areas, where measures of complex phenomena, 
such as intellectual aptitude, psychopathic tendency, or self-esteem, fail to correlate 
highly with any single variable, values of r2 larger than about .25 are most unlikely.  
However, even values of r2 close to zero might merit our attention. For instance, if just 
.04 (or 4 percent) of the variability of mental health scores of sixth graders actually 
could be predicted from a single variable, such as differences in weaning age, many 
investigators would probably view this as an important finding, worthy of additional 
investigation.     

r 2 Doesn ’ t  Ensu re  Cause -E f fec t

The question of cause-effect, raised in Section 6.3, cannot be resolved merely by 
squaring the correlation coefficient to obtain a value of r2.  If the correlation between 
mental health scores of sixth graders and their weaning ages as infants equals .20, we 
cannot claim, therefore, that (.20)(20) = .04 or 4 percent of the total variability in men-
tal health scores is caused by the differences in weaning ages. Instead, it is possible 
that this correlation reflects some more basic factor or factors, such as, for example, a 
tendency for more economically secure, less stressed mothers both to create a family 
environment that perpetuates good mental health and, coincidentally, to nurse their 
infants longer. Certainly, in the absence of additional evidence, it would be foolhardy 
to encourage mothers, regardless of their circumstances, to postpone weaning because 
of its projected effect on mental health scores.

Although we have consistently referred to r2 as indicating the proportion or percent 
of predictable variability, you also might encounter references to r2 as indicating the 
 proportion or percent of explained variability. In this context, “explained” signifies only 
predictability, not causality. Thus, you could assert that .04, or 4 percent, of the variability 
in mental health scores is “explained” by differences in weaning age, insofar as .04, or  
4 percent, is predictable from—or statistically attributable to—differences in weaning age. 

Progress Check *7.4 Assume that an r of .30 describes the relationship between educa-
tional level and estimated hours spent reading each week. 

 (a) According to r², what percent of the variability in weekly reading time is predictable 
from its relationship with educational level? 
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 (b) What percent of variability in weekly reading time is not predictable from this rela-
tionship?

 (c)  Someone claims that 9 percent of each person’s estimated reading time is predict-
able from the relationship. What is wrong with this claim?

Progress Check *7.5 As indicated in Figure 6.3 on page 111, the correlation between the 
IQ scores of parents and children is .50, and that between the IQ scores of foster parents and 
foster children is .27.

 (a) Does this signify, therefore, that the relationship between foster parents and foster 
children is about one-half as strong as the relationship between parents and children?

 (b) Use r2 to compare the strengths of these two correlations.

 Answers on page 429.

7 .7  MULT IPLE  REGRESS ION  EQUAT IONS

Any serious predictive effort usually culminates in a more complex equation that con-
tains not just one but several X, or predictor variables. For instance, a serious effort to 
predict college GPA might culminate in the following equation:

1 2 3.410( ) .005( ) .001( ) 1.03Y X X X

where Y′ represents predicted college GPA and X
1
, X

2
, and X

3
 refer to high school 

GPA, IQ score, and SAT score, respectively. By capitalizing on the combined predic-
tive power of several predictor variables, these multiple regression equations supply 
more accurate predictions for Y′ (often referred to as the criterion variable) than could 
be obtained from a simple regression equation.

Common  Fea tu res

Although more difficult to visualize, multiple regression equations possess many 
features in common with their simple counterparts. For instance, they still qualify as 
least squares equations, since they minimize the sum of the squared predictive errors. 
By the same token, they are accompanied by standard errors of estimate that roughly 
measure the average amounts of predictive error. Be assured, therefore, that this chap-
ter will serve as a good point of departure if, sometime in the future, you must deal with 
multiple regression equations.

7 .8  REGRESS ION  TOWARD  THE  MEAN

Regression toward the mean refers to a tendency for scores, particularly extreme 
scores, to shrink toward the mean. This tendency often appears among subsets of 
observations whose values are extreme and at least partly due to chance. For example, 
because of regression toward the mean, we would expect that students who made the top  
five scores on the first statistics exam would not make the top five scores on  
the  second statistics exam. Although all five students might score above the mean on the  
second exam, some of their scores would regress back toward the mean. Most likely, 
the top five scores on the first exam reflect two components. One relatively permanent 
component reflects the fact that these students are superior because of good study habits, 
a strong aptitude for quantitative reasoning, and so forth. The other relatively transitory 
component reflects the fact that, on the day of the exam, at least some of these students 
were very lucky because all sorts of little chance factors, such as restful sleep, a pleas-
ant commute to campus, etc., worked in their favor. On the second test, even though the 

Multiple Regression Equation 

A least squares equation that 

contains more than one predic-

tor or X variable.

Regression Toward the Mean 

A tendency for scores, particularly 

extreme scores, to shrink toward 

the mean.
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scores of these five students continue to reflect an above-average permanent component, 
some of their scores will suffer because of less good luck or even bad luck. The net effect 
is that the scores of at least some of the original five top students will drop below the top 
five scores—that is, regress back toward the mean—on the second exam. (When signifi-
cant regression toward the mean occurs after a spectacular performance by, for example, 
a rookie athlete or a first-time author, the term sophomore jinx often is invoked.)

There is good news for those students who made the five lowest scores on the first 
exam. Although all five students might score below the mean on the second exam, 
some of their scores probably will regress up toward the mean. On the second exam, 
some of them will not be as unlucky. The net effect is that the scores of at least some of 
the original five lowest scoring students will move above the bottom five scores—that 
is, regress up toward the mean—on the second exam.

Appears  i n  Many  D i s t r i bu t ions

Regression toward the mean appears among subsets of extreme observations for a 
wide variety of distributions. For example, it appears for the subset of best (or worst) 
performing stocks on the New York Stock Exchange across any period, such as a week, 
month, or year. It also appears for the top (or bottom) major league baseball hitters dur-
ing consecutive seasons. Table 7.4 lists the top 10 hitters in the major leagues during 
2014 and shows how they fared during 2015. Notice that 7 of the top 10 batting aver-
ages regressed downward, toward 260s, the approximate mean for all hitters during 
2015. Incidentally, it is not true that, viewed as a group, all major league hitters are 
headed toward mediocrity. Hitters among the top 10 in 2014, who were not among the 
top 10 in 2015, were replaced by other mostly above-average hitters, who also were 
very lucky during 2015. Observed regression toward the mean occurs for individuals 
or subsets of individuals, not for entire groups.

The  Reg ress ion  Fa l l acy

The regression fallacy is committed whenever regression toward the mean is inter-
preted as a real, rather than a chance, effect. A classic example of the regression 
 fallacy occurred in an Israeli Air Force study of pilot training [as described by Tversky, Regression Fallacy 

Occurs whenever regression 

toward the mean is interpreted as a 

real, rather than a chance, effect.

Table 7.4
REGRESSION TOWARD THE MEAN: BATTING AVERAGES OF TOP  

10 HITTERS IN MAJOR LEAGUE BASEBALL 
DURING 2014 AND HOW THEY FARED DURING 2015

BATTING AVERAGES*

TOP 10 HITTERS (2014) 2014 2015 REGRESS TOWARD MEAN?

 1. J. Alture .341 .313 Yes
 2. V. Martinez .335 .282 Yes
 3. M. Brantley .327 .310 Yes
 4. A. Beltre .324 .287 Yes
 5. J. Abreu .317 .290 Yes
 6. R. Cano .314 .287 Yes
 7. A. McCutchen .314 .292 Yes
 8. M. Cabrera .313 .338 No
 9. B. Posey .311 .318 No
10. B. Revere .306 .306 No

* Proportion of hits per official number of times at bat.
Source: http://sports.espn.go.com/mlb/stats/batting.
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A., & Kahnemann, D. (1974). Judgment under uncertainty: Heuristics and biases. Sci-
ence, 185, 1124–1131.] Some trainees were praised after very good landings, while 
others were reprimanded after very bad landings. On their next landings, praised train-
ees did more poorly and reprimanded trainees did better. It was concluded, therefore, 
that praise hinders but a reprimand helps performance!

A valid conclusion considers regression toward the mean. It’s reasonable to assume 
that, in addition to skill, chance plays a role in landings. Some trainees who made very 
good landings were lucky, while some who made very bad landings were unlucky. 
Therefore, there would be a tendency, attributable to chance, that good landings would 
be followed by less good landings and poor landings would be followed by less poor 
landings—even if trainees had not been praised after very good landings or repri-
manded after very bad landings.

Avo id ing  the  Reg ress ion  Fa l l acy

The regression fallacy can be avoided by splitting the subset of extreme observa-
tions into two groups. In the previous example, one group of trainees would continue 
to be praised after very good landings and reprimanded after very poor landings.  
A second group of trainees would receive no feedback whatsoever after very good and 
very bad landings. In effect, the second group would serve as a control for regression 
toward the mean, since any shift toward the mean on their second landings would be 
due to chance. Most important, any observed difference between the two groups (that 
survives a statistical analysis described in Part 2) would be viewed as a real difference 
not attributable to the regression effect.

Watch out for the regression fallacy in educational research involving groups of 
underachievers. For example, a group of fourth graders, selected to attend a special 
program for underachieving readers, might show an improvement. Whether this 
improvement can be attributed to the special program or to a regression effect requires 
information from a control group of similarly underachieving fourth graders who did 
not attend the special program. It is crucial, therefore, that research with underachiev-
ers always includes a control group for regression toward the mean.

Progress Check *7.6 After a group of college students attended a stress-reduction clinic, 
declines were observed in the anxiety scores of those who, prior to attending the clinic, had 
scored high on a test for anxiety.

(a) Can this decline be attributed to the stress-reduction clinic? Explain your answer.

(b) What type of study, if any, would permit valid conclusions about the effect of the stress-
reduction clinic?

Answers on page 429.

Summary

If a linear relationship exists between two variables, then one variable can be pre-
dicted from the other by using the least squares regression equation, as described in 
Formulas 7.1, 7.2, and 7.3.

The least squares equation minimizes the total of all squared predictive errors that 
would have occurred if the equation had been used to predict known Y scores from the 
original correlation analysis.

An estimate of predictive error can be obtained from Formula 7.5. Known as the 
standard error of estimate, this estimate is a special kind of standard deviation that 
roughly reflects the average amount of predictive error. The value of the standard error 
of estimate depends mainly on the size of the correlation coefficient. The larger the 
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 correlation coefficient, in either the positive or negative direction, the smaller the stan-
dard error of estimate and the more favorable the prognosis for predictions.

The regression equation assumes a linear relationship between variables, and the 
standard error of estimate assumes homoscedasticity—approximately equal dispersion 
of data points about all segments of the regression line.

The square of the correlation coefficient, r2, indicates the proportion of total vari-
ability in one variable that is predictable from its relationship with the other variable.    

Serious predictive efforts usually involve multiple regression equations composed 
of more than one predictor, or X, variable. These multiple regression equations share 
many common features with the simple regression equations discussed in this chapter.

Regression toward the mean refers to a tendency for scores, particularly extreme 
scores, to shrink toward the mean. The regression fallacy is committed whenever regres-
sion toward the mean is interpreted as a real rather than a chance effect. To guard against 
the regression fallacy, control groups should be used to estimate the regression effect.

Important Terms

Least squares regression equation Multiple regression equation

Standard error of estimate (s
y|x

)  Squared correlation (r 2)

Regression fallacy Regression toward the mean                                   

Key Equations

PREDICTION EQUATION

where 

and 

'

Y

X

Y bx a

SS
b r

SS

a Y bX

REV IEW QUEST IONS

 7.7 Assume that an r of –.80 describes the strong negative relationship between years of 
heavy smoking (X) and life expectancy (Y ). Assume, furthermore, that the distributions 
of heavy smoking and life expectancy each have the following means and sums of 
squares:

5 60

35 70x y

X Y

SS SS

 (a) Determine the least squares regression equation for predicting life expectancy from 
years of heavy smoking.

 (b) Determine the standard error of estimate, s
y|x

, assuming that the correlation of 

–.80 was based on n = 50 pairs of observations.

 (c) Supply a rough interpretation of s
y|x

.

 (d) Predict the life expectancy for John , who has smoked heavily for 8 years.

 (e) Predict the life expectancy for Katie, who has never smoked heavily.
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 7.8  Each of the following pairs represents the number of licensed drivers (X ) and the 
number of cars (Y ) for seven houses in my neighborhood: 

DRIVERS (X ) CARS (Y )
5 4
5 3
2 2
2 2
3 2
1 1
2 2

 (a) Construct a scatterplot to verify a lack of pronounced curvilinearity.

 (b) Determine the least squares equation for these data. (Remember, you will first have 
to calculate r, SS

y
 and SS

x
)

 (c) Determine the standard error of estimate, s
y|x

, given that n = 7.

 (d) Predict the number of cars for each of two new families with two and five drivers.

 7.9  At a large bank, length of service is the best single predictor of employees’ salaries. 
Can we conclude, therefore, that there is a cause-effect relationship between length 
of service and salary?

 7.10 Assume that r 2 equals .50 for the relationship between height and weight for adults. 
Indicate whether the following statements are true or false.

 (a) Fifty percent of the variability in heights can be explained by variability in weights.

 (b) There is a cause-effect relationship between height and weight.

 (c) The heights of 50 percent of adults can be predicted exactly from their weights.

 (d) Fifty percent of the variability in weights is predictable from heights.

 *7.11 In studies dating back over 100 years, it’s well established that regression toward 
the mean occurs between the heights of fathers and the heights of their adult sons. 
Indicate whether the following statements are true or false.

 (a) Sons of tall fathers will tend to be shorter than their fathers.

 (b) Sons of short fathers will tend to be taller than the mean for all sons.

 (c) Every son of a tall father will be shorter than his father.

 (d) Taken as a group, adult sons are shorter than their fathers.

 (e) Fathers of tall sons will tend to be taller than their sons.

 (f) Fathers of short sons will tend to be taller than their sons but shorter than the mean 
for all fathers.

Answers on page 429.

 7.12 Someone suggests that it would be a good investment strategy to buy the five 
 poorest-performing stocks on the New York Stock Exchange and capitalize on 
regression toward the mean. Comments?

 7.13 In the original study of regression toward the mean, Sir Francis Galton noted a ten-
dency for offspring of both tall and short parents to drift toward the mean height for 
offspring and referred to this tendency as “regression toward mediocrity.” What is 
wrong with the conclusion that eventually all heights will be close to their mean?
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Inferential Statistics
Generalizing Beyond Data

 8 Populations, Samples, and Probability

 9 Sampling Distribution of the Mean

10 Introduction to Hypothesis Testing: The z Test

11 More about Hypothesis Testing

12 Estimation (Confidence Intervals)

13 t Test for One Sample

14 t Test for Two Independent Samples

15 t Test for Two Related Samples (Repeated Measures)
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17 Analysis of Variance (Repeated Measures)

18 Analysis of Variance (Two Factors)
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20 Tests for Ranked (Ordinal) Data

21 Postscript: Which Test?

Preview

The remaining chapters deal with the problem of generalizing beyond sets of 
actual observations. The next two chapters develop essential concepts and 
tools for inferential statistics, while subsequent chapters introduce a series 
of statistical tests or procedures, all of which permit us to generalize beyond 
an observed result, whether from a survey or an experiment, by considering 
the effects of chance.

Witte11e_c08.indd   147 11/18/2016   6:09:47 PM



148

Populations, Samples, 
and Probability

POPULAT IONS  AND  SAMPLES

8.1 POPULATIONS

8.2 SAMPLES

8.3 RANDOM SAMPLING

8.4 TABLES OF RANDOM NUMBERS

8.5 RANDOM ASSIGNMENT OF SUBJECTS

8.6 SURVEYS OR EXPERIMENTS?

PROBAB IL ITY

8.7 DEFINITION

8.8 ADDITION RULE

8.9 MULTIPLICATION RULE

8.10 PROBABILITY AND STATISTICS

Summary / Important Terms / Key Equations / Review Questions

Preview

In everyday life, we regularly generalize from limited sets of observations. One sip 

indicates that the batch of soup is too salty; dipping a toe in the swimming pool 

reassures us before taking the first plunge; a test drive triggers suspicions that the 

used car is not what it was advertised to be; and a casual encounter with a stranger 

stimulates fantasies about a deeper relationship. Valid generalizations in inferential 

statistics require either random sampling in the case of surveys or random assignment 

in the case of experiments. Introduced in this chapter, tables of random numbers can 

be used as aids to random sampling or random assignment.

Conclusions that we’ll encounter in inferential statistics, such as “95 percent 

confident” or “significant at the .05 level,” are statements based on probabilities. 

We’ll define probability for a simple event and then discuss two rules for finding 

probabilities of more complex outcomes, including (in Review Question 8.18 on 

page 165) the probability of the catastrophic failure of the Challenger shuttle in 1986, 

which took the lives of seven astronauts.

CHAPTER

8
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POPULAT IONS  AND  SAMPLES

Generalizations can backfire if a sample misrepresents the population. Faced with the 
possibility of erroneous generalizations, you might prefer to bypass the uncertainties 
of inferential statistics by surveying an entire population. This is often done if the 
size of the population is small. For instance, you calculate your GPA from all of your 
course grades, not just from a sample. If the size of the population is large, however, 
complete surveys are often prohibitively expensive and sometimes impossible. Under 
these circumstances, you might have to use samples and risk the possibility of errone-
ous generalizations. For instance, you might have to use a sample to estimate the mean 
annual income for parents of all students at a large university.

8 .1  POPULAT IONS

Any complete set of observations (or potential observations) may be characterized as 
a population. Accurate descriptions of populations specify the nature of the observa-
tions to be taken. For example, a population might be described as “attitudes toward 
abortion of currently enrolled students at Bucknell University” or as “SAT critical 
reading scores of currently enrolled students at Rutgers University.”

Rea l  Popu la t i ons

Pollsters, such as the Gallup Organization, deal with real populations. A real popu-
lation is one in which all potential observations are accessible at the time of sampling. 
Examples of real populations include the two described in the previous paragraph, as 
well as the ages of all visitors to Disneyland on a given day, the ethnic backgrounds of 
all current employees of the U.S. Postal Department, and presidential preferences of 
all currently registered voters in the United States. Incidentally, federal law requires 
that a complete survey be taken every 10 years of the real population of all U.S. house-
holds—at considerable expense, involving thousands of data collectors—as a means of 
revising election districts for the House of Representatives. (An estimated undercount 
of millions of people, particularly minorities, in both the 2000 and 2010 censuses has 
revived a suggestion, long endorsed by statisticians, that the entire U.S. population 
could be estimated more accurately if a highly trained group of data collectors focused 
only on a random sample of households.)

Population 

Any complete set of observations 

(or potential observations).

I N T E R N E T  S I T E
Go to the website for this book (http://www.wiley.com\college\witte). Click on the 
 Student Companion Site, then Internet Sites, and finally U.S. Census Bureau to view 
its website, including links to its many reports and to population clocks that show 
 current population estimates for the United States and the world.

WWW

Hypo the t ica l  Popu la t i ons

Insofar as research workers concern themselves with populations, they often invoke 
the notion of a hypothetical population. A hypothetical population is one in which all 
potential observations are not accessible at the time of sampling. In most experiments, 
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subjects are selected from very small, uninspiring real populations: the lab rats housed 
in the local animal colony or student volunteers from general psychology classes. 
Experimental subjects often are viewed, nevertheless, as a sample from a much larger 
hypothetical population, loosely described as “the scores of all similar animal subjects 
(or student volunteers) who could conceivably undergo the present experiment.”

According to the rules of inferential statistics, generalizations should be made 
only to real populations that, in fact, have been sampled. Generalizations to hypo-
thetical populations should be viewed, therefore, as provisional conclusions based 
on the wisdom of the researcher rather than on any logical or statistical necessity. In 
effect, it’s an open question—often answered only by additional experimentation—
whether or not a given experimental finding merits the generality assigned to it by 
the researcher.

8 .2  SAMPLES

Any subset of observations from a population may be characterized as a sample. In 
typical applications of inferential statistics, the sample size is small relative to the 
population size. For example, less than 1 percent of all U.S. worksites are included 
in the Bureau of Labor Statistics’ monthly survey to estimate the rate of unemploy-
ment. And although, only 1475 likely voters had been sampled in the final poll for 
the 2012 presidential election by the NBC News/Wall Street Journal, it correctly 
predicted that Obama would be the slim winner of the popular vote (http://www.wsj 
.com/election 2012).

Opt ima l  Samp le  S i ze

There is no simple rule of thumb for determining the best or optimal sample size for 
any particular situation. Often sample sizes are in the hundreds or even the thousands 
for surveys, but they are less than 100 for most experiments. Optimal sample size 
depends on the answers to a number of questions, including “What is the estimated 
variability among observations?” and “What is an acceptable amount of error in our 
conclusion?” Once these types of questions have been answered, with the aid of guide-
lines such as those discussed in Section 11.11, specific procedures can be followed to 
determine the optimal sample size for any situation.

Progress Check * 8.1 For each of the following pairs, indicate with a Yes or No whether 
the relationship between the first and second expressions could describe that between a sam-
ple and its population, respectively.

(a) students in the last row; students in class

(b) citizens of Wyoming; citizens of New York

(c) 20 lab rats in an experiment; all lab rats, similar to those used, that could undergo the 
same experiment

(d) all U.S. presidents; all registered Republicans

(e) two tosses of a coin; all possible tosses of a coin

Progress Check * 8.2 Identify all of the expressions from Progress Check 8.1 that involve 
a hypothetical population.

Answers on page 429.

Sample 

Any subset of observations from a 

population.
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8 .3  RANDOM SAMPL ING

The valid use of techniques from inferential statistics requires that samples be random.

Random sampling occurs if, at each stage of sampling, the selection process 
guarantees that all potential observations in the population have an equal 
chance of being included in the sample.

It’s important to note that randomness describes the selection process—that is, the 
conditions under which the sample is taken—and not the particular pattern of observa-
tions in the sample. Having established that sampling is random, you still can’t predict 
anything about the unique pattern of observations in that sample. The observations in 
the sample should be representative of those in the population, but there is no guarantee 
that they actually will be.

Casua l  o r  Haphaza rd ,  No t  Random

A casual or haphazard sample doesn’t qualify as a random sample. Not every stu-
dent at UC San Diego has an equal chance of being sampled if, for instance, a pollster 
casually selects only students who enter the student union. Obviously excluded from 
this sample are all those students (few, we hope) who never enter the student union. 
Even the final selection of students from among those who do enter the student union 
might reflect the pollster’s various biases, such as an unconscious preference for attrac-
tive students who are walking alone.

Progress Check * 8.3 Indicate whether each of the following statements is True or False. 
A random selection of 10 playing cards from a deck of 52 cards implies that

(a) the random sample of 10 cards accurately represents the important features of the whole 
deck.

(b) each card in the deck has an equal chance of being selected.

(c) it is impossible to get 10 cards from the same suit (for example, 10 hearts).

(d) any outcome, however unlikely, is possible.

Answers on page 429.

8 .4  TABLES  OF  RANDOM NUMBERS

Tables of random numbers can be used to obtain a random sample. These tables 
are generated by a computer designed to equalize the occurrence of any one of the 
10  digits: 0, 1, 2, . . . , 8, 9. For convenience, many random number tables are spaced 
in columns of five-digit numbers. Table H in Appendix C shows a specimen page of 
random numbers from a book devoted entirely to random digits.

How Man y  D ig i t s?

The size of the population determines whether you deal with numbers having one, 
two, three, or more digits. The only requirement is that you have at least as many dif-
ferent numbers as you have potential observations within the population. For exam-
ple, if you were attempting to take a random sample from a population consisting of 
679  students at some college, you could use the 1000 three-digit numbers ranging 

Random Sampling 

A selection process that guarantees 

all potential observations in the 

population have an equal chance of 

being selected.
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from 000 to 999. In this case, you could identify each of the potential observations, 
as  represented by a particular student’s name, with a single number. For instance, if a 
student directory were available, the first person, Alice Aakins, might be assigned the 
three-digit number 001, and so on through to the last person in the directory, Zachary 
Ziegler, who might be assigned 679.

Us ing  Tab les

Enter the random number table at some arbitrarily determined place. Ordinarily this 
should be determined haphazardly. Open a book of random numbers to any page and 
begin with the number closest to a blind pencil stab. For illustrative purposes, however, 
let’s use the upper-left-hand corner of the specimen page (Table H, Appendix C) as 
our entry point. (Ignore the column of numbers that identify the various rows.) Read 
in a consistent direction—for instance, from left to right. Then as each row is used up, 
shift down to the start of the next row and repeat the entire process. As a given number 
between 001 and 679 is encountered, the person identified with that number is included 
in the random sample.

Since the first number on the specimen page in Table H is 100 (disregard the fourth 
and fifth digits in each five-digit number), the person identified with that number is 
included in the sample. The next three-digit number, 325, identifies the second person. 
Ignore the next number, 765, since none of the numbers between 680 and 999 is identi-
fied with any names in the student directory. Also, ignore repeat appearances of any 
number between 001 and 679. The next three-digit number, 135, identifies the third 
person. Continue this process until the specified sample size has been achieved.

E f f i c ien t  Use  o f  Tab les

The inefficiency of the previous procedure becomes apparent when a random sam-
ple must be obtained from a large population, such as that defined by a city telephone 
directory. It would be most laborious to assign a different number to each name in the 
directory prior to consulting the table of random numbers. Instead, most investigators 
refer directly to the random number table, using each random number as a guide to 
a particular name in the directory. For example, a six-digit random number, such as 
239421, identifies the name on page 239 (the first three digits) and line 421 (the last 
three digits). This process is repeated for a series of six-digit random numbers until the 
required number of names has been sampled.

Progress Check *8.4 Describe how you would use the table of random numbers to take

(a) a random sample of five statistics students in a classroom where each of nine rows con-
sists of nine seats.

(b) a random sample of size 40 from a large directory consisting of 3041 pages, with 480 lines 
per page.

Answers on page 429.

A  Comp l i ca t ion :  No  Popu la t i on  D i rec to ry

Lacking the convenience of an existing population directory, investigators resort 
to variations on the previous procedure. For instance, the Gallup Organization makes 
a separate presidential survey in each of the four geographical areas of the United 
States: Northeast, South, Midwest, and West. Within each of these areas, a series of 
random selections culminates in the identification of particular election precincts: 
small geographical districts with a single polling place. Once household directories 
have been obtained for each of these precincts, households are randomly selected and 
pre- designated household members are interviewed.
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Many pollsters use random digit dialing in an effort to give each telephone 
 number—whether landline or wireless—in the United States an equal chance of being 
called for an interview. Essentially, the first six digits of a 10-digit phone number, 
including the area code, are randomly selected from tens of thousands of telephone 
exchanges, while the final four digits are taken directly from random numbers. 
Although random digit dialing ensures that all unlisted telephone numbers will be 
sampled, it has lost some of its appeal recently because of a federal prohibition against 
its use to contact wireless numbers and also because of the excessively high nonre-
sponse rates, often as high as 91 percent. In an effort to approximate a more represen-
tative sample, pollsters have been exploring other techniques, such as online polling.*

(http://www.stat.columbia.edu/~gelman/research/published/forecasting-with- 
nonrepresentative-polls.pdf).

Hypo the t ica l  Popu la t i ons

As has been noted, the researcher, unlike the pollster, usually deals with hypotheti-
cal populations. Unfortunately, it is impossible to take random samples from hypo-
thetical populations. All potential observations cannot have an equal chance of being 
included in the sample if, in fact, some observations are not accessible at the time of 
sampling. It is a common practice, nonetheless, for researchers to treat samples from 
hypothetical populations as if they were random samples and to analyze sample results 
with techniques from inferential statistics. Our adoption of this practice—to provide a 
common basis for discussing both surveys and experiments—is less troublesome than 
you might think inasmuch as random assignment replaces random sampling in well-
designed experiments.

8 .5  RANDOM ASS IGNMENT  OF  SUBJECTS

Typically, experiments evaluate an independent variable by focusing on a treatment 
group and a control group. Although subjects in experiments can’t be selected randomly 
from any real population, they can be assigned randomly, that is, with equal likeli-
hood, to these two groups. This procedure has a number of desirable consequences:

 ■ Since random assignment or chance determines the membership for each group, 
all possible configurations of subjects are equally likely. This provides a basis 
for calculating the chances of observing any specific difference between groups 
and ultimately deciding whether, for instance, the one observed mean difference 
between groups is real or merely transitory.

 ■ Random assignment generates groups of subjects that, except for random differ-
ences, are similar with respect to any uncontrolled variables at the outset of the 
experiment.

For instance, to determine whether a study-skill workshop improves academic 
performance, volunteer subjects should be assigned randomly either to the treatment 
group (attendance at the workshop) or to the control group. This ensures that, except 
for random differences, both groups are similar initially with respect to any uncon-
trolled variables, such as academic preparation, motivation, IQ, etc. At the conclusion 
of such an experiment, therefore, any observed differences in academic performance 
between these two groups, not attributable to random differences, would provide the 
most clear-cut evidence of a cause-effect relationship between the independent vari-
able (attendance at the workshop) and the dependent variable (academic performance).

*See introductory comments in http://dx.doi.org/10.1016/j.ijforcast.2014.06.001.

Random Assignment 

A procedure designed to ensure 

that each subject has an equal 

chance of being assigned to any 

group in an experiment.
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How to  Ass ign  Sub jec ts

The random assignment of subjects can be accomplished in a number of ways. For 
instance, as each new subject arrives to participate in the experiment, a flip of a coin 
can decide whether that subject should be assigned to the treatment group (if heads 
turns up) or the control group (if tails turn up). An even better procedure, because it 
eliminates any biases of a live coin tosser, relies on tables of random numbers. Once 
the tables have been entered at some arbitrary point, they can be consulted, much like a 
string of coin tosses, to determine whether each new subject should be assigned to the 
treatment group (if, for instance, the random number is odd) or to the control group (if 
the random number is even).

Crea t ing  Equa l  G roups

Equal numbers of subjects should be assigned to the treatment and control groups 
for a variety of reasons, including the increased likelihood of detecting any difference 
between the two groups. To achieve this goal, the random assignment should involve 
pairs of subjects. If the table of random numbers assigns the first volunteer to the 
treatment group, the second volunteer should be assigned automatically to the control 
group. If the random numbers assign the third volunteer to the control group, the fourth 
volunteer should be assigned automatically to the treatment group, and so forth. This 
procedure guarantees that at any stage of the random assignment, equal numbers of 
subjects will be assigned to the two groups.

More  Ex tens i ve  Se ts  o f  Random Numbers

Incidentally, the page of random numbers in Table  H, Appendix C, serves only 
as a specimen. For serious applications, refer to a more extensive collection of ran-
dom numbers, such as that in the book by the Rand Corporation cited on page 470 of 
 Appendix C. If you have access to a computer, you might refer to the list of random 
numbers that can be generated, almost effortlessly, by computers.

Progress Check * 8.5 Assume that 12 subjects arrive, one at a time, to participate in an 
experiment. Use random numbers to assign these subjects in equal numbers to group A and 
group B. Specifically, random numbers should be used to identify the first subject as either A 
or B, the second subject as either A or B, and so forth, until all subjects have been identified. 
There should be six subjects identified with A and six with B.

(a) Formulate an acceptable rule for single-digit random numbers. Incorporate into this rule 
a procedure that will ensure equal numbers of subjects in the two groups. Check your 
answer in Appendix B before proceeding.

(b) Reading from left to right in the top row of the random number page (Table H, Appendix C), 
use the random digits of each random number in conjunction with your assignment rule 
to determine whether the first subject is A or B, and so forth. List the assignment for each 
subject.

Answers on pages 429 and 430.

8 .6  SURVEYS  OR  EXPER IMENTS?

When using random numbers, it’s important to have a general perspective. Are you 
engaged in a survey (because subjects have been sampled from a real population) 
or in an experiment (because subjects have been assigned to various groups)? In the 
case of surveys, the object is to obtain a random sample from some real population. 

Reminder: 

Random sampling occurs in 

well-designed surveys, and ran-

dom assignment occurs in well-

designed experiments.
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 Short-circuit unnecessary clerical work as much as possible, but use random numbers 
in a fashion that complies with the notion of random sampling—that all subjects in the 
population have an equal opportunity of being sampled. In the case of experiments, the 
objective is to obtain, at the outset of the experiment, equivalent groups whose mem-
bership has been determined by chance. Introduce any restrictions required to generate 
equal group sizes (for example, the restriction that every other subject be assigned to 
the smaller group), but use random numbers in a fashion that complies with the notion 
of random assignment—that all subjects have an equal opportunity of being assigned 
to each of the various groups.

PROBABIL ITY

Probability considerations are prevalent in everyday life: the probability that it will 
rain this weekend (20 percent, or one in five, according to our morning weather report), 
that a projected family of two children will consist of a boy and a girl (one-half, on 
the assumption that boys and girls are equally likely), or that you’ll win a state lottery 
(one in many millions, unfortunately). Probability considerations also are prevalent in 
inferential statistics and, therefore, in the remainder of this book.

8 .7  DEF IN IT ION

Probability refers to the proportion or fraction of times that a particular event 
is likely to occur.

The probability of an event can be determined in several ways. We can speculate that if 
a coin is truly fair, heads and tails should be equally likely to occur whenever the coin 
is tossed, and therefore, the probability of heads should equal .50, or 1/

2
. By the same 

token, ignoring the slight differences in the lengths of the months of the year, we can 
speculate that if a couple’s wedding is equally likely to occur in each of the months, 
then the probability of a June wedding should be .08 or 1/

12
.

On the other hand, we might actually observe a long string of coin tosses and con-
clude, on the basis of these observations, that the probability of heads should equal 
.50, or 1/

2
. Or we might collect extensive data on wedding months and observe that the 

probability of a June wedding actually is not only much higher than the speculated .08 
or 1/

12
, but higher than that for any other month. In this case, assuming that the observed 

probability is well substantiated, we would use it rather than the erroneous speculative 
probability.

Probab i l i t y  D i s t r i bu t ion  o f  He igh ts

Sometimes we’ll use probabilities that are based on a mixture of observation and 
speculation, as in Table 8.1. This table shows a probability distribution of heights 
for all American men (derived from the observed distribution of heights for 3091 
men by superimposing—and this is the speculative component—the idealized nor-
mal curve, originally shown in Figure 5.2). These probabilities indicate the propor-
tion of men in the population who attain a particular height. They also indicate the 
likelihood of observing a particular height when a single man is randomly selected 
from the population. For example, the probability is .14 that a randomly selected 
man will stand 69 inches tall. Each of the probabilities in Table 8.1 can vary in value 
between 0 (impossible) and 1 (certain). Furthermore, an entire set of probabilities 
always sums to 1.

Probability 

The proportion or fraction of times 

that a particular event is likely to 

occur.

Table 8.1
PROBABILITY  

DISTRIBUTION FOR  
HEIGHTS OF  

AMERICAN MEN

HEIGHT  
(INCHES)

RELATIVE  
FRE QUENCY

76 or taller .02
75 .02
74 .03
73 .05
72 .08
71 .11
70 .12
69 .14
68 .12
67 .11
66 .08
65 .05
64 .03
63 .02
62 or shorter   .02

Total     1.00

Source: See Figure 5.2.
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Probab i l i t i es  o f  Comp lex  Even ts

Often you can find the probabilities of more complex events by using two rules—the 
addition and multiplication rules—for combining the probabilities of various simple 
events. Each rule will be introduced, in turn, to solve a problem based on the prob-
abilities from Table 8.1.

8 .8  ADD IT ION  RULE

What’s the probability that a randomly selected man will be at least 73 inches tall? 
That’s the same as asking, “What’s the probability that a man will stand 73 inches tall 
or taller?” To answer this type of question, which involves a cluster of simple events 
connected by the word or, merely add the respective probabilities. The probability that 
a man, X, will stand 73 or more inches tall, symbolized as Pr(X ≥ 73), equals the sum 
of the probabilities in Table 8.1 that a man will stand 73 or 74 or 75 or 76 inches or 
taller, that is,

Pr( 73) Pr(73) Pr(74) Pr(75) Pr(76 )

.05 .03 .02 .02 .12

X or taller

Mutua l l y  Exc lus i ve  Even ts

The addition of probabilities, as just stated, works only when none of the events can 
occur together. This is true in the present case because, for instance, a single man can’t 
stand both 73 and 74 inches tall. By the same token, a single person’s blood type can’t 
be both O and B (or any other type); nor can a single person’s birth month be both Janu-
ary and February (or any other month). Whenever events can’t occur together—that is, 
more technically, when there are mutually exclusive events—the probability that any 
one of these several events will occur is given by the addition rule. Therefore, when-
ever you must find the probability for two or more sets of mutually exclusive events 
connected by the word or, use the addition rule.

The addition rule tells us to add together the separate probabilities of several 
mutually exclusive events in order to find the probability that any one of these events 
will occur. Stated generally, the addition rule reads:

Mutually Exclusive Events 

Events that cannot occur together.

Addition Rule 

Add together the separate probabil-

ities of several mutually exclusive 

events to find the probability that 

any one of these events will occur.

ADDITION RULE FOR MUTUALLY EXCLUSIVE EVENTS

 Pr( or ) Pr( ) Pr( )A B A B  (8.1)

where Pr( ) refers to the probability of the event in parentheses and A and B are mutu-
ally exclusive events.

When  Even ts  A ren ’ t  Mutua l l y  Exc lus i ve

When events aren’t mutually exclusive because they can occur together, the addi-
tion rule must be adjusted for the overlap between outcomes. For example, assume that 
students in your class are seniors with probability .20, psychology majors with prob-
ability .70, and both seniors and psychology majors with probability .10. To determine 
the probability that a student is either a senior or a psychology major, add the first two 
probabilities (.20 + .70 = .90), but then subtract the third probability (.90 − .10 = .80), 
because students who are both seniors and psychology majors are counted twice—once 
because they are seniors and once because they are psychology majors.

Ordinarily, in this book you will be able to use the addition rule for mutually exclusive 
outcomes. Before doing so, however, always satisfy yourself that the various events are, in 
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fact, mutually exclusive. Otherwise, the addition rule yields an inflated answer that must 
be reduced by subtracting the overlap between events that are not mutually exclusive.

Progress Check *8.6 Assuming that people are equally likely to be born during any one 
of the months, what is the probability of Jack being born during

(a) June?

(b) any month other than June?

(c) either May or June?

Answers on page 430.

8 .9  MULT IPL ICAT ION  RULE

Given a probability of .12 that a randomly selected man will be at least 73 inches tall, 
what is the probability that two randomly selected men will be at least 73 inches tall? 
That is the same as asking, “What is the probability that the first man will stand at least 
73 inches tall and that the second man will stand at least 73 inches tall?”

To answer this type of question, which involves clusters of simple events connected 
by the word and, merely multiply the respective probabilities. The probability that both 
men will stand at least 73 inches tall equals the product of the probabilities in Table 8.1 
that the first man, X

1
, will stand at least 73 inches tall and that the second man, X

2
, will 

stand at least 73 inches tall, that is,

1 2 1 2Pr( 73 73) [Pr( ) 73][Pr( ) 73] (.12)(.12) .0144X and X X X

Notice that the probability of two events occurring together (.0144) is smaller than 
the probability of either event occurring alone (.12). If you think about it, this should 
make sense. The combined occurrence of two events is less likely than the solitary 
occurrence of just one of the two events.

I ndependen t  Even ts

The multiplication of probabilities, as discussed, works only because the occurrence 
of one event has no effect on the probability of the other event. This is true in the pres-
ent case because, when randomly selecting from the population of American men, the 
initial appearance of a man at least 73 inches tall has no effect, practically speaking, on 
the probability that the next man also will be at least 73 inches tall. By the same token, 
the birth of a girl in a family has no effect on the probability of .50 that the next family 
addition also will be a girl, and the winning lottery number for this week has no effect 
on the probability that a particular lottery number will be a winner for the next week. 
Whenever one event has no effect on the other—that is, more technically, when there 
are independent events—the probability of the combined or joint occurrence of both 
events is given by the multiplication rule.

Whenever you must find the probability for two or more sets of independent events 
connected by the word and, use the multiplication rule. The multiplication rule tells 
us to multiply together the separate probabilities of several independent events in 
order to find the probability that these events will occur together. Stated generally, for 
the independent events A and B, the multiplication rule reads:

MULTIPLICATION RULE FOR INDEPENDENT EVENT

 Pr( and ) [Pr( )][Pr( )]A B A B  (8.2)

where A and B are independent events.

Independent Events 

The occurrence of one event has 

no effect on the probability that the 

other event will occur.

Multiplication Rule 

Multiply together the separate 

probabilities of several independent 

events to find the probability that 

these events will occur together.
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Progress Check * 8.7 Assuming that people are equally likely to be born during any of the 
months, and also assuming (possibly over the objections of astrology fans) that the birthdays 
of married couples are independent, what’s the probability of

(a) the husband being born during January and the wife being born during February?

(b) both husband and wife being born during December?

(c) both husband and wife being born during the spring (April or May)? (Hint: First, find the 
probability of just one person being born during April or May.)

Answers on page 430.

Dependent  Even ts

When the occurrence of one event affects the probability of the other event, these 
events are dependent. Although the heights of randomly selected pairs of men are inde-
pendent, the heights of brothers are dependent. Knowing, for instance, that one person 
is relatively tall increases the probability that his brother also will be relatively tall. 
Among students in your class, being a senior and a psychology major are dependent if 
knowing that a student is a senior automatically changes (either increases or decreases) 
the probability of being a psychology major.

Cond i t i ona l  P robab i l i t i es

Before multiplying to obtain the probability that two dependent events occur 
together, the probability of the second event must be adjusted to reflect its dependency 
on the prior occurrence of the first event. This new probability is the conditional prob-
ability of the second event, given the first event. Examples of conditional probabilities 
are the probability that you will earn a grade of A in a course, given that you have 
already gotten an A on the midterm, or the probability that you’ll graduate from col-
lege, given that you’ve already completed the first two years. Notice that, in both exam-
ples, these conditional probabilities are different—they happen to be larger—than the 
regular or unconditional probability of your earning a grade of A in a course (without 
knowing your grade on the midterm) or of graduating from college (without knowing 
whether or not you’ve completed the first two years). Incidentally, a conditional prob-
ability also can be smaller than its corresponding unconditional probability. Such is the 
case for the conditional probability that you’ll earn a grade of A in a course, given that 
you have already gotten (alas) a C on the midterm.

If, as already assumed, being a senior and a psychology major are dependent events 
among students in your class, then it would be incorrect to use the multiplication rule 
for two independent outcomes. More specifically, it would be incorrect to simply mul-
tiply the observed unconditional probability of being a senior (.20) and the observed 
unconditional probability of being a psych major (.70), and to find

Pr( ) (.20)(.70) .14senior and psych

Instead, you must go beyond knowing merely the proportion of students who are 
psych majors (the unconditional probability of being a psych major) to find the pro-
portion of psych majors among the subset of seniors (the conditional probability of 
being a psych major, given that a student is a senior). For example, a survey of your 
class might reveal that, although .70 of all students are psych majors (for an observed 
unconditional probability of .70), only .50 of all seniors are also psych majors (for an 
observed conditional probability of .50 for being a psych major given that a student 
is a senior). Therefore, it would be correct to multiply the observed unconditional 
 probability of being a senior (.20) and the observed conditional probability of being a 

Conditional Probability 

The probability of one event, given 

the occurrence of another event. 
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psych major, given that a student is a senior (.50), and to find the correct probability, 
that is,

Pr( ) Pr( )Pr( , ) (.20)(.50) .10senior and psych senior psych given senior

rather than the (previous and) erroneous .14, when the dependency between events was 
ignored.

Al te rna t i ve  App roach  to  Cond i t i ona l  P robab i l i t i es

Conditional probabilities can be easily misinterpreted. Sometimes it is helpful to 
convert probabilities to frequencies (which, for example, total 100); solve the prob-
lem with frequencies; and then convert the answer back to a probability.* Figure 8.1 
shows a frequency analysis for the 100 drivers involved in fatal accidents. Working 
from the top down, notice that among the 100 drivers, 40 are drunk (from .40 × 100 
= 40) and 20 take drugs (from .20 × 100 = 20). Also notice that 12 of the 40 drunk 
drivers also take drugs (from .30 × 40 = 12). Now, it is fairly straightforward to 
establish that the probability of drivers both being drunk and taking drugs. It is sim-
ply the number of drivers who are drunk and take drugs, 12, divided by the total 
number of drivers, 100, that is, 12/100 =.12, which, of course, is the same as the 
previous answer.

Once a frequency analysis has been done, it often is easy to answer other questions. 
For example, you might ask “What is the conditional probability of being drunk, given 
that the driver takes illegal drugs?” Referring to Figure 8.1, divide the number of driv-
ers who are drunk and take drugs, 12, by the number of drivers who take drugs, 20, 
that is, 12/20 = .60. (This conditional probability of .60, given drivers who take drugs, 

*See Gigerenzer, G. (2002). Calculated Risks. New York, NY; Simon & Schuster, for a more 

extensive discussion of using frequencies to simplify work with conditional probabilities.

FIGURE 8.1 

A frequency analysis of 100 drivers who caused fatal accidents.

Pr (drivers who are drunk and taking drugs) = 12/100 = .12

100
Drivers

12
Drunk and taking drugs

20
Taking drugs

40
Drunk

.40

.30

.20
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is twice that of .30, given drunk drivers, because the fixed number of drivers who are 
drunk and take drugs, 12, represents proportionately more (.60) among the relatively 
small number of drivers who take drugs, 20, and proportionately less (.30) among the 
relatively large number of drunk drivers, 40.) 

Whenever appropriate, as in Progress Check 8.8 and Review Exercise 8.21, 
 construct a line diagram, similar to the one in Figure 8.1, and use frequencies to 
answer questions involving conditional probabilities. Incidentally, when doing a 
frequency analysis, there is nothing sacred about a convenient number of 100. As 
events become rarer and their probabilities become smaller, more convenient num-
bers might equal 1,000, 10,000, or even 100,000. The choice of a convenient num-
ber does not affect the accuracy of the answer since frequencies are converted back 
to probabilities. 

Ordinarily, in this book, you’ll be able to use the multiplication rule for inde-
pendent outcomes (including when it appears, slightly disguised, in Chapter 19 as 
a key ingredient in the important statistical test known as chi-square). Before using 
this rule to calculate the probabilities of complex events, however, satisfy yourself— 
 mustering any information at your disposal, whether speculative or observational—
that the various outcomes lack any obvious dependency. That is, satisfy yourself that, 
just as the outcome of the last coin toss has no obvious effect on the outcome of the 
next toss, the prior occurrence of one event has no obvious effect on the occurrence 
of the other event. If this is not the case, you should only proceed if one outcome can 
be expressed (most likely on the basis of some data collection) as a conditional prob-
ability of the other.*

Progress Check * 8.8 Among 100 couples who had undergone marital counseling, 
60 couples described their relationships as improved, and among this latter group, 45 cou-
ples had children. The remaining couples described their relationships as unimproved, and 
among this group, 5 couples had children. (Hint: Using a frequency analysis, begin with the 
100 couples, first branch into the number of couples with improved and unimproved relation-
ships, then under each of these numbers, branch into the number of couples with children and 
without children. Enter a number at each point of the diagram before proceeding.)

(a) What is the probability of randomly selecting a couple who described their relationship as 
improved?

(b) What is the probability of randomly selecting a couple with children?

(c) What is the conditional probability of randomly selecting a couple with children, given that 
their relationship was described as improved?

(d) What is the conditional probability of randomly selecting a couple without children, given 
that their relationship was described as not improved?

(e) What is the conditional probability of an improved relationship, given that a couple has 
children?

Answers on page 430.

*Don’t confuse independent and dependent outcomes with independent and dependent vari-
ables. Independent and dependent outcomes refer to whether or not the occurrence of one out-

come affects the probability that the other outcome will occur and dictates the precise form of 

the multiplication rule. On the other hand, as described in Chapter 1, independent and dependent 

variables refer to the manipulated and measured variables in experiments. Usually, the context—

whether calculating the probabilities of complex outcomes or describing the essential features of 

an experiment—will make the meanings of these terms clear.
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8 .10  PROBAB IL ITY  AND  STAT IST ICS

Probability assumes a key role in inferential statistics including, for instance, the 
important area known as hypothesis testing. Because of the inevitable variability that 
accompanies any observed result, such as a mean difference between two groups, its 
value must be viewed within the context of the many possible results that could have 
occurred just by chance. With the aid of some theoretical curve, such as the normal 
curve, and a provisional assumption, known as the null hypothesis, that chance can rea-
sonably account for the result, probabilities are assigned to the one observed mean dif-
ference. If this probability is very small, the result is viewed as a rare outcome, and we 
conclude that something real—that is, something that can’t reasonably be attributed to 
chance—has occurred. On the other hand, if this probability isn’t very small, the result 
is viewed as a common outcome, and we conclude that something transitory—that is, 
something that can reasonably be attributed to chance—has occurred.

Common  Ou tcomes

Common outcomes signify, most generally, a lack of evidence that something 
special has occurred. For instance, they suggest that the observed mean difference—
whatever its value—might signify that the true mean difference could equal zero and, 
therefore, that any comparable study would just as likely produce either a positive or 
negative mean difference. Therefore, the observed mean difference should not be taken 
seriously because, in the language of statistics, it lacks statistical significance.

Rare  Ou tcomes

On the other hand, rare outcomes signify that something special has occurred. For 
instance, they suggest that the observed mean difference probably signifies a true mean 
difference equal to some nonzero value and, therefore, that any comparable study 
would most likely produce a mean difference with the same sign and a value in the 
neighborhood of the one originally observed. Therefore, the observed mean difference 
should be taken seriously because it has statistical significance.

Common  o r  Ra re?

As an aid to determining whether observed results should be viewed as common or 
rare, statisticians interpret different proportions of area under theoretical curves, such 
as the normal curve shown in Figure 8.2, as probabilities of random outcomes. For 
instance, the standard normal table indicates that .9500 is the proportion of total area 
between z scores of –1.96 and +1.96. (Verify this proportion by referring to Table A in 
Appendix C and, if necessary, to the latter part of Section 5.6.) Accordingly, the prob-
ability of a randomly selected z score anywhere between ±1.96 equals .95. Because it 
should happen about 95 times out of 100, this is often designated as a common event 
signifying that, once variability is considered, nothing special is happening. On the 
other hand, since the standard normal curve indicates that .025 is the proportion of 
total area above a z score of +1.96, and also that .025 is the proportion of total area 
below a z score of –1.96, then the probability of a randomly selected z score anywhere 
beyond either +1.96 or –1.96 equals .05 (from .025 + .025, thanks to the addition rule). 
Because it should happen only about 5 times in 100, this is often designated as a rare 
outcome signifying that something special is happening.

At this point, you’re not expected to understand the rationale behind this perspec-
tive, but merely that, once identified with a particular result, a specified sector of area 
under a curve will be interpreted as the probability of that outcome. Furthermore, since 
the probability of an outcome has important implications for generalizing beyond 
actual results, probabilities play a key role in inferential statistics.
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Progress Check * 8.9 Referring to the standard normal table (Table A, Appendix C), find 
the probability that a randomly selected z score will be

(a) above 1.96

(b) either above 1.96 or below –1.96

(c) between –1.96 and 1.96

(d) either above 2.58 or below –2.58

Answers on page 431.

Summary

Any set of potential observations may be characterized as a population. Any subset 
of observations constitutes a sample.

Populations are either real or hypothetical, depending on whether or not all observa-
tions are accessible at the time of sampling.

The valid application of techniques from inferential statistics requires that the sam-
ples be random or that subjects be randomly assigned. A sample is random if at each 
stage of sampling the selection process guarantees that all remaining observations in 
the population have an equal chance of being included in the sample. Random assign-
ment occurs whenever all subjects have an equal opportunity of being assigned to each 
of the various groups.

Tables of random numbers provide one method both for taking random samples in 
surveys and for randomly assigning subjects to various groups in experiments. Some 
type of randomization always should occur during the early stages of any investigation, 
whether a survey or an experiment.

The probability of an event specifies the proportion of times that this event is likely 
to occur.

Whenever you must find the probability of sets of mutually exclusive events con-
nected with the word or, use the addition rule: Add together the separate probabilities 
of each of the mutually exclusive events to find the probability that any one of these 
events will occur. Whenever events aren’t mutually exclusive, the addition rule must 
be adjusted for the overlap between outcomes.

FIGURE 8.2 
One possible model for determining common and rare outcomes.

–1.96
0

Common outcomes

.95

1.96

z

.025

Rare
outcomes

Rare
outcomes

.025
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Whenever you must find the probability of sets of independent events connected with 
the word and, use the multiplication rule: Multiply together the separate probabilities of 
each of the independent events to find the probability that these events will occur together. 
Whenever events are dependent, the multiplication rule must be adjusted by using the 
conditional probability of the second outcome, given the occurrence of the first outcome.

In inferential statistics, sectors of area under various theoretical curves are inter-
preted as probabilities, and these probabilities play a key role in inferential statistics.

Important terms

Population Sample

Random sampling Random assignment

Probability Mutually exclusive events

Addition rule Independent events

Multiplication rule Conditional probability

Key equations

ADDITION RULE

Pr( or ) Pr( ) Pr( )A B A B

MULTIPLICATION RULE

Pr( and ) [Pr( )][Pr( )]A B A B

REV IEW QUEST IONS

 8.10 Television stations sometimes solicit feedback volunteered by viewers about a tele-
vised event. Following a televised debate between Barack Obama and Mitt Romney 
in the 2012 presidential election campaign, a TV station conducted a telephone poll 
to determine the “winner.” Callers were given two phone numbers, one for Obama 
and the other for Romney, to register their opinions automatically.

 (a) Comment on whether or not this was a random sample.

 (b) How might this poll have been improved?

 8.11 You want to take a random sample of 30 from a population described by telephone 
directory with a single telephone area code. Indicate whether or not each of the 
 following selection techniques would be a random sample and, if not, why. Using the 
telephone directory,

 (a) make 30 blind pencil stabs.

 (b) refer to tables of random numbers to determine the page and then the position of the 
selected person on that page. Repeat 30 times.

 (c) refer to tables of random numbers to find six-digit numbers that identify the page 
number and line on that page for each of 30 people. 

 (d) select 30 people haphazardly. 
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 8.12 Indicate whether the following terms are associated with surveys (S) or experiments (E).

 (a) random sample

 (b) two groups

 (c) real population

 (d) real difference

 (e) population directory

 (f) digit dialing

 (g) similar groups

 (h) random assignment

 (i) independent variable

 8.13 As subjects arrive to participate in an experiment, tables of random numbers are 
used to make random assignments to either group A or group B. (To ensure equal 
numbers of subjects in the two groups, alternate subjects are automatically assigned 
to the other, smaller group.) Indicate with a Yes or No whether each of the following 
rules would work:

 (a) Assign the subject to group A if the random number is even and to group B if the 
random number is odd.

 (b) Assign the subject to group A if the first digit of the random number is between 0 and 
4 and to group B if the first digit is between 5 and 9.

 (c) Assign the subject to group A if the first two digits of the random number are between 
00 and 40 and to group B if the first two digits are between 41 and 99.

 (d) Assign the subject to group A if the first three digits of the random number are between 
000 and 499 and to group B if the first three digits are between 500 and 999.

 *8.14 The probability of a boy being born equals .50, or 1/
2
, as does the probability of a girl 

being born. For a randomly selected family with two children, what’s the probability of

 (a) two boys, that is, a boy and a boy? (Reminder: Before using either the addition or 
multiplication rule, satisfy yourself that the various events are either mutually exclu-
sive or independent, respectively.)

 (b) two girls?

 (c) either two boys or two girls?

 Answers on page 431.

 8.15 Assume the same probabilities as in the previous question. For a randomly selected 
family with three children, what’s the probability of

 (a) three boys?

 (b) three girls?

 (c) either three boys or three girls?

 (d) neither three boys nor three girls? (Hint: This question can be answered indirectly by 
first finding the opposite of the specified outcome, then subtracting from 1.)
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 8.16 A traditional test for extrasensory perception (ESP) involves a set of playing cards, 
each of which shows a different symbol (circle, square, cross, star, or wavy lines). If 
C represents a correct guess and I an incorrect guess, what is the probability of 

 (a)  C?

 (b)  CI (in that order) for two guesses?

 (c)  CCC for three guesses?

 (d)  III for three guesses?

 8.17 In a school population, assume that the probability of being white equals .40; black 
equals .30; Hispanic equals .20; and Asian-American equals .10. What is the prob-
ability of 

 (a) a student being either white or black.

 (b) a student being neither white nor black.

 (c) pairs of black and white students being selected together, assuming ethnic back-
ground has no role.

 (d) given that a black student has been selected, that his/her companion is white, 
assuming ethnic background has no role. 

 (e) given that a black student has been selected, that his/her companion is white, 
assuming students tend to congregate with companions with similar ethnic back-
grounds. In this case, would the probability of the companion being white be less 
than .40, equal to .40, or more than .40?

 *8.18 In Against All Odds, the TV series on statistics (available at http://www.learner.org/
resources/series65.html), statistician Bruce Hoadley discusses the catastrophic 
failure of the Challenger space shuttle in 1986. Hoadley estimates that there was a 
failure probability of .02 for each of the six O-rings (designed to prevent the escape 
of potentially explosive burning gases from the joints of the segmented rocket 
boosters).

 (a) What was the success probability of each O-ring?

 (b) Given that the six O-rings function independently of each other, what was the prob-
ability that all six O-rings would succeed, that is, perform as designed? In other 
words, what was the success probability of the first O-ring and the second O-ring 
and the third O-ring, and so forth?

 (c) Given that you know the probability that all six O-rings would succeed (from the 
previous question), what was the probability that at least one O-ring would fail? (Hint: 
Use your answer to the previous question to solve this problem.)

 (d) Given the abysmal failure rate revealed by your answer to the previous question, 
why, you might wonder, was this space mission even attempted? According to Hoad-
ley, missile engineers thought that a secondary set of O-rings would function inde-
pendently of the primary set of O-rings. If true and if the failure probability of each 
of the secondary O-rings was the same as that for each primary O-ring (.02), what 
would be the probability that both the primary and secondary O-rings would fail at 
any one joint? (Hint: Concentrate on the present question, ignoring your answers to 
previous questions.)
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 (e) In fact, under conditions of low temperature, as on the morning of the Challenger 
catastrophe, both primary and secondary O-rings lost their flexibility, and whenever 
the primary O-ring failed, its associated secondary O-ring also failed. Under these 
conditions, what would be the conditional probability of a secondary O-ring failure, 
given the failure of its associated primary O-ring? (Note: Any probability, including a 
conditional probability, can vary between 0 and 1.)

 Answers on page 431.

 8.19 A sensor is used to monitor the performance of a nuclear reactor. The sensor accu-
rately reflects the state of the reactor with a probability of .97. But with a probability 
of .02, it gives a false alarm (by reporting excessive radiation even though the reac-
tor is performing normally), and with a probability of .01, it misses excessive radia-
tion (by failing to report excessive radiation even though the reactor is performing 
abnormally).

 (a) What is the probability that a sensor will give an incorrect report, that is, either a false 
alarm or a miss?

 (b) To reduce costly shutdowns caused by false alarms, management introduces a sec-
ond completely independent sensor, and the reactor is shut down only when both 
sensors report excessive radiation. (According to this perspective, solitary reports of 
excessive radiation should be viewed as false alarms and ignored, since both sen-
sors provide accurate information much of the time.) What is the new probability that 
the reactor will be shut down because of simultaneous false alarms by both the first 
and second sensors?

 (c) Being more concerned about failures to detect excessive radiation, someone who 
lives near the nuclear reactor proposes an entirely different strategy: Shut down the 
reactor whenever either sensor reports excessive radiation. (According to this point 
of view, even a solitary report of excessive radiation should trigger a shutdown, since 
a failure to detect excessive radiation is potentially catastrophic.) If this policy were 
adopted, what is the new probability that excessive radiation will be missed simulta-
neously by both the first and second sensors?

 *8.20 Continue to assume that people are equally likely to be born during any of the 
months. However, just for the sake of this exercise, assume that there is a tendency 
for married couples to have been born during the same month. Furthermore, we wish 
to calculate the probability of a husband and wife both being born during December.

 (a) It would be appropriate to use the multiplication rule for independent outcomes. True 
or False?

 (b) The probability of a married couple both being born during December is smaller than, 
equal to, or larger than (1⁄12)(1⁄12)=1⁄144.

 (c) With only the previous information, it would be possible to calculate the actual 
 probability of a married couple both being born during December. True or False?

 Answers on page 431.

 *8.21 Assume that the probability of breast cancer equals .01 for women in the 50–59 age 
group. Furthermore, if a woman does have breast cancer, the probability of a true 
positive mammogram (correct detection of breast cancer) equals .80 and the prob-
ability of a false negative mammogram (a miss) equals .20. On the other hand, if a 
woman does not have breast cancer, the probability of a true negative mammogram 
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(correct nondetection) equals .90 and the probability of a false positive mammogram 
(a false alarm) equals .10. (Hint: Use a frequency analysis to answer questions. To 
facilitate checking your answers with those in the book, begin with a total of 1,000 
women, then branch into the number of women who do or do not have breast cancer, 
and finally, under each of these numbers, branch into the number of women with 
positive and negative mammograms.)

 (a) What is the probability that a randomly selected woman will have a positive mam-
mogram?

 (b) What is the probability of having breast cancer, given a positive mammogram?

 (c) What is the probability of not having breast cancer, given a negative mammogram?

 Answers on page 431.
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9
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9.1 WHAT IS A SAMPLING DISTRIBUTION?
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Preview

This chapter focuses on the single most important concept in inferential statistics—

the concept of a sampling distribution. A sampling distribution serves as a frame of 

reference for every outcome, among all possible outcomes, that could occur just by 

chance. It reappears in every subsequent chapter as the key to understanding how, 

once variability has been estimated, we can generalize beyond a limited set of actual 

observations. In order to use a sampling distribution, we must identify its mean, 

its standard deviation, and its shape—a seemingly difficult task that, thanks to the 

theory of statistics, can be performed by invoking the population mean, the population 

standard deviation, and the normal curve, respectively.
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There’s a good chance that you’ve taken the SAT test, and you probably remember 
your scores. Assume that the SAT math scores for all college-bound students during 
a recent year were distributed around a mean of 500 with a standard deviation of 110. 
An investigator at a university wishes to test the claim that, on the average, the SAT 
math scores for local freshmen equals the national average of 500. His task would be 
straightforward if, in fact, the math scores for all local freshmen were readily avail-
able. Then, after calculating the mean score for all local freshmen, a direct comparison 
would indicate whether, on the average, local freshmen score below, at, or above the 
national average.

Assume that it is not possible to obtain scores for the entire freshman class. Instead, 
SAT math scores are obtained for a random sample of 100 students from the local 
population of freshmen, and the mean score for this sample equals 533. If each sample 
were an exact replica of the population, generalizations from the sample to the popula-
tion would be most straightforward. Having observed a mean score of 533 for a sample 
of 100 freshmen, we could have concluded, without even a pause, that the mean math 
score for the entire freshman class also equals 533 and, therefore, exceeds the national 
average.

9 .1  WHAT  IS  A  SAMPL ING  D ISTR IBUT ION?

Random samples rarely represent the underlying population exactly. Even a mean math 
score of 533 could originate, just by chance, from a population of freshmen whose 
mean equals the national average of 500. Accordingly, generalizations from a single 
sample to a population are much more tentative. Indeed, generalizations are based not 
merely on the single sample mean of 533 but also on its distribution—a distribution of 
sample means for all possible random samples. Representing the statistician’s model 
of random outcomes,

the sampling distribution of the mean refers to the probability distribution of 
means for all possible random samples of a given size from some population.

In effect, this distribution describes the variability among sample means that could 
occur just by chance and thereby serves as a frame of reference for generalizing from a 
single sample mean to a population mean.

The sampling distribution of the mean allows us to determine whether, given the 
variability among all possible sample means, the one observed sample mean can be 
viewed as a common outcome or as a rare outcome (from a distribution centered, in 
this case, about a value of 500). If the sample mean of 533 qualifies as a common out-
come in this sampling distribution, then the difference between 533 and 500 isn’t large 
enough, relative to the variability of all possible sample means, to signify that anything 
special is happening in the underlying population. Therefore, we can conclude that the 
mean math score for the entire freshman class could be the same as the national aver-
age of 500. On the other hand, if the sample mean of 533 qualifies as a rare outcome 
in this sampling distribution, then the difference between 533 and 500 is large enough, 
relative to the variability of all possible sample means, to signify that something spe-
cial probably is happening in the underlying population. Therefore, we can conclude 
that the mean math score for the entire freshman class probably exceeds the national 
average of 500.

Al l  Poss ib le  Random Samp les

When attempting to generalize from a single sample mean to a population mean, we 
must consult the sampling distribution of the mean. In the present case, this distribution 
is based on all possible random samples, each of size 100 that can be taken from the 

Sampling Distribution 

of the Mean 

Probability distribution of means 

for all possible random samples of 

a given size from some population.
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local population of freshmen. All possible random samples refers not to the number of 
samples of size 100 required to survey completely the local population of freshmen but 
to the number of different ways in which a single sample of size 100 can be selected 
from this population.

“All possible random samples” tends to be a huge number. For instance, if the local 
population contained at least 1,000 freshmen, the total number of possible random 
samples, each of size 100, would be astronomical in size. The 301 digits in this number 
would dwarf even the national debt. Even with the aid of a computer, it would be a hor-
rendous task to construct this sampling distribution from scratch, itemizing each mean 
for all possible random samples.

Fortunately, statistical theory supplies us with considerable information about the 
sampling distribution of the mean, as will be discussed in the remainder of this chapter. 
Armed with this information about sampling distributions, we’ll return to the current 
example in the next chapter and test the claim that the mean math score for the local 
population of freshmen equals the national average of 500. Only at that point—and 
not at the end of this chapter—should you expect to understand completely the role of 
sampling distributions in practical applications.

9 .2  CREAT ING  A  SAMPL ING  
D ISTR IBUT ION  FROM SCRATCH

Let’s establish precisely what constitutes a sampling distribution by creating one from 
scratch under highly simplified conditions. Imagine some ridiculously small popula-
tion of four observations with values of 2, 3, 4, and 5, as shown in Figure 9.1. Next, 
itemize all possible random samples, each of size two, that could be taken from this 
population. There are four possibilities on the first draw from the population and also 
four possibilities on the second draw from the population, as indicated in Table 9.1.* 
The two sets of possibilities combine to yield a total of 16 possible samples. At this 
point, remember, we’re clarifying the notion of a sampling distribution of the mean. In 
practice, only a single random sample, not 16 possible samples, would be taken from 
the population; the sample size would be very small relative to a much larger popula-
tion size, and, of course, not all observations in the population would be known.

For each of the 16 possible samples, Table  9.1 also lists a sample mean (found 
by adding the two observations and dividing by 2) and its probability of occurrence 
(expressed as 1⁄16, since each of the 16 possible samples is equally likely). When cast 
into a relative frequency or probability distribution, as in Table 9.2, the 16 sample 
means constitute the sampling distribution of the mean, previously defined as the prob-
ability distribution of means for all possible random samples of a given size from 
some population. Not all values of the sample mean occur with equal probabilities in 
Table 9.2 since some values occur more than once among the 16 possible samples. 
For instance, a sample mean value of 3.5 appears among 4 of 16 possibilities and has 
a probability of 4⁄16.

Probab i l i t y  o f  a  Pa r t i cu la r  Samp le  Mean

The distribution in Table 9.2 can be consulted to determine the probability of obtain-
ing a particular sample mean or set of sample means. For example, the probability of 
a randomly selected sample mean of 5.0 equals 1⁄16 or .0625. According to the addition 

*Ordinarily, a single observation is sampled only once, that is, sampling is without replace-
ment. If employed with the present, highly simplified example, however, sampling without 

replacement would magnify an unimportant technical adjustment.
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FIGURE 9.1 

Graph of a miniature population.
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Table 9.1
ALL POSSIBLE SAMPLES OF SIZE TWO FROM A MINIATURE POPULATION

ALL POSSIBLE SAMPLES MEAN (X ) PROBABILITY

(1) 2,2 2.0
1

16

(2) 2,3 2.5
1

16

(3) 2,4 3.0
1

16

(4) 2,5 3.5
1

16

(5) 3,2 2.5
1

16

(6) 3,3 3.0
1

16

(7) 3,4 3.5
1

16

(8) 3,5 4.0
1

16

(9) 4,2 3.0
1

16

(10) 4,3 3.5
1

16

(11) 4,4 4.0
1

16

(12) 4,5 4.5
1

16

(13) 5,2 3.5
1

16

(14) 5,3 4.0
1

16

(15) 5,4 4.5
1

16

(16) 5,5 5.0
1

16

rule for mutually exclusive outcomes, described in Chapter 8, the probability of a ran-
domly selected sample mean of either 5.0 or 2.0 equals 1⁄16 + 1⁄16 = 2⁄16 = .1250. This type 
of probability statement, based on a sampling distribution, assumes an essential role in 
inferential statistics and will reappear throughout the remainder of the book.

Rev iew

Figure  9.2 summarizes the previous discussion. It depicts the emergence of the 
sampling distribution of the mean from the set of all possible (16) samples of size two, 
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FIGURE 9.2 
Emergence of the sampling distribution of the mean from all possible samples.
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based on the miniature population of four observations. Familiarize yourself with this 
figure, as it will be referred to again.

Progress Check *9.1 Imagine a very simple population consisting of only five observa-
tions: 2, 4, 6, 8, 10.

(a) List all possible samples of size two.

(b) Construct a relative frequency table showing the sampling distribution of the mean.

Answers on pages 431 and 432. 

Table 9.2 
SAMPLING 

DISTRIBUTION OF THE 
MEAN (SAMPLES 

OF SIZE TWO FROM 
A MINIATURE 
POPULATION)

SAMPLE 
MEAN

(X )

PROBA-
BILITY

5.0
1

16

4.5
2

16

4.0
3

16

3.5
4

16

3.0
3

16

2.5
2

16

2.0
1

16
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9 .3  SOME  IMPORTANT  SYMBOLS

Having established precisely what constitutes a sampling distribution under highly 
simplified conditions, we can introduce the special symbols that identify the mean and 
the standard deviation of the sampling distribution of the mean. Table 9.3 also lists the 
corresponding symbols for the sample and the population. It would be wise to memo-
rize these symbols.

You are already acquainted with the English letters X and s, representing the mean 
and standard deviation of any sample, and also the Greek letters μ (mu) and σ (sigma), 
representing the mean and standard deviation of any population. New are the Greek let-
ters μ

X
 (mu sub X-bar) and σ

X
 (sigma sub X-bar), representing the mean and standard 

deviation, respectively, of the sampling distribution of the mean. To minimize confu-
sion, the latter term, σ

X
, is often referred to as the standard error of the mean or simply 

as the standard error.

S ign i f i cance  o f  G reek  Le t te r s

Note that Greek letters are used to describe characteristics of both populations 
and sampling distributions, suggesting a common feature. Both types of distribution 
deal with all possibilities, that is, with all possible observations in the population, 
or with the means of all possible random samples in the sampling distribution of the 
mean.

With this background, let’s focus on the three most important characteristics of the 
sampling distribution of the mean: its mean, its standard deviation, and its shape. In 
subsequent chapters, these three characteristics will form the basis for applied work in 
inferential statistics.

Progress Check *9.2 Without peeking, list the special symbols for the mean of the popu-
lation    (a)   , mean of the sampling distribution of the mean    (b)   , mean of the 
sample    (c)   , standard error of the mean    (d)   , standard deviation of the sam-
ple    (e)   , and standard deviation of the population    (f)   .

Answers on page 432. 

9 .4  MEAN  OF  ALL  SAMPLE  MEANS  ( μ
X
)

The distribution of sample means itself has a mean.

The mean of the sampling distribution of the mean always equals the mean of 
the population.

Table 9.3
SYMBOLS FOR THE MEAN AND STANDARD DEVIATION OF THREE TYPES 

OF DISTRIBUTIONS

TYPE OF DISTRIBUTION MEAN STANDARD DEVIATION

Sample X s
Population μ σ
Sampling distribution of the mean μ

X
σ

X
  (standard error of the 
mean)

Reminder: 

We recommend memorizing the 

symbols in Table 9.3.
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Expressed in symbols, we have

MEAN OF THE SAMPLING DISTRIBUTION

   X  (9.1)

Mean of the Sampling Distribu-

tion of the Mean (
X

) 

The mean of all sample means 

always equals the population 

mean.
where μ

X
 represents the mean of the sampling distribution and μ represents the mean 

of the population.

I n te rchangeab le  Means

Since the mean of all sample means (μ
X
) always equals the mean of the population 

(μ), these two terms are interchangeable in inferential statistics. Any claims about the 
population mean can be transferred directly to the mean of the sampling distribution, 
and vice versa. If, as claimed, the mean math score for the local population of fresh-
men equals the national average of 500, then the mean of the sampling distribution 
also automatically will equal 500. For the same reason, it’s permissible to view the 
one observed sample mean of 533 as a deviation either from the mean of the sampling 
distribution or from the mean of the population. It should be apparent, therefore, that 
whether an expression involves μ

X
 or μ, it reflects, at most, a difference in emphasis on 

either the sampling distribution or the population, respectively, rather than any differ-
ence in numerical value.

Exp lana t ion

Although important, it’s not particularly startling that the mean of all sample means 
equals the population mean. As can be seen in Figure 9.2, samples are not exact rep-
licas of the population, and most sample means are either larger or smaller than the 
population mean (equal to 3.5 in Figure 9.2). By taking the mean of all sample means, 
however, you effectively neutralize chance differences between sample means and 
retain a value equal to the population mean.

Progress Check *9.3 Indicate whether the following statements are True or False. The 
mean of all sample means, μ 

X
, . . .

(a) always equals the value of a particular sample mean.

(b) equals 100 if, in fact, the population mean equals 100.

(c) usually equals the value of a particular sample mean.

(d) is interchangeable with the population mean.

Answers on page 432. 

9 .5  STANDARD  ERROR  OF  THE  MEAN  ( σ
X
)

The distribution of sample means also has a standard deviation, referred to as the stan-
dard error of the mean.

The standard error of the mean equals the standard deviation of the population 
divided by the square root of the sample size.
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Expressed in symbols,

STANDARD ERROR OF THE MEAN

 X n  (9.2)

Standard Error of the Mean (
X

) 

A rough measure of the average 

amount by which sample means 

deviate from the mean of the 

sampling distribution or from the 

population mean.

where 
X

 represents the standard error of the mean; σ represents the standard deviation 
of the population; and n represents the sample size.

Spec ia l  Type  o f  S tanda rd  Dev ia t i on

The standard error of the mean serves as a special type of standard deviation that 
measures variability in the sampling distribution. It supplies us with a standard, much 
like a yardstick, that describes the amount by which sample means deviate from the 
mean of the sampling distribution or from the population mean. The error in standard 
error refers not to computational errors, but to errors in generalizations attributable to the 
fact that, just by chance, most random samples aren’t exact replicas of the population.

You might find it helpful to think of the standard error of the mean as a rough 
measure of the average amount by which sample means deviate from the mean 
of the sampling distribution or from the population mean.

Insofar as the shape of the distribution sample means approximates a normal curve, as 
described in the next section, about 68 percent of all sample means deviate less than 
one standard error from the mean of the sampling distribution, whereas only about 
5 percent of all sample means deviate more than two standard errors from the mean of 
this distribution.

E f fec t  o f  Samp le  S i ze

A most important implication of Formula 9.2 is that whenever the sample size 
equals two or more, the variability of the sampling distribution is less than that in the 
population. A modest demonstration of this effect appears in Figure 9.2, where the 
means of all possible samples cluster closer to the population mean (equal to 3.5) than 
do the four original observations in the population. A more dramatic demonstration 
occurs with larger sample sizes. Earlier in this chapter, for instance, 110 was given as 
the value of σ, the population standard deviation for SAT scores. Much smaller is the 
variability in the sampling distribution of mean SAT scores, each based on samples of 
100 freshmen. According to Formula 9.2, in the present example, 

110 110
11

10100
X n

there is a tenfold reduction in variability, from 110 to 11, when our focus shifts from 
the population to the sampling distribution.

According to Formula 9.2, any increase in sample size translates into a smaller stan-
dard error and, therefore, into a new sampling distribution with less variability. With a 
larger sample size, sample means cluster more closely about the mean of the sampling 
distribution and about the mean of the population and, therefore, allow more precise 
generalizations from samples to populations.
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Exp lana t ion

It’s not surprising that variability should be smaller in sampling distributions than 
in populations. The population standard deviation reflects variability among individ-
ual observations, and it is directly affected by any relatively large or small observa-
tions within the population. On the other hand, the standard error of the mean reflects 
variability among sample means, each of which represents a collection of individual 
observations. The appearance of relatively large or small observations within a par-
ticular sample tends to affect the sample mean only slightly, because of the stabilizing 
presence in the same sample of other, more moderate observations or even extreme 
observations in the opposite direction. This stabilizing effect becomes even more pro-
nounced with larger sample sizes.

Progress Check *9.4 Indicate whether the following statements are True or False. The 
standard error of the mean, 

X
, . . .

(a) roughly measures the average amount by which sample means deviate from the popula-
tion mean.

(b) measures variability in a particular sample.

(c) increases in value with larger sample sizes.

(d) equals 5, given that σ = 40 and n = 64.

Answers on page 432. 

9 .6  SHAPE  OF  THE  SAMPL ING  D ISTR IBUT ION

A product of statistical theory, expressed in its simplest form,

the central limit theorem states that, regardless of the shape of the popula-
tion, the shape of the sampling distribution of the mean approximates a normal 
curve if the sample size is sufficiently large.

According to this theorem, it doesn’t matter whether the shape of the parent popula-
tion is normal, positively skewed, negatively skewed, or some nameless, bizarre shape, 
as long as the sample size is sufficiently large. What constitutes “sufficiently large” 
depends on the shape of the parent population. If the shape of the parent population is 
normal, then any sample size (even a sample size of one) will be sufficiently large. Oth-
erwise, depending on the degree of non-normality in the parent population, a sample 
size between 25 and 100 is sufficiently large.

Examp les

For the population with a non-normal shape in the top panel of Figure 9.2, the shape 
of the sampling distribution in the bottom panel reveals a preliminary drift toward 
normality—that is, a shape having a peak in the middle with tapered flanks on either 
side—even for very small samples of size 2. For the two non-normal populations in 
the top panel of Figure  9.3, the shapes of the sampling distributions in the middle 
panel show essentially the same preliminary drift toward normality when the sample 
size equals only 2, while the shapes of the sampling distributions in the bottom panel 
closely approximate normality when the sample size equals 25.

Earlier in this chapter, 533 was given as the mean SAT math score for a random 
sample of 100 freshmen. Because this sample size satisfies the requirements of the cen-
tral limit theorem, we can view the sample mean of 533 as originating from a sampling 

Central Limit Theorem 

Regardless of the population 

shape, the shape of the sampling 

distribution of the mean approxi-

mates a normal curve if the sample 

size is sufficiently large.
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distribution whose shape approximates a normal curve, even though we lack informa-
tion about the shape of the population of math scores for the entire freshman class. It 
will be possible, therefore, to make precise statements about this sampling distribution, 
as described in the next chapter, by referring to the table for the standard normal curve.

Why  the  Cen t ra l  L im i t  Theo rem Works

In a normal curve, you will recall, intermediate values are the most prevalent, and 
extreme values, either larger or smaller, occupy the tapered flanks. Why, when the 
sample size is large, does the sampling distribution approximate a normal curve, even 
though the parent population might be non-normal?

Many  Samp le  Means  w i th  I n te rmed ia te  Va lues

When the sample size is large, it is most likely that any single sample will contain 
the full spectrum of small, intermediate, and large scores from the parent population, 
whatever its shape. The calculation of a mean for this type of sample tends to neutralize 
or dilute the effects of any extreme scores, and the sample mean emerges with some 
intermediate value. Accordingly, intermediate values prevail in the sampling distribu-
tion, and they cluster around a peak frequency representing the most common or modal 
value of the sample mean, as suggested at the bottom of Figure 9.3.

Few Samp le  Means  w i th  Ex t reme  Va lues

To account for the rarer sample mean values in the tails of the sampling distribu-
tion, focus on those relatively infrequent samples that, just by chance, contain less 

FIGURE 9.3 
Effect of the central limit theorem.

μ μ

μ
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Sampling Distribution
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μ
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μ
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178 SAMPLING DISTRIBUTION OF THE MEAN 

than the full spectrum of scores from the parent population. Sometimes, because of the 
relatively large number of extreme scores in a particular direction, the calculation of a 
mean only slightly dilutes their effect, and the sample mean emerges with some more 
extreme value. The likelihood of obtaining extreme sample mean values declines with 
the extremity of the value, producing the smoothly tapered, slender tails that character-
ize a normal curve.

Progress Check *9.5 Indicate whether the following statements are True or False. The 
central limit theorem

(a) states that, with sufficiently large sample sizes, the shape of the population is normal.

(b) states that, regardless of sample size, the shape of the sampling distribution of the mean 
is normal.

(c) ensures that the shape of the sampling distribution of the mean equals the shape of the 
population.

(d) applies to the shape of the sampling distribution—not to the shape of the population and 
not to the shape of the sample.

Answers on page 432. 

9 .7  OTHER  SAMPL ING  D ISTR IBUT IONS

For  the  Mean

There are many different sampling distributions of means. A new sampling distribu-
tion is created by a switch to another population. Furthermore, for any single popula-
tion, there are as many different sampling distributions as there are possible sample 
sizes. Although each of these sampling distributions has the same mean, the value of 
the standard error always differs and depends upon the size of the sample.

Fo r  O the r  Measu res

There are sampling distributions for measures other than a single mean. For instance, 
there are sampling distributions for medians, proportions, standard deviations, vari-
ances, and correlations, as well as for differences between pairs of means, pairs of 
proportions, and so forth. We’ll have occasion to work with some of these distributions 
in later chapters.

Summary

The notion of a sampling distribution is the most important concept in inferential 
statistics. The sampling distribution of the mean is defined as the probability distribu-
tion of means for all possible random samples of a given size from some population.

Statistical theory pinpoints three important characteristics of the sampling distribu-
tion of the mean:

■ The mean of the sampling distribution equals the mean of the population.

■ The standard deviation of the sampling distribution, that is, the standard error of 
the mean, equals the standard deviation of the population divided by the square 
root of the sample size. An important implication of this formula is that a larger 
sample size translates into a sampling distribution with a smaller variability, 
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allowing more precise generalizations from samples to populations. The stan-
dard error of the mean serves as a rough measure of the average amount by which 
sample means deviate from the mean of the sampling distribution or from the 
population mean.

■ According to the central limit theorem, regardless of the shape of the population, 
the shape of the sampling distribution approximates a normal curve if the sample 
size is sufficiently large. Depending on the degree of non-normality in the parent 
population, a sample size of between 25 and 100 is sufficiently large.

Any single sample mean can be viewed as originating from a sampling distribution 
whose (1) mean equals the population mean (whatever its value); whose (2) standard 
error equals the population standard deviation divided by the square root of the sample 
size; and whose (3) shape approximates a normal curve (if the sample size satisfies the 
requirements of the central limit theorem).

Important Terms

Mean of the sampling distribution  Standard error of the mean (
X

)

of the mean (
X

) Central limit theorem

Sampling distribution of the mean 

Key Equations

SAMPLING DISTRIBUTION MEAN

X

STANDARD ERROR

X
n

REV IEW QUEST IONS

 9.6 A random sample tends not to be an exact replica of its parent population. This fact 
has a number of implications. Indicate which are true and which are false.

 (a) All possible random samples can include a few samples that are exact replicas of the 
population, but most samples aren’t exact replicas.

 (b) A more representative sample can be obtained by handpicking (rather than randomly 
selecting) observations.

 (c) Insofar as it misrepresents the parent population, a random sample can cause an 
erroneous generalization.

 (d) In practice, the mean of a single random sample is evaluated relative to the vari-
ability of means for all possible random samples.
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180 SAMPLING DISTRIBUTION OF THE MEAN 

 9.7 Define the sampling distribution of the mean.

 9.8 Specify three important properties of the sampling distribution of the mean. 

 9.9 Indicate whether the following statements are true or false. If we took a random 
sample of 35 subjects from some population, the associated sampling distribution of 
the mean would have the following properties: 

 (a) Shape would approximate a normal curve.

 (b) Mean would equal the one sample mean.

 (c) Shape would approximate the shape of the population.

 (d) Compared to the population variability, the variability would be reduced by a factor 
equal to the square root of 35. 

 (e) Mean would equal the population mean.

 (f) Variability would equal the population variability.

 9.10 Indicate whether the following statements are true or false. The sampling distribu-
tion of the mean

 (a) is always constructed from scratch, even when the population is large.

 (b)  serves as a bridge to aid generalizations from a sample to a population.

 (c) is the same as the sample mean.

 (d) always reflects the shape of the underlying population.

 (e) has a mean that always coincides with the population mean.

 (f) is a device used to determine the effect of variability (that is, what can happen, just 
by chance, when samples are random).

 (g) remains unchanged even with shifts to a new population or sample size.

 (h) supplies a spectrum of possibilities against which to evaluate the one observed 
sample mean.

 (i) tends to cluster more closely about the population mean with increases in sample 
size.

 9.11 Someone claims that, since the mean of the sampling distribution equals the popu-
lation mean, any single sample mean must also equal the population mean. Any 
 comment?

 9.12 Given that population standard deviation equals 24, how large must the sample size, 
n, be in order for the standard error to equal

 (a) 8 ?

 (b) 6 ?

 (c) 3 ?

 (d) 2 ?
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 9.13 Given a sample size of 36, how large does the population standard deviation have to 
be in order for the standard error to be 

 (a) 1 ?

 (b) 2 ?

 (c) 5 ?

 (d) 100 ?

 9.14 (a) A random sample of size 144 is taken from the local population of grade-school 
children. Each child estimates the number of hours per week spent watching TV. At 
this point, what can be said about the sampling distribution?

 (b) Assume that a standard deviation, σ, of 8 hours describes the TV estimates for the 
local population of schoolchildren. At this point, what can be said about the sampling 
distribution?

 (c) Assume that a mean, μ, of 21 hours describes the TV estimates for the local popula-
tion of schoolchildren. Now what can be said about the sampling distribution?

 (d) Roughly speaking, the sample means in the sampling distribution should deviate, on 
average, about ___ hours from the mean of the sampling distribution and from the 
mean of the population.

 (e) About 95 percent of the sample means in this sampling distribution should be 
between ___ hours and ___ hours.
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Preview

This chapter describes the first in a series of hypothesis tests. Learning 
the vocabulary of special terms for hypothesis tests will be most helpful 
throughout the remainder of the book. However, do not become so 
concerned about either terminology or computational mechanics that you 
lose sight of the essential role of the sampling distribution—the model of 
everything that could happen just by chance—in any hypothesis test.

Using the sampling distribution as our frame of reference, the one 
observed outcome is characterized as either a common outcome or a rare 
outcome. A common outcome is readily attributable to chance, and therefore, 
the hypothesis that nothing special is happening—the null hypothesis—is 
retained. On the other hand, a rare outcome isn’t readily attributable to 
chance, and therefore, the null hypothesis is rejected (usually to the delight of 
the researcher).
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 10.1 TESTING A HYPOTHESIS ABOUT SAT SCORES  183

10 .1  TEST ING  A  HYPOTHES IS  ABOUT  SAT  SCORES

In the previous chapter, we postponed a test of the hypothesis that the mean SAT math 
score for all local freshmen equals the national average of 500. Now, given a mean 
math score of 533 for a random sample of 100 freshmen, let’s test the hypothesis 
that, with respect to the national average, nothing special is happening in the local 
population. Insofar as an investigator usually suspects just the opposite—namely, that 
something special is happening in the local population—he or she hopes to reject the 
hypothesis that nothing special is happening, henceforth referred to as the null hypoth-
esis and defined more formally in a later section.

Hypo thes i zed  Samp l ing  D i s t r i bu t ion

If the null hypothesis is true, then the distribution of sample means—that is, the 
sampling distribution of the mean for all possible random samples, each of size 100, 
from the local population of freshmen—will be centered about the national average of 
500. (Remember, the mean of the sampling distribution always equals the population 
mean.) In Figure  10.1, this sampling distribution is referred to as the hypothesized 
sampling distribution, since its mean equals 500, the hypothesized mean reading score 
for the local population of freshmen.

Anticipating the key role of the hypothesized sampling distribution in our hypoth-
esis test, let’s focus on two more properties of this distribution:

1. In Figure  10.1, vertical lines appear, at intervals of size 11, on either side of 
the hypothesized population mean of 500. These intervals reflect the size of the 
standard error of the mean, X . To verify this fact, originally demonstrated in 
Chapter 9, substitute 110 for the population standard deviation, σ, and 100 for the 
sample size, n, in Formula 9.2 to obtain

x
n

110

100

110

10
11

2. Notice that the shape of the hypothesized sampling distribution in Figure 10.1 
approximates a normal curve, since the sample size of 100 is large enough to 
satisfy the requirements of the central limit theorem. Eventually, with the aid of 
normal curve tables, we will be able to construct boundaries for common and 
rare outcomes under the null hypothesis.

FIGURE 10.1 
Hypothesized sampling distribution of the mean centered about a hypothesized 
population mean of 500.

500 511 522 533467 478 489
X

σX = 11σX = 11
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184 INTRODUCTION TO HYPOTHESIS TESTING:  THE z  TEST

The null hypothesis that the population mean for the freshman class equals 500 is 
tentatively assumed to be true. It is tested by determining whether the one observed 
sample mean qualifies as a common outcome or a rare outcome in the hypothesized 
sampling distribution of Figure 10.1.

Common  Ou tcomes

An observed sample mean qualifies as a common outcome if the difference 
between its value and that of the hypothesized population mean is small enough 
to be viewed as a probable outcome under the null hypothesis.

That is, a sample mean qualifies as a common outcome if it doesn’t deviate too far 
from the hypothesized population mean but appears to emerge from the dense concen-
tration of possible sample means in the middle of the sampling distribution. A common 
outcome signifies a lack of evidence that, with respect to the null hypothesis, something 
special is happening in the underlying population. Because now there is no compelling 
reason for rejecting the null hypothesis, it is retained.

Rare  Ou tcomes

An observed sample mean qualifies as a rare outcome if the difference between 
its value and the hypothesized population mean is too large to be reasonably 
viewed as a probable outcome under the null hypothesis.

That is, a sample mean qualifies as a rare outcome if it deviates too far from the 
hypothesized mean and appears to emerge from the sparse concentration of possible 
sample means in either tail of the sampling distribution. A rare outcome signifies that, 
with respect to the null hypothesis, something special probably is happening in the 
underlying population. Because now there are grounds for suspecting the null hypoth-
esis, it is rejected.

Boundar i es  fo r  Common  and  Ra re  Ou tcomes

Superimposed on the hypothesized sampling distribution in Figure  10.2 is one 
possible set of boundaries for common and rare outcomes, expressed in values of X. 
(Techniques for constructing these boundaries are described in Section 10.7.) If the 
one observed sample mean is located between 478 and 522, it will qualify as a com-
mon outcome (readily attributed to variability) under the null hypothesis, and the null 

Key Point: 

Does the one observed sample 

mean qualify as a common or a 

rare outcome?

FIGURE 10.2 
One possible set of common and rare outcomes (values of X ).
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hypothesis will be retained. If, however, the one observed sample mean is greater than 
522 or less than 478, it will qualify as a rare outcome (not readily attributed to vari-
ability) under the null hypothesis, and the null hypothesis will be rejected. Because the 
observed sample mean of 533 does exceed 522, the null hypothesis is rejected. On the 
basis of the present test, it is unlikely that the sample of 100 freshmen, with a mean 
math score of 533, originates from a population whose mean equals the national aver-
age of 500, and, therefore, the investigator can conclude that the mean math score for 
the local population of freshmen probably differs from (exceeds) the national average.

10 .2  z TEST  FOR  A  POPULAT ION  MEAN

For the hypothesis test with SAT math scores, it is customary to base the test not on the 
hypothesized sampling distribution of X shown in Figure 10.2, but on its standardized 
counterpart, the hypothesized sampling distribution of z shown in Figure 10.3. Now z 
represents a variation on the familiar standard score, and it displays all of the properties 
of standard scores described in Chapter 5. Furthermore, like the sampling distribution 
of X, the sampling distribution of z represents the distribution of z values that would 
be obtained if a value of z were calculated for each sample mean for all possible ran-
dom samples of a given size from some population.

The conversion from X to z yields a distribution that approximates the standard 
normal curve in Table A of Appendix C, since, as indicated in Figure 10.3, the original 
hypothesized population mean (500) emerges as a z score of 0 and the original standard 
error of the mean (11) emerges as a z score of 1. The shift from X to z eliminates the 
original units of measurement and standardizes the hypothesis test across all situations 
without, however, affecting the test results.

Reminde r :  Conve r t i ng  a  Raw  Sco re  to  z

To convert a raw score into a standard score (also described in Chapter 5), express 
the raw score as a distance from its mean (by subtracting the mean from the raw score), 
and then split this distance into standard deviation units (by dividing with the standard 
deviation). Expressing this definition as a word formula, we have

 
 

 

raw score mean
Standard score

standard deviation

in which, of course, the standard score indicates the deviation of the raw score in stan-
dard deviation units, above or below the mean.

FIGURE 10.3 
Common and rare outcomes (values of z).

0 1 1.96 3–3 –1.96 –1
z
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Sampling Distribution of z 
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were calculated for each sample 
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Conve r t i ng  a  Samp le  Mean  to  z

The z for the present situation emerges as a slight variation of this word formula: 
Replace the raw score with the one observed sample mean X; replace the mean with 
the mean of the sampling distribution, that is, the hypothesized population mean μ

hyp
; 

and replace the standard deviation with the standard error of the mean x. Now

 z RATIO FOR A SINGLE POPULATION MEAN

 

hyp

x

X
z

 (10.1)

where z indicates the deviation of the observed sample mean in standard error units, 
above or below the hypothesized population mean.

To test the hypothesis for SAT scores, we must determine the value of z from For-
mula 10.1. Given a sample mean of 533, a hypothesized population mean of 500, and 
a standard error of 11, we find

533 500 33
3

11 11
z

The observed z of 3 exceeds the value of 1.96 specified in the hypothesized sampling 
distribution in Figure 10.3. Thus, the observed z qualifies as a rare outcome under the 
null hypothesis, and the null hypothesis is rejected. The results of this test with z are the 
same as those for the original hypothesis test with X.

Assumpt ions  o f  z Tes t

When a hypothesis test evaluates how far the observed sample mean deviates, in 
standard error units, from the hypothesized population mean, as in the present exam-
ple, it is referred to as a z test or, more accurately, as a z test for a population mean. 
This z test is accurate only when (1) the population is normally distributed or the sam-
ple size is large enough to satisfy the requirements of the central limit theorem and 
(2) the population standard deviation is known. In the present example, the z test is 
appropriate because the sample size of 100 is large enough to satisfy the central limit 
theorem and the population standard deviation is known to be 110.

Progress Check *10.1 Calculate the value of the z test for each of the following situa-
tions:

 (a) hyp566; 30; 36; 560X n

 (b) hyp24; 4; 64; 25X n

 (c) hyp82; 14; 49; 75X n

 (d) hyp136; 15; 25; 146X n

Answers on page 432. 

10 .3  STEP-BY-STEP  PROCEDURE

Having been exposed to some of the more important features of hypothesis testing, 
let’s take a detailed look at the test for SAT scores. The test procedure lends itself to a 
step-by-step description, beginning with a brief statement of the problem that inspired 

z Test for a Population Mean 

A hypothesis test that evaluates 

how far the observed sample mean 

deviates, in standard error units, 

from the hypothesized population 

mean.
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the test and ending with an interpretation of the test results. The following box sum-
marizes the step-by-step procedure for the current hypothesis test. Whenever appropri-
ate, this format will be used in the remainder of the book. Refer to it while reading the 
remainder of the chapter.

10 .4  STATEMENT  OF  THE  RESEARCH  PROBLEM

The formulation of a research problem often represents the most crucial and exciting 
phase of an investigation. Indeed, the mark of a skillful investigator is to focus on an 
important research problem that can be answered. Do children from broken families 
score lower on tests of personal adjustment? Do aggressive TV cartoons incite more 
disruptive behavior in preschool children? Does profit sharing increase the productiv-
ity of employees? Because of our emphasis on hypothesis testing, research problems 
appear in this book as finished products, usually in the first one or two sentences of a 
new example.

HYPOTHESIS TEST SUMMARY: z TEST FOR A POPULATION 
MEAN (SAT SCORES)

Research Problem

Does the mean SAT math score for all local freshmen differ from the national 
average of 500?

Statistical Hypotheses

0

1

: 500

: 500

H

H

Decision Rule

Reject H
0
 at the .05 level of significance if z ≥ 1.96 or if z ≤ –1.96.

Calculations

Given

hyp

110
533; 500; 11

100

533 500
3

11

xX
n

z

Decision

Reject H
0
 at the .05 level of significance because z = 3 exceeds 1.96.

Interpretation

The mean SAT math score for all local freshmen does not equal—it  
exceeds—the national average of 500.
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10 .5  NULL  HYPOTHES IS  (H
0
)

Once the problem has been described, it must be translated into a statistical hypoth-
esis regarding some population characteristic. Abbreviated as H

0
, the null hypothesis 

becomes the focal point for the entire test procedure (even though we usually hope to 
reject it). In the test with SAT scores, the null hypothesis asserts that, with respect to 
the national average of 500, nothing special is happening to the mean score for the local 
population of freshmen. An equivalent statement, in symbols, reads:

0 : 500H

where H
0
 represents the null hypothesis and μ is the population mean for the local 

freshman class.
Generally speaking, the null hypothesis (H0) is a statistical hypothesis that usu-

ally asserts that nothing special is happening with respect to some characteristic of 
the underlying population. Because the hypothesis testing procedure requires that the 
hypothesized sampling distribution of the mean be centered about a single number 
(500), the null hypothesis equals a single number (H

0
: μ  500). Furthermore, the null 

hypothesis always makes a precise statement about a characteristic of the population, 
never about a sample. Remember, the purpose of a hypothesis test is to determine 
whether a particular outcome, such as an observed sample mean, could have reason-
ably originated from a population with the hypothesized characteristic.

F ind ing  the  S ing le  Number  fo r  H
0

The single number actually used in H
0
 varies from problem to problem. Even for a 

given problem, this number could originate from any of several sources. For instance, 
it could be based on available information about some relevant population other than 
the target population, as in the present example in which 500 reflects the mean SAT 
math scores for all college-bound students during a recent year. It also could be based 
on some existing standard or theory—for example, that the mean math score for the 
current population of local freshmen should equal 540 because that happens to be the 
mean score achieved by all local freshmen during recent years.

If, as sometimes happens, it’s impossible to identify a meaningful null hypothesis, 
don’t try to salvage the situation with arbitrary numbers. Instead, use another entirely 
different technique, known as estimation, which is described in Chapter 12.

10 .6  ALTERNAT IVE  HYPOTHES IS  ( H
1
)

In the present example, the alternative hypothesis asserts that, with respect to the 
national average of 500, something special is happening to the mean math score for the 
local population of freshmen (because the mean for the local population doesn’t equal 
the national average of 500). An equivalent statement, in symbols, reads:

1 : 500H

where H
1
 represents the alternative hypothesis, μ is the population mean for the local 

freshman class, and  signifies, “is not equal to.”
The alternative hypothesis (H1) asserts the opposite of the null hypothesis. A deci-

sion to retain the null hypothesis implies a lack of support for the alternative hypothesis, 
and a decision to reject the null hypothesis implies support for the alternative hypothesis.

As will be described in the next chapter, the alternative hypothesis may assume 
any one of three different forms, depending on the perspective of the investigator. In 
its present form, H

1
 specifies a range of possible values about the single number (500) 

that appears in H
0
.

Null Hypothesis (H
0  
) 

A statistical hypothesis that usu-

ally asserts that nothing special is 

happening with respect to some 

characteristic of the underlying 

population.

Alternative Hypothesis (H
1
) 

The opposite of the null  

hypothesis.
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Regardless of its form, H
1
 usually is identified with the research hypothesis, the 

informal hypothesis or hunch that, by implying the presence of something special in the 
underlying population, serves as inspiration for the entire investigation. “Something 
special” might be, as in the current example, a deviation from a national average, or 
it could be, as in later chapters, a deviation from some control condition produced by 
a new teaching method, a weight-reduction diet, or a self-improvement workshop. In 
any event, it is this research hypothesis—and certainly not the null hypothesis—that 
supplies the motive behind an investigation.

Progress Check *10.2 Indicate what’s wrong with each of the following statistical 
hypotheses:

 (a) H
0
: μ = 155  (b)  H

0
: X  = 241

   H
1
: μ  160         H

1
: X   241

Progress Check *10.3 First using words, then symbols, identify the null hypothesis for 
each of the following situations. (Don’t concern yourself about the precise form of the alterna-
tive hypothesis at this point.)

(a) A school administrator wishes to determine whether sixth-grade boys in her school district 
differ, on average, from the national norms of 10.2 pushups for sixth-grade boys.

(b) A consumer group investigates whether, on average, the true weights of packages of 
ground beef sold by a large supermarket chain differ from the specified 16 ounces.

(c) A marriage counselor wishes to determine whether, during a standard conflict-resolution 
session, his clients differ, on average, from the 11 verbal interruptions reported for “well-
adjusted couples.”

Answers on page 432.

10 .7  DEC IS ION  RULE

A decision rule specifies precisely when H
0
 should be rejected (because the observed 

z qualifies as a rare outcome). There are many possible decision rules, as will be seen 
in Section 11.3. A very common one, already introduced in Figure 10.3, specifies that 
H

0
 should be rejected if the observed z equals or is more positive than 1.96 or if the 

observed z equals or is more negative than –1.96. Conversely, H
0
 should be retained if 

the observed z falls between ± 1.96.

Cr i t i ca l  z  Sco res

Figure 10.4 indicates that z scores of ± 1.96 define the boundaries for the middle 
.95 of the total area (1.00) under the hypothesized sampling distribution for z. Derived 
from the normal curve table, as you can verify by checking Table A in Appendix C, 
these two z scores separate common from rare outcomes and hence dictate whether 
H

0
 should be retained or rejected. Because of their vital role in the decision about H

0
, 

these scores are referred to as critical z scores.

Leve l  o f  S ign i f i cance  ( α)

Figure 10.4 also indicates the proportion (.025  .025  .05) of the total area that is 
identified with rare outcomes. Often referred to as the level of significance of the sta-
tistical test, this proportion is symbolized by the Greek letter α (alpha) and discussed 
more thoroughly in Section 11.4. In the present example, the level of significance, α, 
equals .05.

Research Hypothesis 

Usually identified with the alterna-

tive hypothesis, this is the informal 

hypothesis or hunch that inspires 

the entire investigation.

Decision Rule 

Specifies precisely when H
0
 should 

be rejected (because the observed 

z qualifies as a rare outcome).

Critical z Score 

A z score that separates common 

from rare outcomes and hence  

dictates whether H
0
 should be 

retained or rejected.
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190 INTRODUCTION TO HYPOTHESIS TESTING:  THE z  TEST

The level of significance (α) indicates the degree of rarity required of an observed 
outcome in order to reject the null hypothesis (H

0
). For instance, the .05 level of signifi-

cance indicates that H
0
 should be rejected if the observed z could have occurred just by 

chance with a probability of only .05 (one chance out of twenty) or less.

10 .8  CALCULAT IONS

We can use information from the sample to calculate a value for z. As has been noted 
previously, use Formula 10.1 to convert the observed sample mean of 533 into a z of 3.

10 .9  DEC IS ION

Either retain or reject H
0
, depending on the location of the observed z value relative 

to the critical z values specified in the decision rule. According to the present rule, H
0
 

should be rejected at the .05 level of significance because the observed z of 3 exceeds 
the critical z of 1.96 and, therefore, qualifies as a rare outcome, that is, an unlikely out-
come from a population centered about the null hypothesis.

Reta in  o r  Re jec t  H
0
?

If you are ever confused about whether to retain or reject H
0
, recall the logic behind 

the hypothesis test. You want to reject H
0
 only if the observed value of z qualifies as 

a rare outcome because it deviates too far into the tails of the sampling distribution. 
Therefore, you want to reject H

0
 only if the observed value of z equals or is more posi-

tive than the upper critical z (1.96) or if it equals or is more negative than the lower 
critical z (–1.96). Before deciding, you might find it helpful to sketch the hypothesized 
sampling distribution, along with its critical z values and shaded rejection regions, and 
then use some mark, such as an arrow ( ), to designate the location of the observed 
value of z (3) along the z scale. If this mark is located in the shaded rejection region—or 
farther out than this region, as in Figure 10.4—then H

0
 should be rejected.

Progress Check *10.4 For each of the following situations, indicate whether H
0
 should 

be retained or rejected and justify your answer by specifying the precise relationship between 
observed and critical z scores. Should H

0
 be retained or rejected, given a hypothesis test with 

critical z scores of  ± 1.96 and

(a)  z = 1.74      (b) z = 0.13      (c) z = –2.51
Answers on page 432.

Level of Significance ( α) 

The degree of rarity required of 

an observed outcome in order to 

reject the null hypothesis (H
0
).

FIGURE 10.4 
Proportions of area associated with common and rare outcomes (  = 05).

–1.96 0

Common outcomes

Retain H0

.95

1.96
z

.025

Rare
outcomes

Rare
outcomes

Reject H0 Reject H0

.025
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10 .10  INTERPRETAT ION

Finally, interpret the decision in terms of the original research problem. In the present 
example, it can be concluded that, since the null hypothesis was rejected, the mean 
SAT math score for the local freshman class probably differs from the national average 
of 500.

Although not a strict consequence of the present test, a more specific conclusion 
is possible. Since the sample mean of 533 (or its equivalent z of 3) falls in the upper 
rejection region of the hypothesized sampling distribution, it can be concluded that the 
population mean SAT math score for all local freshmen probably exceeds the national 
average of 500. By the same token, if the observed sample mean or its equivalent z had 
fallen in the lower rejection region of the hypothesized sampling distribution, it could 
have been concluded that the population mean for all local freshmen probably is below 
the national average.

If the observed sample mean or its equivalent z had fallen in the retention region 
of the hypothesized sampling distribution, it would have been concluded (somewhat 
weakly, as discussed in Section 11.2) that there is no evidence that the population mean 
for all local freshmen differs from the national average of 500.

Progress Check *10.5 According to the American Psychological Association, members 
with a doctorate and a full-time teaching appointment earn, on the average, $82,500 per year, 
with a standard deviation of $6,000. An investigator wishes to determine whether $82,500 is 
also the mean salary for all female members with a doctorate and a full-time teaching appoint-
ment. Salaries are obtained for a random sample of 100 women from this population, and the 
mean salary equals $80,100.

(a) Someone claims that the observed difference between $80,100 and $82,500 is large 
enough by itself to support the conclusion that female members earn less than male 
members. Explain why it is important to conduct a hypothesis test.

(b) The investigator wishes to conduct a hypothesis test for what population?

(c) What is the null hypothesis, H
0
?

(d) What is the alternative hypothesis, H
1
?

(e) Specify the decision rule, using the .05 level of significance.

(f) Calculate the value of z. (Remember to convert the standard deviation to a standard error.)

(g) What is your decision about H
0
?

(h) Using words, interpret this decision in terms of the original problem.

Answers on page 433.

Summary

To test a hypothesis about the population mean, a single observed sample mean 
is viewed within the context of a hypothesized sampling distribution, itself centered 
about the null-hypothesized population mean. If the sample mean appears to emerge 
from the dense concentration of possible sample means in the middle of the sampling 
distribution, it qualifies as a common outcome, and the null hypothesis is retained. On 
the other hand, if the sample mean appears to emerge from the sparse concentration of 
possible sample means at the extremities of the sampling distribution, it qualifies as a 
rare outcome, and the null hypothesis is rejected.
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192 INTRODUCTION TO HYPOTHESIS TESTING:  THE z  TEST

Hypothesis tests are based not on the sampling distribution of X expressed in origi-
nal units of measurement, but on its standardized counterpart, the sampling distribution 
of z. Referred to as the z test for a single population mean, this test is appropriate only 
when (1) the population is normally distributed or the sample size is large enough to 
satisfy the central limit theorem, and (2) the population standard deviation is known.

When testing a hypothesis, adopt the following step-by-step procedure:

 ■ State the research problem. Using words, state the problem to be resolved by 
the investigation.

 ■ Identify the statistical hypotheses. The statistical hypotheses consist of a null 
hypothesis (H

0
) and an alternative (or research) hypothesis (H

1
). The null hypoth-

esis supplies the value about which the hypothesized sampling distribution is 
 centered. Depending on the outcome of the hypothesis test, H

0
 will either be 

retained or rejected. Insofar as H
0
 implies that nothing special is happening in the 

underlying population, the investigator usually hopes to reject it in favor of H
1
, the 

research hypothesis. In the present chapter, the statistical hypotheses take the form  

0

1

: some number

: some number

H

H

(Two other possible forms for statistical hypotheses will be described in Chapter 11.)

 ■ Specify a decision rule. This rule indicates precisely when H
0
 should be rejected. 

The exact form of the decision rule depends on a number of factors, to be dis-
cussed in Chapter 11. In any event, H

0
 is rejected whenever the observed z devi-

ates from 0 as far as, or farther than, the critical z does.
The level of significance indicates how rare an observed z must be (assuming 

that H
0
 is true) before H

0
 can be rejected.

 ■ Calculate the value of the observed z. Express the one observed sample mean 
as an observed z, using Formula 10.1.

 ■ Make a decision. Either retain or reject H
0
 at the specified level of significance, 

justifying this decision by noting the relationship between observed and critical 
z scores.

 ■ Interpret the decision. Using words, interpret the decision in terms of the original 
research problem. Rejection of the null hypothesis supports the research hypoth-
esis, while retention of the null hypothesis fails to support the research hypothesis.

Important Terms

Sampling distribution of z  z Test for a population mean

Null hypothesis (H
0
)  Alternative hypothesis (H

1
)

Research hypothesis  Decision rule

Critical z score  Level of significance (α)

Key Equations

z RATIO

hyp

where

x

x

X
z

n
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REV IEW QUEST IONS

 10.6 Calculate the value of the z test for each of the following situations.

 (a) X  = 12;  = 9; n = 25, μ
hyp 

= 15

 (b) X = 3600;  = 4000; n = 100; μ
hyp 

= 3500 

 (c) X = 0.25;  = 010; n = 36; μ
hyp 

= 0.22

 10.7 Given critical z scores of ±1.96, should H
0
 be accepted or rejected for each of the  

z scores calculated in Exercise 10.6?

 *10.8 For the population at large, the Wechsler Adult Intelligence Scale is designed to yield 
a normal distribution of test scores with a mean of 100 and a standard deviation of 
15. School district officials wonder whether, on the average, an IQ score different 
from 100 describes the intellectual aptitudes of all students in their district. Wechsler 
IQ scores are obtained for a random sample of 25 of their students, and the mean IQ 
is found to equal 105. Using the step-by-step procedure described in this chapter, 
test the null hypothesis at the .05 level of significance.

 Answers on page 433.

 10.9 The normal range for a widely accepted measure of body size, the body mass index 
(BMI), ranges from 18.5 to 25. Using the midrange BMI score of 21.75 as the null 
hypothesized value for the population mean, test this hypothesis at the .01 level of 
significance given a random sample of 30 weight-watcher participants who show a 
mean BMI = 22.2 and a standard deviation of 3.1.

 10.10 Let’s assume that, over the years, a paper and pencil test of anxiety yields a mean 
score of 35 for all incoming college freshmen. We wish to determine whether the 
scores of a random sample of 20 new freshmen, with a mean of 30 and a standard 
deviation of 10, can be viewed as coming from this population. Test at the .05 level 
of significance. 

 10.11 According to the California Educational Code (http://www.cde.ca.gov/ls/fa/sf/pegui-
demidhi.asp), students in grades 7 through 12 should receive 400 minutes of physi-
cal education every 10 school days. A random sample of 48 students has a mean of 
385 minutes and a standard deviation of 53 minutes. Test the hypothesis at the .05 
level of significance that the sampled population satisfies the requirement.

 10.12 According to a 2009  survey based on the United States census (http://www.census.
gov/prod/2011pubs/acs-15.pdf), the daily one-way commute time of U.S. workers 
averages 25 minutes with, we’ll assume, a standard deviation of 13 minutes. An 
investigator wishes to determine whether the national average describes the mean 
commute time for all workers in the Chicago area. Commute times are obtained for 
a random sample of 169 workers from this area, and the mean time is found to be 
22.5 minutes. Test the null hypothesis at the .05 level of significance.

 10.13 Supply the missing word(s) in the following statements:

  If the one observed sample mean can be viewed as a    (a)    outcome under the 
hypothesis, H

0
 will be    (b)   . Otherwise, if the one observed sample mean can be 

viewed as a    (c)     outcome under the hypothesis, H
0
 will be    (d)    .
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194 INTRODUCTION TO HYPOTHESIS TESTING:  THE z  TEST

  The pair of z scores that separates common and rare outcomes is referred to as     
  (e)   z scores. Within the hypothesized sampling distribution, the proportion of area 
allocated to rare outcomes is referred to as the     (f)    and is symbolized by the 
Greek letter    (g)    .

  When based on the sampling distribution of z, the hypothesis test is referred to as a    
  (h)   test. This test is appropriate if the sample size is sufficiently large to satisfy  
the    (i)    and if the    (j)    is known.
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CHAPTER

11
More about Hypothesis Testing

11.1 WHY HYPOTHESIS TESTS?

11.2 STRONG OR WEAK DECISIONS

11.3 ONE-TAILED AND TWO-TAILED TESTS

11.4 CHOOSING A LEVEL OF SIGNIFICANCE (𝜶)

11.5 TESTING A HYPOTHESIS ABOUT VITAMIN C

11.6 FOUR POSSIBLE OUTCOMES

11.7 IF H0 REALLY IS TRUE

11.8 IF H0 REALLY IS FALSE BECAUSE OF A LARGE EFFECT

11.9 IF H0 REALLY IS FALSE BECAUSE OF A SMALL EFFECT

11.10 INFLUENCE OF SAMPLE SIZE

11.11 POWER AND SAMPLE SIZE

Summary / Important Terms / Review Questions

Preview

Based on the notion of everything that could possibly happen just by chance—in other 

words, based on the concept of a sampling distribution—hypothesis tests permit 

us to draw conclusions that go beyond a limited set of actual observations. This 

chapter describes why rejecting the null hypothesis is stronger than retaining the null 

hypothesis and why a one-tailed test is more likely than a two-tailed test to detect a 

false null hypothesis.

We speculate about how the hypothesis test fares if we assume, in turn, that the 

null hypothesis is true and then that it is false. The two types of incorrect decisions—

rejecting a true null hypothesis (a false alarm) or retaining a false null hypothesis 

(a miss)—can be controlled by our selection of the level of significance and of the 

sample size.
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196 MORE ABOUT HYPOTHESIS TESTING

11 .1  WHY  HYPOTHES IS  TESTS?

There is a crucial link between hypothesis tests and the need of investigators, whether 
pollsters or researchers, to generalize beyond existing data. If the 100 freshmen in 
the SAT example of the previous chapter had been not a sample but a census of the 
entire freshman class, there wouldn’t have been any need to generalize beyond exist-
ing data, and it would have been inappropriate to conduct a hypothesis test. Now, 
the observed difference between the newly observed population mean of 533 and the 
national average of 500, by itself, would have been sufficient grounds for concluding 
that the mean SAT math score for all local freshmen exceeds the national average. 
Indeed, any observed difference in favor of the local freshmen, regardless of the size of 
the difference, would have supported this conclusion.

If we must generalize beyond the 100 freshmen to a larger local population, as was 
actually the case, the observed difference between 533 and 500 cannot be interpreted at 
face value. The basic problem is that the sample mean for a second random sample of 
100 freshmen probably would differ, just by chance, from the sample mean of 533 for 
the first sample. Accordingly, the variability among sample means must be considered 
when we attempt to decide whether the observed difference between 533 and 500 is 
real or merely transitory.

Impo r tance  o f  t he  S tanda rd  E r ro r

To evaluate the effect of chance, we use the concept of a sampling distribution, that 
is, the concept of the sample means for all possible random outcomes. A key element 
in this concept is the standard error of the mean, a measure of the average amount by 
which sample means differ, just by chance, from the population mean. Dividing the 
observed difference (533−500) by the standard error (11) to obtain a value of z (3) 
locates the original observed difference along a z scale of either common outcomes 
(reasonably attributable to chance) or rare outcomes (not reasonably attributable to 
chance). If, when expressed as z, the ratio of the observed difference to the standard 
error is small enough to be reasonably attributed to chance, we retain H0. Otherwise, if 
the ratio of the observed difference to the standard error is too large to be reasonably 
attributed to chance, as in the SAT example, we reject H0.

Before generalizing beyond the existing data, we must always measure the effect of 
chance; that is, we must obtain a value for the standard error. To appreciate the vital 
role of the standard error in the SAT example, increase its value from 11 to 33 and 
note that even though the observed difference remains the same (533−500), we would 
retain, not reject, H0 because now z would equal 1 (rather than 3) and be less than the 
critical z of 1.96.

Poss ib i l i t y  o f  I nco r rec t  Dec i s ions

Having made a decision about the null hypothesis, we never know absolutely 
whether that decision is correct or incorrect, unless, of course, we survey the entire 
population. Even if H0 is true (and, therefore, the hypothesized distribution of z about 
H0 also is true), there is a slight possibility that, just by chance, the one observed z actu-
ally originates from one of the shaded rejection regions of the hypothesized distribution 
of z, thus causing the true H0 to be rejected. This type of incorrect decision—rejecting a 
true H0—is referred to as a type I error or a false alarm.

On first impulse, it might seem desirable to abolish the shaded rejection regions in 
the hypothesized sampling distribution to ensure that a true H0 never is rejected. A most 
unfortunate consequence of this strategy, however, is that no H0, not even a radically 
false H0, ever would be rejected. This second type of incorrect decision—retaining a 
false H0—is referred to as a type II error or a miss. Both type I and type II errors are 
described in more detail later in this chapter.

Witte11e_c11.indd   196 11/18/2016   6:12:16 PM



 11.2 STRONG OR WEAK DECISIONS  197

Min im i z ing  I nco r rec t  Dec i s ions

Traditional hypothesis-testing procedures, such as the one illustrated in Figure 11.1, 
tend to minimize both types of incorrect decisions. If H0 is true, there is a high probabil-
ity that the observed z will qualify as a common outcome under the hypothesized sam-
pling distribution and that the true H0 will be retained. (In Figure 11.1, this probability 
equals the proportion of white area (.95) in the hypothesized sampling distribution.) 
On the other hand, if H0 is seriously false, because the hypothesized population mean 
differs considerably from the true population mean, there is also a high probability that 
the observed z will qualify as a rare outcome under the hypothesized distribution and 
that the false H0 will be rejected. (In Figure 11.1, this probability can’t be determined 
since, in this case, the hypothesized sampling distribution does not actually reflect the 
true sampling distribution. More about this later in the chapter.)

Even though we never really know whether a particular decision is correct or 
incorrect, it is reassuring that in the long run, most decisions will be correct—
assuming the null hypotheses are either true or seriously false.

11 .2  STRONG  OR  WEAK  DEC IS IONS

Reta in ing  H 0 I s  a  Weak  Dec i s ion

There are subtle but important differences in the interpretation of decisions to 
retain H0 and to reject H0. H0 is retained whenever the observed z qualifies as a 
common outcome on the assumption that H0 is true. Therefore, H0 could be true. 
However, the same observed result also would qualify as a common outcome when 
the original value in H0 (500) is replaced with a slightly different value. Thus, the 
retention of H0 must be viewed as a relatively weak decision. Because of this weak-
ness, many statisticians prefer to describe this decision as simply a failure to reject H0 
rather than as the retention of H0. In any event, the retention of H0 can’t be interpreted 
as proving H0 to be true. If H0 had been retained in the present example, it would have 
been appropriate to conclude not that the mean SAT math score for all local fresh-
men equals the national average, but that the mean SAT math score could equal the 
national average, as well as many other possible values in the general vicinity of the 
national average.

–1.96 0

Common outcomes

Retain H0

.95

1.96
z

.025

Rare
outcomes

Rare
outcomes

Reject H0 Reject H0

.025

FIGURE 11.1 

Proportions of area associated with  
common and rare outcomes (α = .05).
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Re jec t ing  H 0 I s  a  S t rong  Dec i s ion

On the other hand, H0 is rejected whenever the observed z qualifies as a rare out-
come—one that could have occurred just by chance with a probability of .05 or less—
on the assumption that H0 is true. This suspiciously rare outcome implies that H0 is 
probably false (and conversely, that H1 is probably true). Therefore, the rejection of H0 
can be viewed as a strong decision. When H0 was rejected in the present example, it 
was appropriate to report a definitive conclusion that the mean SAT math score for all 
local freshmen probably exceeds the national average.
To summarize,

the decision to retain H0 implies not that H0 is probably true, but only that H0 
could be true, whereas the decision to reject H0 implies that H0 is probably false 
(and that H1 is probably true).

Since most investigators hope to reject H0 in favor of H1, the relative weakness of the 
decision to retain H0 usually does not pose a serious problem.

Why  the  Resea rch  Hypo thes i s  I sn ’ t  Tes ted  D i rec t l y

Even though H0, the null hypothesis, is the focus of a statistical test, it is usually 
of secondary concern to the investigator. Nevertheless, there are several reasons why, 
although of primary concern, the research hypothesis is identified with H1 and tested 
indirectly.

Lacks  Necessa ry  P rec i s ion

The research hypothesis, but not the null hypothesis, lacks the necessary 
 precision to be tested directly.

To be tested, a hypothesis must specify a single number about which the hypoth-
esized sampling distribution can be constructed. Because it specifies a single number, 
the null hypothesis, rather than the research hypothesis, is tested directly. In the SAT 
example, the null hypothesis specifies that a precise value (the national average of 500) 
describes the mean for the current population of interest (all local freshmen). Typi-
cally, the research hypothesis lacks the required precision. It merely specifies that some 
inequality exists between the hypothesized value (500) and the mean for the current 
population of interest (all local freshmen).

Suppo r ted  by  a  S t rong  Dec i s ion  to  Re jec t

Logical considerations also argue for the indirect testing of the research hypothesis 
and the direct testing of the null hypothesis.

Because the research hypothesis is identified with the alternative hypothesis, 
the decision to reject the null hypothesis, should it be made, will provide 
strong support for the research hypothesis, while the decision to retain the null 
hypothesis, should it be made, will provide, at most, weak support for the null 
hypothesis.

As mentioned, the decision to reject the null hypothesis is stronger than the deci-
sion to retain it. Logically, a statement such as “All cows have four legs” can never 
be proven in spite of a steady stream of positive instances. It only takes one negative 
instance—one cow with three legs—to disprove the statement. By the same token, 
one positive instance (common outcome) doesn’t prove the null hypothesis, but one 
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 negative instance (rare outcome) disproves the null hypothesis. (Strictly speaking, 
however, since a rare outcome implies that the null hypothesis is probably but not defi-
nitely false, remember that there always is a very small possibility that the rare outcome 
reflects a true null hypothesis.)

Logically, therefore, it makes sense to identify the research hypothesis with the 
alternative hypothesis. If, as hoped, the data favor the research hypothesis, the test will 
generate strong support for your hunch: It’s probably true. If the data do not favor the 
research hypothesis, the hypothesis test will generate, at most, weak support for the 
null hypothesis: It could be true. Weak support for the null hypothesis is of little conse-
quence, as this hypothesis—that nothing special is happening in the population—usu-
ally serves only as a convenient testing device.

11 .3  ONE-TA ILED  AND  TWO-TA ILED  TESTS

Let’s consider some techniques that make the hypothesis test more responsive to spe-
cial conditions.

Two-Ta i l ed  Tes t

Generally, the alternative hypothesis, H1, is the complement of the null hypoth-
esis, H0. Under typical conditions, the form of H1 resembles that shown for the SAT 
example, namely,

1 : 500H

This alternative hypothesis says that the null hypothesis should be rejected if the mean 
reading score for the population of local freshmen differs in either direction from the 
national average of 500. An observed z will qualify as a rare outcome if it deviates too 
far either below or above the national average. Panel A of Figure 11.2 shows rejection 
regions that are associated with both tails of the hypothesized sampling distribution. 
The corresponding decision rule, with its pair of critical z scores of ±1.96, is referred to 
as a two-tailed or nondirectional test.

One-Ta i l ed  Tes t  ( Lower  Ta i l  C r i t i ca l )

Now let’s assume that the research hypothesis for the investigation of SAT math 
scores was based on complaints from instructors about the poor preparation of local 
freshmen. Assume also that if the investigation supports these complaints, a remedial 
program will be instituted. Under these circumstances, the investigator might prefer a 
hypothesis test that is specially designed to detect only whether the population mean 
math score for all local freshmen is less than the national average.

This alternative hypothesis reads:

1 : 500H

It reflects a concern that the null hypothesis should be rejected only if the population 
mean math score for all local freshmen is less than the national average of 500. Accord-
ingly, an observed z triggers the decision to reject H0 only if z deviates too far below the 
national average. Panel B of Figure 11.2 illustrates a rejection region that is associated 
with only the lower tail of the hypothesized sampling distribution. The corresponding 
decision rule, with its critical z of –1.65, is referred to as a one-tailed or directional 
test with the lower tail critical. Use Table A in Appendix C to verify that if the critical 
z equals –1.65; then .05 of the total area under the distribution of z has been allocated 
to the lower rejection region. Notice that the level of significance, α, equals .05 for this 
one-tailed test and also for the original two-tailed test.

Reminder: 

Rejecting H0 implies that it prob-

ably is false, while retaining H0 

implies only that it might be true.

Two-Tailed or Nondirectional 

Test 

Rejection regions are located in 

both tails of the sampling  

distribution.

One-Tailed or Directional Test 

Rejection region is located in 

just one tail of the sampling 

 distribution.
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Ex t ra  Sens i t i v i t y  o f  One -Ta i l ed  Tes ts

This new one-tailed test is extra sensitive to any drop in the population mean for the 
local freshmen below the national average. If H0 is false because a drop has occurred, 
then the observed z will be more likely to deviate below the national average. As can 
be seen in panels A and B of Figure 11.2, an observed deviation in the direction of 
concern—below the national average—is more likely to penetrate the broader rejection 
region for the one-tailed test than that for the two-tailed test. Therefore, the decision 
to reject a false H0 (in favor of the research hypothesis) is more likely to occur in the 
one-tailed test than in the two-tailed test.

One-Ta i l ed  Tes t  (Uppe r  Ta i l  C r i t i ca l )

Panel C of Figure 11.2 illustrates a one-tailed or directional test with the upper tail 
critical. This one-tailed test is the mirror image of the previous test. Now the alternative 
hypothesis reads:

1 : 500H

and its critical z equals 1.65. This test is specially designed to detect only whether 
the population mean math score for all local freshmen exceeds the national average. 
For example, the research hypothesis for this investigation might have been inspired 
by the possibility of eliminating an existing remedial math program if it can be dem-
onstrated that, on the average, the SAT math scores of all local freshmen exceed the 
national average.

–1.96 0

A. Two-Tailed or Nondirectional Test

1.96
z

.025

Retain H0Reject
H0

Reject
H0

.025

–1.65 0

B. One-Tailed or Directional Test
(Lower Tail Critical)

z

.05

Retain H0Reject H0

1.650

C. One-Tailed or Directional Test
(Upper Tail Critical)

z

.05

Reject H0Retain H0

FIGURE 11.2  

Three different types of tests (α = .05).
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One  o r  Two  Ta i l s?

Before a hypothesis test, if there is a concern that the true population mean dif-
fers from the hypothesized population mean only in a particular direction, use 
the appropriate one-tailed or directional test for extra sensitivity. Otherwise, 
use the more customary two-tailed or nondirectional test.

Having committed yourself to a one-tailed test with its single rejection region, you 
must retain H0, regardless of how far the observed z deviates from the hypothesized 
population mean in the direction of “no concern.” For instance, if a one-tailed test 
with the lower tail critical had been used with the data for 100 freshmen from the SAT 
example, H0 would have been retained because, even though the observed z equals an 
impressive value of 3, it deviates in the direction of no concern—in this case, above 
the national average. Clearly, a one-tailed test should be adopted only when there is 
absolutely no concern about deviations, even very large deviations, in one direction. 
If there is the slightest concern about these deviations, use a two-tailed test.

The selection of a one- or two-tailed test should be made before the data are col-
lected. Never “peek” at the value of the observed z to determine whether to locate the 
rejection region for a one-tailed test in the upper or the lower tail of the distribution 
of z. To qualify as a one-tailed test, the location of the rejection region must reflect 
the investigator’s concern only about deviations in a particular direction before any 
inspection of the data. Indeed, the investigator should be able to muster a compelling 
reason, based on an understanding of the research hypothesis, to support the direction 
of the one-tailed test.

New Nu l l  Hypo thes i s  f o r  One -Ta i l ed  Tes ts

When tests are one-tailed, a complete statement of the null hypothesis also should 
include all possible values of the population mean in the direction of no concern. For 
example, given a one-tailed test with the lower tail critical, such as H1: μ < 500, the 
complete null hypothesis should be stated as H0: μ ≥ 500 instead of H0: μ = 500. By  
the same token, given a one-tailed test with the upper tail critical, such as H1: μ > 500, 
the complete null hypothesis should be stated as H0: μ ≤ 500.

If you think about it, the complete H0 describes all of the population means that could 
be true if a one-tailed test results in the retention of the null hypothesis. For instance, 
if a one-tailed test with the lower tail critical results in the retention of H0: μ ≥ 500, the 
complete H0 accurately reflects the fact that not only μ = 500 could be true, but also that 
any other value of the population mean in the direction of no concern, that is, μ > 500, 
could be true. (Remember, when the test is one-tailed, even a very deviant result in the 
direction of no concern—possibly reflecting a mean much larger than 500—still would 
trigger the decision to retain H0.) Henceforth, whenever a one-tailed test is employed, 
write H0 to include values of the population mean in the direction of no concern—even 
though the single number in the complete H0 identified by the equality sign is the one 
value about which the hypothesized sampling distribution is centered and, therefore, 
the one value actually used in the hypothesis test.

Progress Check *11.1 Each of the following statements could represent the point of 
departure for a hypothesis test. Given only the information in each statement, would you 
use a two-tailed (or nondirectional) test, a one-tailed (or directional) test with the lower tail 
critical, or a one-tailed (or directional) test with the upper tail critical? Indicate your deci-
sion by specifying the appropriate H0 and H1. Furthermore, whenever you conclude that the 
test is one-tailed, indicate the precise word (or words) in the statement that justifies the 
one-tailed test.

Reminder: 

In the absence of compelling 

reasons for a one-tailed test, use a 

two-tailed test.
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(a) An investigator wishes to determine whether, for a sample of drug addicts, the mean score 
on the depression scale of a personality test differs from a score of 60, which, according 
to the test documentation, represents the mean score for the general population.

(b) To increase rainfall, extensive cloud-seeding experiments are to be conducted, and the 
results are to be compared with a baseline figure of 0.54 inch of rainfall (for comparable 
periods when cloud seeding was not done).

(c) Public health statistics indicate, we will assume, that American males gain an average of 
23 lbs during the 20-year period after age 40. An ambitious weight-reduction program, 
spanning 20 years, is being tested with a sample of 40-year-old men.

(d) When untreated during their lifetimes, cancer-susceptible mice have an average life span 
of 134 days. To determine the effects of a potentially life-prolonging (and cancer-retarding) 
drug, the average life span is determined for a group of mice that receives this drug.

Progress Check *11.2 For each of the following situations, indicate whether H0 should 
be retained or rejected.

Given a one-tailed test, lower tail critical with α = .01, and

(a) z = – 2.34 (b) z = – 5.13 (c) z = 4.04

Given a one-tailed test, upper tail critical with α = .05, and

(d) z = 2.00 (e) z = – 1.80  (f) z = 1.61

Answers on pages 433 and 434.

11 .4  CHOOS ING  A  LEVEL  OF  S IGN IF ICANCE  ( )

The level of significance indicates how rare an observed z must be before H0 can be 
rejected. To reject H0 at the .05 level of significance implies that the observed z would 
have occurred, just by chance, with a probability of only .05 (one chance out of twenty) 
or less.

The level of significance also spotlights an inherent risk in hypothesis testing, that 
is, the risk of rejecting a true H0. When the level of significance equals .05, there is a 
probability of .05 that, even though H0 is true, the observed z will stray into the rejec-
tion region and cause the true H0 to be rejected.

Which  Leve l  o f  S ign i f i cance?

When the rejection of a true H0 is particularly serious, a smaller level of significance 
can be selected. For example, the .01 level of significance implies that before H0 can 
be rejected, the observed z must achieve a degree of rarity equal to .01 (one chance out 
of one hundred) or less; it also limits, to a probability of .01, the risk of rejecting a true 
H0. The .01 level might be used in a hypothesis test in which the rejection of a true H0 
would cause the introduction of a costly new remedial education program, even though 
the population mean math score for all local freshmen really equals the national aver-
age. An even smaller level of significance, such as the .001 level, might be used when 
the rejection of a true H0 would have horrendous consequences—for instance, the treat-
ment of serious illnesses, such as AIDS, exclusively with a new, very expensive drug 
that not only is worthless but also has severe side effects.

Although many different levels of significance are possible, most tables for hypoth-
esis tests are geared to the .05 and .01 levels. In this book, the level of significance will 
be specified for you. However, in real-life applications, you, as an investigator, might 
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have to select a level of significance. Unless there are obvious reasons for selecting 
either a larger or a smaller level of significance, use the customary .05 level—the larg-
est level of significance reported in most professional journals.

When testing hypotheses with the z test, you may find it helpful to refer to Table 11.1, 
which lists the critical z values for one- and two-tailed tests at the .05 and .01 levels of 
significance. These z values were obtained from Table A in Appendix C.

Progress Check *11.3 Specify the decision rule for each of the following situations 
(referring to Table 11.1 to find critical z values):

(a) a two-tailed test with α = .05

(b) a one-tailed test, upper tail critical, with α = .01

(c) a one-tailed test, lower tail critical, with α = .05

(d) a two-tailed test with α = .01

Answers on page 434.

11 .5  TEST ING  A  HYPOTHES IS  ABOUT  V ITAMIN  C

Let’s look more closely at the four possible outcomes of a hypothesis test by focusing 
on a study to determine whether vitamin C increases the intellectual aptitude of high 
school students. After being randomly selected from some large school district, each of 
36 students takes a daily dose of 90 milligrams of vitamin C for a period of two months 
before being tested for IQ.

Ordinarily, IQ scores for all students in this school district approximate a normal 
distribution with a mean of 100 and a standard deviation of 15. According to the null 
hypothesis, a mean of 100 still would describe the distribution of IQ scores even if all 
of the students in the district were to receive the vitamin C treatment. Furthermore, 
given our exclusive concern about detecting only any deviation of the population mean 
above 100, the null hypothesis takes the form appropriate for a one-tailed test with the 
upper tail critical, namely:

0 : 100H

Table 11.1
CRITICAL z VALUES

LEVEL OF  
SIGNIFICANCE (α)

TYPE OF TEST .05 .01
Two-tailed or nondirectional test ±1.96 ±2.58
  (H0: μ = some number)
  (H1: μ ≠ some number)

One-tailed or directional test, lower tail critical –1.65 –2.33
  (H0: μ ≥ some number)
  (H1: μ < some number)

One-tailed or directional test, upper tail critical +1.65 +2.33
  (H0: μ ≤ some number)
  (H1: μ > some number)
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The rejection of H0 would support H1, the research hypothesis that something special 
is happening in the underlying population (because vitamin C increases intellectual 
aptitude), namely:

0 : 100H

z  Tes t  I s  App rop r ia te

To determine whether the sample mean IQ for the 36 students qualifies as a com-
mon or a rare outcome under the null hypothesis, a z test will be used. The z test for a 
population mean is appropriate since, for IQ scores, the population standard deviation 
is known to be 15 and the shape of the population is known to be normal.

Two  G roups  Wou ld  Have  Been  Be t te r

Although poorly designed, the present experiment supplies a perspective that will 
be most useful in later chapters. A better-designed experiment would contrast the IQ 
scores for the group of subjects who receive vitamin C with the IQ scores for a placebo 
control group of subjects who receive fake vitamin C—thereby controlling for the 
“placebo effect,” a self-induced improvement in performance caused by the subject’s 
awareness of being treated in a special way. Hypothesis tests for experiments with two 
groups are described in Chapters 14 and 15.

The box on page 205 summarizes those features of the hypothesis test that can be 
identified before the collection of any data.

11 .6  FOUR  POSS IBLE  OUTCOMES

Table 11.2 summarizes the four possible outcomes of any hypothesis test. Before test-
ing a hypothesis, we must be concerned about all four possible outcomes because we 
don’t know whether H0 is true or false—that’s why we’re testing the hypothesis. If, 
unknown to us, H0 really is true, a well-designed hypothesis test will tend to confirm 
this fact; that is, it will cause us to retain H0 and conclude that H0 could be true. To 
conclude otherwise, as is always a slight possibility, reflects a type I error. On the 
other hand, if, unknown to us, H0 really is seriously false, a well-designed hypothesis 
test also will tend to confirm this fact; that is, it will cause us to reject H0 and conclude 
that H0 is false. To conclude otherwise, as is always a slight possibility, reflects a type 
II error.

Fou r  Poss ib le  Ou tcomes  o f  t he  V i tamin  C  Expe r iment

It’s instructive to describe the four possible outcomes in Table 11.2 in terms of the 
vitamin C experiment.

Table 11.2
POSSIBLE OUTCOMES OF A HYPOTHESIS TEST

STATUS OF H0

DECISION TRUE H0 FALSE H0

Retain H0 (1) Correct decision (3) Type II error (miss)

Reject H0 (2) Type I error (false alarm) (4) Correct decision
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HYPOTHESIS TEST SUMMARY:  
z TEST FOR A POPULATION MEAN (PRIOR TO THE  

VITAMIN C EXPERIMENT)

Research Problem

Does the daily ingestion of vitamin C cause an increase, on average, in IQ 
scores among all students in the school district?

Statistical Hypotheses

0

1

: 100

: 100

H

H

Decision Rule

Reject H0 at the .05 level of significance if z ≥ 1.65.

Calculations

15 15
2.5

36 6
x

n

1. If H0 really is true (because vitamin C does not cause an increase in the popu-
lation mean IQ), then it is a correct decision to retain the true H0. In this  
case, we would conclude correctly that there is no evidence that vitamin C 
increases IQ.

2. If H0 really is true, then it is a type I error to reject the true H0 and conclude 
that vitamin C increases IQ when, in fact, it doesn’t. Type I errors are sometimes 
called false alarms because, as with their firehouse counterparts, they trigger 
wild goose chases after something that does not exist. For instance, a type I error 
might encourage a batch of worthless experimental efforts to discover precisely 
what dosage of vitamin C maximizes the nonexistent “increase” in IQ.

3. If H0 really is false (because vitamin C really causes an increase in the population 
mean IQ), then it is a type II error to retain the false H0 and conclude that there 
is no evidence that vitamin C increases IQ when, in fact, it does. Type II errors 
are sometimes called misses because they fail to detect a potentially important 
relationship, such as that between vitamin C and IQ.

4. If H0 really is false, then it is a correct decision to reject the false H0 and con-
clude that vitamin C increases IQ.

Impo r tance  o f  Nu l l  Hypo thes i s

Refer to Table 11.2 when, as in the following exercise, you must describe the four 
possible outcomes for a particular hypothesis test. To avoid confusing the type I and II 
errors, first identify the null hypothesis, H0. Typically, the null hypothesis asserts that 
there is no effect, thereby contradicting the research hypothesis. In the present case, 
contrary to the research hypothesis, the null hypothesis (H0: μ ≤ 100) assumes that 
vitamin C has no positive effect on IQ.

Type I Error 

Rejecting a true null hypothesis.

Type II Error 

Retaining a false null hypothesis.
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Dec is ions  Usua l l y  A re  Co r rec t

When generalizing beyond existing observations, there is always the possibility of 
a type I or type II error, and we never can be absolutely certain of having made the 
correct decision. At best, we can use a test procedure that usually produces a correct 
decision when H0 is either true or seriously false. This claim will be examined in the 
context of the vitamin C experiment, assuming first that H0 really is true and then that 
H0 really is false. Although you might view this approach as hopelessly theoretical, 
since we never know whether H0 really is true or false, read the next few sections care-
fully, for they have important implications for any hypothesis test.

Progress Check *11.4

(a) List the four possible outcomes for any hypothesis test.

(b) Under the U.S. Criminal Code, a defendant is presumed innocent until proven guilty. View-
ing a criminal trial as a hypothesis test (with H0 specifying that the defendant is innocent), 
describe each of the four possible outcomes.

Answers on page 434.

11 .7  I F  H 0 REALLY  I S  TRUE

Assume that H0 really is true because vitamin C doesn’t increase the population mean 
IQ. In this case, we need be concerned only about either retaining or rejecting a true H0 
(the two leftmost outcomes in Table 11.2). It’s instructive to view these two possible 
outcomes in terms of the sampling distribution in Figure 11.3. Centered about a value 
of 100, the hypothesized sampling distribution in Figure 11.3 reflects the properties 
of the projected one-tailed test for vitamin C. If H0 really is true—and this is a crucial 
point—the hypothesized sampling distribution also can be viewed as the true sampling 
distribution (from which the one observed sample mean actually originates). There-
fore, the one observed sample mean (or z) in the experiment can be viewed as being 
randomly selected from the hypothesized distribution.

95 97.5 100 102.5

1.65

105

–2 –1 0 1 2

X

z

Retain H0 Reject H0

Sample means
that produce a
type I error
(α = .05)

Sample means
that produce a
correct decision
(1 – α= .95)

Hypothesized and
true distribution

NO EFFECT

FIGURE 11.3  

Hypothesized and true sampling distribution  
when H0 is true (because vitamin C causes no 
increase in IQ).
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Probab i l i t y  o f  a  Type  I  E r ro r

When, just by chance, a randomly selected sample mean originates from the small, 
shaded portion of the sampling distribution in Figure 11.3, its z value equals or exceeds 
1.65, and hence H0 is rejected. Because H0 really is true, this is an incorrect decision or 
type I error—a false alarm, announced as evidence that vitamin C increases IQ, even 
though it really does not. The probability of a type I error equals alpha (α), the level of 
significance. (The level of significance, remember, indicates the proportion of the total 
area of the sampling distribution in the rejection region for H0.) In the present case, the 
probability of a type I error equals .05, as indicated in Figure 11.3.

Probab i l i t y  o f  a  Co r rec t  Dec i s ion

When, just by chance, a randomly selected sample mean originates from the large 
white portion of the sampling distribution in Figure 11.3, its z value is less than 1.65 
and H0 is retained. Because H0 really is true, this is a correct decision—announced as 
a lack of evidence that vitamin C increases IQ. The probability of a correct decision 
equals 1 − α, that is, .95.

Reduc ing  the  P robab i l i t y  o f  a  Type  I  E r ro r

If H0 really is true, the present test will produce a correct decision with a prob-
ability of .95 and a type I error with a probability of .05.* If a false alarm has serious 
consequences, the probability of a type I error can be reduced to .01 or even to .001 
simply by using the .01 or .001 level of significance, respectively. One of these levels 
of significance might be preferred for the vitamin C test if, for instance, a false alarm 
could cause the adoption of an expensive program to supply worthless vitamin C to 
all students in the district and, perhaps, the creation of an accelerated curriculum to 
accommodate the fictitious increase in intellectual aptitude.

T rue  H 0 Usua l l y  Re ta ined

If H0 really is true, the probability of a type I error, α, equals the level of signifi-
cance, and the probability of a correct decision equals 1 − α.

Because values of .05 or less are usually selected for α, we can conclude that if H0 
really is true, correct decisions will occur much more frequently than will type I errors.

Progress Check *11.5 In order to eliminate the type I error, someone decides to use  
the .00 level of significance. What’s wrong with this procedure?

Answer on page 434.

11.8  I F  H 0 REALLY  IS  FALSE  BECAUSE  OF  A  
LARGE  EFFECT

Next, assume that H0 really is false because vitamin C increases the population mean 
by not just a few points, but by many points—for example, by ten points. Using the 
vocabulary of most investigators, we also could describe this increase as a “ten-point 

Alpha (𝜶) 

The probability of a type I error, 

that is, the probability of rejecting a 

true null hypothesis.

Reminder: 

If H0 is true and an error is com-

mitted, it must be a type I error.

*Strictly speaking, if H0: μ ≤ 100 really is true, the true sampling distribution also could be 

centered about some value less than 100, in the direction of no concern. In this case, the conse-

quences of the hypothesis test would be even more favorable than suggested. Essentially, because 

the true sampling distribution would be shifted to the left of the one shown in Figure 11.3, while 

everything else remains the same, the type I error would have a smaller probability than .05, and 

a correct decision would have a larger probability than .95.

Witte11e_c11.indd   207 11/18/2016   6:12:17 PM



208 MORE ABOUT HYPOTHESIS TESTING

Beta ( β) 

The probability of a type II error, 

that is, the probability of retaining a 

false null hypothesis.

effect,” since any difference between a true and a hypothesized population mean is 
referred to as an effect. If H0 really is false, because of the relatively large ten-point 
effect of vitamin C on IQ, we need be concerned only about either retaining or reject-
ing a false H0 (the two rightmost outcomes in Table 11.2). Let’s view each of these two 
possible outcomes in terms of the sampling distributions in Figure 11.4.

Hypo thes i zed  Samp l ing  D i s t r i bu t ion

It is essential to distinguish between the hypothesized sampling distribution and 
the true sampling distribution shown in Figure 11.4. Centered about the hypothesized 
population mean of 100, the hypothesized sampling distribution serves as the par-
ent distribution for the familiar decision rule with a critical z of 1.65 for the projected 
one-tailed test. Once the decision rule has been identified, attention shifts from the 
hypothesized sampling distribution to the true sampling distribution.

T rue  Samp l ing  D i s t r i bu t ion

Centered about the true population mean of 110 (which reflects the ten-point effect, 
that is, 100 + 10 = 110), the true sampling distribution serves as the parent distri-
bution for the one randomly selected sample mean (or z) that will be observed in the 
experiment. Viewed relative to the decision rule (based on the hypothesized sampling 
distribution), the one randomly selected sample mean (originating from the true sam-
pling distribution) dictates whether we retain or reject the false H0.

Low  P robab i l i t y  o f  a  Type  I I  E r ro r  f o r  a  La rge  E f fec t

When, just by chance, a randomly selected sample mean originates from the very 
small black portion of the true sampling distribution of the mean, its z value is 
less than 1.65, and therefore, in compliance with the decision rule, H0 is retained. 
Because H0 really is false, this is an incorrect decision or type II error—a miss, 
announced as a lack of evidence that vitamin C increases IQ, even though, in fact, 
it does. With the aid of tables for the normal curve, it can be demonstrated that in 
the present case, the probability of a type II error, symbolized by the Greek letter 
beta ( ß), equals .01.

Hypothesized Sampling  

Distribution 

Centered about the hypothesized 

population mean, this  

distribution is used to generate  

the decision rule.

True Sampling Distribution 

Centered about the true population 

mean, this distribution produces 

the one observed mean (or z).

Effect 

Any difference between a true and 

a hypothesized population mean.

FIGURE 11.4  

Hypothesized and true sampling distribution when H0 is 
false because of a large effect.
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LARGE EFFECT
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The present argument does not require that you know how to calculate this prob-
ability of .01 or those given in the remainder of the chapter. In brief, these probabilities 
represent areas under the true sampling distribution found by re-expressing the critical 
z as a deviation from the true population mean [110] rather than from the hypothesized 
population mean [100] and referring to Table A in Appendix C, the normal curve table. 
As will become apparent in Section 11.11, where these probabilities—or more accu-
rately, the complements (1 − ß) of these probabilities—aid the selection of sample size, 
they can be calculated most efficiently by using a computerized statistical program, 
such as Minitab, which incorporates the normal curve table.

High  P robab i l i t y  o f  a  Co r rec t  Dec i s ion  fo r  a  La rge  E f fec t

When, just by chance, a sample mean originates from the large shaded portion of 
the true sampling distribution, its z value equals or exceeds 1.65, and H0 is rejected. 
Because H0 really is false, this is a correct decision—announced as evidence that vita-
min C increases IQ. In the present case, the probability of a correct decision, symbol-
ized as 1 − β, equals .99.

Rev iew

If H0 really is false, because vitamin C has a large ten-point effect on the population 
mean IQ, the projected one-tailed test will do quite well. There is a high probability of 
.99 that a correct decision will be made and a probability of only .01 that a type II error 
will be committed. This conclusion, when combined with that for the previous section, 
justifies the earlier claim that hypothesis tests tend to produce correct decisions when 
either H0 really is true or H0 really is false because of a large effect.

Progress Check *11.6 Indicate whether the following statements, all referring to 
 Figure 11.4, are true or false:

(a) The assumption that H0 really is false is depicted by the separation of the hypothesized and 
true distributions.

(b) In practice, when actually testing a hypothesis, we would not know that the true population 
mean equals 110.

(c) The one observed sample mean is viewed as originating from the hypothesized sampling 
distribution.

(d) A correct decision would be made if the one observed sample mean has a value of 103.

Answers on page 434.

11 .9  I F  H 0 REALLY  I S  FALSE  BECAUSE  OF  A  
SMALL  EFFECT

The projected hypothesis test does not fare nearly as well if H0 really is false because 
vitamin C increases the population mean IQ by only a few points—for example, by 
only three points. Once again, as indicated in Figure  11.5, there are two different 
distributions of sample means: the hypothesized sampling distribution centered about 
the hypothesized population mean of 100 and the true sampling distribution centered 
about the true population mean of 103 (which reflects the three-point effect, that is, 
100 + 3 = 103). After the decision rule has been constructed with the aid of the 
hypothesized sampling distribution, attention shifts to the true sampling distribution 
from which the one randomly selected sample mean actually will originate.

Reminder: 

If H0 is false and an error is com-

mitted, it must be a type II error.

Witte11e_c11.indd   209 11/18/2016   6:12:17 PM



210 MORE ABOUT HYPOTHESIS TESTING

Low  P robab i l i t y  o f  a  Co r rec t  Dec i s ion  fo r  a  Smal l  E f fec t

Viewed relative to the decision rule, the true sampling distribution supplies two 
types of randomly selected sample means: those that produce a type II error because 
they originate from the black sector and those that produce a correct decision because 
they originate from the shaded sector. Because of the small three-point effect, the true 
and hypothesized population means are much closer in Figure 11.5 than in Figure 11.4. 
As a result, the entire true sampling distribution in Figure 11.5 is shifted toward the 
retention region for the false H0, and proportionately more of this distribution is black. 
Now the projected one-tailed test performs more poorly; there is a fairly high prob-
ability of .67 that a type II error will be committed and a low probability of .33 that the 
correct decision will be made. (Remember, you need not determine these normal curve 
probabilities to understand the argument.)

Re jec t ion  o f  Fa l se  H 0 Depends  on  S i ze  o f  E f fec t

If H0 really is false, the probability of a type II error, β, and the probability of 
a correct decision, 1 − ß, depend on the size of the effect, that is, the differ-
ence between the true and the hypothesized population means. The smaller the 
effect, the higher the probability of a type II error and the lower the probability 
of a correct decision.

If you think about it, this conclusion is not particularly surprising. If H0 really is 
false, there must be some effect. The smaller this effect is, the less likely that it will be 
detected (by correctly rejecting the false H0) and the more likely that it will be missed 
(by erroneously retaining the false H0). As will be described in the next section, if it’s 
important to detect even a relatively small effect, the probability of a correct decision 
can be raised to any desired value by increasing the sample size.

Progress Check *11.7 Indicate whether the following statements, all referring  
to Figure 11.5, are true or false:

FIGURE 11.5  

Hypothesized and true sampling distribution when H0 is false 
because of a small effect.

Hypothesized distribution True distribution

Sample means
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97.5 100
X

z

102.5

1.65

105 107.5 11095
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Reject H0

1 2 3 4–2

SMALL EFFECT
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(a) The value of the true population mean (103) dictates the location of the true sampling 
distribution.

(b) The critical value of z (1.65) is based on the true sampling distribution.

(c) Since the hypothesized population mean of 100 really is false, it would be impossible to 
observe a sample mean value less than or equal to 100.

(d) A correct decision would be made if the one observed sample mean has a value of 105.

Answers on page 434.

11 .10  INFLUENCE  OF  SAMPLE  S I ZE

Ordinarily, the investigator might not be too concerned about the low detection rate of 
.33 for the relatively small three-point effect of vitamin C on IQ. Under special circum-
stances, however, this low detection rate might be unacceptable. For example, previous 
experimentation might have established that vitamin C has many positive effects, 
including the reduction in the duration and severity of common colds, and no apparent 
negative side effects.* Furthermore, huge quantities of vitamin C might be available at 
no cost to the school district. The establishment of one more positive effect, even a 
fairly mild one such as a small increase in the population mean IQ, might clinch the 
case for supplying vitamin C to all students in the district. The investigator, therefore, 
might wish to use a test procedure for which, if  H0 really is false because of a small 
effect, the detection rate is appreciably higher than .33.

To increase the probability of detecting a false H0, increase the sample size. 

Assuming that vitamin C still has only a small three-point effect on IQ, we can 
check the properties of the projected one-tailed test when the sample size is increased 
from 36 to 100 students. Recall the formula for the standard error of the mean, x, 
namely,

x
n

For the original experiment with its sample size of 36,

15 15
2.5

636
x

whereas for the new experiment with its sample size of 100,

15 15
1.5

10100
x

Clearly, any increase in sample size causes a reduction in the standard error of the mean.

*There is no well-documented evidence that vitamin C actually has an impact on IQ. Accord-

ing to a recent extensive summary, however, there might be a modest effect of vitamin C on 

reducing the duration and severity of common colds [Hemila H., Chalker E., Douglas B. (2007). 

Vitamin C for preventing and treating the common cold. Cochrane Database of Systematic 
Reviews. DOI: 10.1002/14651858.CD000980.pub3].
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Consequences  o f  Reduc ing  S tanda rd  E r ro r

As can be seen by comparing Figure 11.5 and Figure 11.6, the reduction of the stan-
dard error from 2.5 to 1.5 has two important consequences:

1. It shrinks the upper retention region back toward the hypothesized population 
mean of 100.

2. It shrinks the entire true sampling distribution toward the true population mean 
of 103.

The net result is that, among randomly selected sample means for 100 students, 
fewer sample means (.36) produce a type II error because they originate from the black 
sector, and more sample means (.64) produce a correct decision—that is, more lead to 
the detection of a false H0—because they originate from the shaded sector.

An obvious implication is that the standard error can be reduced to any desired 
value merely by increasing the sample size. To cite an extreme case, when the sample 
size equals 10,000 students (!), the standard error drops to 0.15. In this case, the upper 
retention region shrinks to the immediate vicinity of the hypothesized population mean 
of 100, and the entire true sampling distribution of the mean shrinks to the immediate 
vicinity of the true population mean of 103. The net result is that a type II error hardly 
ever is committed, and the small three-point effect virtually always is detected.

Samples  Can  Be  Too  La rge

At this point, you might think that the sample size always should be as large as 
possible in order to maximize the detection of a false H0. Not so. An excessively large 
sample size produces an extra-sensitive hypothesis test that detects even a very small 
effect that, from almost any perspective, lacks importance. For example, an exces-
sively large sample size could cause H0 to be rejected, even though vitamin C actually 
increases the population mean IQ by only 1/2 point. Since from almost any perspective 

FIGURE 11.6  

Hypothesized and true sampling distribution when 
H0 is false because of a small effect but sample size is 
relatively large.
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this very small effect lacks importance, most investigators would just as soon miss it; 
that is, most would just as soon retain this false H0. Thus, before an experiment, a wise 
investigator attempts to select a sample size that, because it is not excessively large, 
minimizes the detection of a small, unimportant effect.

Samples  Can  Be  Too  Sma l l

On the other hand, the sample size can be too small. An unduly small sample size 
will produce an insensitive hypothesis test (with a large standard error) that will miss 
even a very large, important effect. For example, an unduly small sample size can cause 
H0 to be retained, even though vitamin C actually increases the population mean IQ by 
15 points. Before an experiment, a wise investigator also attempts to select a sample size 
that, because it is not unduly small, maximizes the detection of a large, important effect.

Ne i the r  Too  La rge  No r  Too  Sma l l

For the purposes of most investigators, a sample size of hundreds is excessively large 
and one of less than about five is unduly small. There remains, of course, considerable 
latitude for sample size selection between these rough extremities. Statistics supplies 
investigators with charts, often referred to as power curves, to help select the appropriate 
sample size for a particular experiment.

Progress Check *11.8 Comment critically on the following experimental reports:

(a) Using a group of 4 subjects, an investigator announces that H0 was retained at the .05 level 
of significance.

(b) Using a group of 600 subjects, an investigator reports that H0 was rejected at the .05 level 
of significance.

Answers on page 434.

11 .11  POWER  AND  SAMPLE  S I ZE

The power of a hypothesis test equals the probability (1 − ß) of detecting a particular 
effect when the null hypothesis (H0) is false. Power is simply the complement (1 − ß) 
of the probability (ß) of failing to detect the effect, that is, the complement of the prob-
ability of a type II error. The shaded sectors in Figures 11.4, 11.5, and 11.6 illustrate 
varying degrees of power.

In Figures 11.5 and 11.6, sample sizes of 36 and 100 were selected, with com-
putational convenience in mind, to dramatize different degrees of power for a small 
three-point effect of vitamin C on IQ. Preferably, the selection of sample size should 
reflect—as much as circumstances permit—your considered judgment about what 
constitutes (1) the smallest important effect and (2) a reasonable degree of power for 
detecting that effect. For example, the following considerations might influence the 
selection of a new sample size for the vitamin C study.

1. The smallest effect that merits detection, we might conclude, equals seven 
points. This might reflect our judgment, possibly supported by educational con-
sultants, that only a mean IQ of at least 107 for all students in the school district 
justifies the effort and expense of upgrading the entire curriculum. Another pos-
sible reason for focusing on a seven-point effect—in the absence of any compel-
ling reason to the contrary—might be that, since 7 is about one-half the size of 
the standard deviation of 15, it avoids extreme effect sizes by qualifying as a 
“medium” effect size, according to Jacob Cohen’s widely adopted guidelines 
described in Section 14.9.

Power (1 − β) 

The probability of detecting a 

 particular effect.
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2. A reasonable degree of power for this seven-point effect, we might conclude, 
equals .80. This degree of power will detect the specified effect with a toler-
able rate of eighty times out of one hundred. In the absence of special con-
cerns about the type II error, many investigators would choose .80 as a default  
value for power—along with .05 as the default value for the level of signifi-
cance—to avoid the large sample sizes required by high degrees of power, 
such as .95 or .99.

Power  Cu rves

Basically, a power curve shows how the likelihood of detecting any possible 
effect—ranging from very small to very large—varies for a fixed sample size.* With 
just a few key strokes, Minitab’s Power and Sample Size software calculates that a 
sample size of 29 will satisfy the original specifications to detect a seven-point effect 
with power .80. The upper (solid line) power curve in Figure 11.7 is based on a sample 
size of 29, and it features a dot whose coordinates are a seven-point effect (difference) 
and a power of .80.

The S-shaped power curve for a sample of 29 also shows the growth in power with 
increases in effect size. Verify that power equals only about .40 for a smaller four-point 
effect and about .95 for a larger ten-point effect. A four-point effect will be detected 
only about forty times in one hundred, while a ten-point effect will be detected about 
ninety-five times in one hundred.

Practical considerations, such as limitations in money or facilities, might force a 
reduction (always painful) in the prescribed sample size of 29. Although the original 
specifications represent our best judgment about an appropriate sample size, there usu-
ally is latitude for compromise. For example, referring to Figure 11.7, we could consider 
the properties of the lower (broken line) power curve for a smaller sample size of 13. 
(Ordinarily, to minimize the loss of power, we probably would have  considered power 

Power 

Shows how the likelihood of 

detecting any possible effect varies 

for a fixed sample size.

*For more information about power curves, see Cohen, J. (1992). A power primer. Psycho-
logical Bulletin, 112, 155–159.

FIGURE 11.7  

Power Curve by Minitab for Vitamin C experiment, given n = 29 (solid line) 
and n = 13 (broken line).
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curves for more modest reductions in the original sample size, such as 28, 27, etc., but 
we selected the power curve for 13 to accentuate the graphic differences between the 
curves in Figure 11.7.) The dot on the power curve for a sample of 13 indicates that a 
seven-point effect will be detected with power of approximately .50. Most investiga-
tors would be reluctant to reduce sample size to 13 since a seven-point effect would be 
missed about as often as it is detected, that is, about fifty times in one hundred.

The sample size of 29 also could be reduced indirectly by compromising other 
properties of the original specifications. We could reduce the prescribed sample size 
by enlarging the smallest important effect (preferably by small increments above the 
seven-point effect); by lowering the degree of power (preferably not much below 
.80); by increasing the level of significance (preferably not above .10); by selecting, if 
appropriate, a one-tailed rather than a two-tailed test (if this had not been done already 
in the vitamin C investigation); or by taking some combination of these actions. For 
instance, we could enlarge the smallest important effect from seven to eight points. 
Although not shown in Figure 11.7, Minitab calculates that a smaller sample of 22 
detects the larger eight-point effect with power equal to .80.

Since a power analysis depends on a number factors, including the investigator’s 
subjective judgment about what constitutes a reasonable detection rate for the small-
est important effect—as well as the availability of local resources and any subsequent 
compromises—two equally competent investigators might select different sample 
sizes for the same study. Nonetheless, in the hands of a judicious investigator,

the use of power curves represents a distinct improvement over the arbitrary 
selection of sample size, for power curves help identify a sample size that, 
being neither unduly small nor excessively large, produces a hypothesis test 
with the proper sensitivity.

Power  Ana l ys i s  o f  S tud ies  by  O the rs

If you suspect that another investigator’s reported failure to reject H0 might have 
been caused by an unduly small sample size, power curves can be consulted retroac-
tively to evaluate the adequacy of the publicized results. For example, if the sample 
size reported for a vitamin C study had been only 13, you could have consulted the 
lower curve in Figure 11.7 to establish that your smallest important effect of seven 
points would have been detected with a very low power of approximately .50. You 
could have endorsed, therefore, the need for a replication or duplication of the original 
study with a more powerful, larger sample size.

Need  No t  P red ic t  T rue  E f fec t  S i ze

The use of power curves does not require that you predict the true effect size—an 
impossible task—but merely that you specify the smallest effect that, if present, mer-
its detection. If the true effect size actually is larger than the specified effect, the true 
power actually will exceed the specified power—since more of the true sampling distri-
bution overlaps the rejection region for the false H0 than does the sampling distribution 
for the specified effect. (If this is not obvious, compare Figures 11.4 and 11.5.) Thus, 
a more important effect is even more likely to be detected. On the other hand, if the 
true effect size actually is smaller than the specified effect, the entire process works in 
reverse but still to your advantage, since an unimportant effect, which you would just 
as soon miss, is even less likely to be detected.

I n i t i a t i ng  a  Power  Ana l ys i s

It is beyond the scope of this book to provide detailed information about either man-
ual or electronic calculations for a power analysis. Manual calculations are described 
in Chapter 8 of D. C. Howell, Statistical Methods for Psychology, 8th ed. (Belmont, 
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CA: Wadsworth, 2013). Electronic calculations are made by each of the three statistical 
packages—Minitab, SPSS, and SAS—featured in this book, as well a number of free 
websites, such as G*Power 3 at http://www.gpower.hhu.de/. Once you have decided 
what constitutes the smallest important effect that merits detection with a certain power, 
the step-by-step details of a power analysis, whether manual or electronic, usually are 
straightforward and amenable to any power analysis that you yourself might initiate.

Progress Check *11.9 Consult the power curves in Figure 11.7 to estimate the approxi-
mate detection rates, rounded to the nearest tenth, for the following situations:

(a) a three-point effect, with a sample size of 29

(b) a six-point effect, with a sample size of 13

(c) a twelve-point effect, with a sample size of 13

Answers on page 434.

Progress Check *11.10 An investigator consults a chart to determine the sample size 
required to detect an eight-point effect with a probability of .80. What happens to this detec-
tion rate of .80—will it actually be smaller, the same, or larger—if, unknown to the investiga-
tor, the true effect actually equals

(a) twelve points?

(b) five points?

Answers on page 435.

Summary

Chance must be considered when we make a decision about the null hypothesis 
(H0) by determining whether an observed difference qualifies as a common or rare 
outcome. Even though we never know whether or not a particular decision about the 
null hypothesis is correct, it is reassuring that, in the long run, most decisions will be 
correct, assuming that the null hypotheses are either true or seriously false.

The decision to retain H0 is weak; it implies only that H0 could be true, whereas the 
decision to reject H0 is strong; it implies that H0 is probably false (and conversely that 
H1 is probably true).

Although the research hypothesis, rather than the null hypothesis, is of primary 
concern, the research hypothesis is usually identified with the alternative hypothesis 
and tested indirectly for two reasons: (1) it lacks the necessary precision, and (2) 
logical considerations, based on the fact that rejecting the null hypothesis (on the basis 
of one negative instance or a rare outcome) is a stronger decision than retaining the 
null hypothesis.

Use a more sensitive one-tailed test only when, before an investigation, there’s an 
exclusive concern about deviations in a particular direction. Otherwise, use a two-
tailed test.

Select the statistical hypotheses from among the following three possibilities:
For a two-tailed, nondirectional test,

0

1

: some number

: some number

H

H

Witte11e_c11.indd   216 11/18/2016   6:12:17 PM



 11.11 POWER AND SAMPLE SIZE  217

For a one-tailed or directional test with the lower tail critical,

0

1

: some number

: some number

H

H

For a one-tailed or directional test with the upper tail critical,

0

1

: some number

: some number

H

H

Unless there are obvious reasons for selecting either a larger or a smaller level of 
significance, use the customary .05 level.

There are four possible outcomes for any hypothesis test:

 ■ If H0 really is true, it is a correct decision to retain the true H0.

 ■ If H0 really is true, it is a type I error to reject the true H0.

 ■ If H0 really is false, it is a type II error to retain the false H0.

 ■ If H0 really is false, it is a correct decision to reject the false H0.

When generalizing beyond the existing data, there is always the possibility of a type 
I or type II error. At best, a hypothesis test tends to produce a correct decision when 
either H0 really is true or H0 really is false because of a large effect.

If H0 really is true, the probability of a type I error, α, equals the level of signifi-
cance, and the probability of a correct decision equals 1 − α.

If H0 really is false, the probability of a type II error, β, and the probability of a cor-
rect decision, 1 − β, depend on the size of the effect—that is, the difference between 
the true and the hypothesized population means. The larger the effect, the lower the 
probability of a type II error and the higher the probability of a correct decision.

To increase the probability of detecting a false H0, even a false H0 that reflects a very 
small effect, use a larger sample size.

It is desirable to select a sample size that, being neither unduly small nor excessively 
large, produces a hypothesis test with the proper sensitivity.

Power curves help the investigator select a sample size that ensures a reasonable 
detection rate for the smallest important effect. If the originally specified sample size is 
too large, it can be reduced by enlarging the smallest important effect; by lowering the 
degree of power; by increasing the level of significance; by selecting, if appropriate, a 
one-tailed test; or by taking some combination of these actions.

Important Terms

Two-tailed or nondirectional test Hypothesized sampling distribution

One-tailed or directional test True sampling distribution

Type I error Beta (  β)

Type II error Power (1 − β)

Alpha (α) Power curve

Effect
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REV IEW QUEST IONS

 11.11  Give two reasons why the research hypothesis is not tested directly.

 11.12 A production line at a candy plant is designed to yield 2-pound boxes of assorted 
candies whose weights in fact follow a normal distribution with a mean of 33 ounces 
and a standard deviation of .30 ounce. A random sample of 36 boxes from the pro-
duction of the most recent shift reveals a mean weight of 33.09 ounces. (Incidentally, 
if you think about it, this is an exception to the usual situation where the investigator 
hopes to reject the null hypothesis.)

 (a) Describe the population being tested.

 (b) Using the customary procedure, test the null hypothesis at the .05 level of signifi-
cance.

 (c) Someone uses a one-tailed test, upper tail critical, because the sample mean of 
33.09 exceeds the hypothesized population mean of 33. Any comment?

 11.13 Reread the problem described in Question 10.5 on page 191.

 (a) What form should H0 and H1 take if the investigator is concerned only about salary 
discrimination against female members?

 (b) If this hypothesis test supports the conclusion of salary discrimination against female 
members, a costly class-action suit will be initiated against American colleges and 
universities. Under these circumstances, do you recommend using the .05 or the .01 
level of significance? Why?

 *11.14 Recalling the vitamin C experiment described in this chapter, you could describe the 
null hypothesis in both symbols and words as follows:

0 : 100, that is, vitamin C does not increase IQH

Following the format of Table  11.2 and being as specific as possible, you could 
describe the four possible outcomes of the vitamin C experiment as follows:

STATUS OF H0

DECISION TRUE H0 FALSE H0

Retain H0 Correct Decision:
Conclude that there is no 
evidence that vitamin C 
increases IQ when in fact 
it doesn’t.

Type II Error:
Conclude that there is no 
evidence that vitamin C 
increases IQ when in 
fact it does.

Reject H0 Type I Error:
Conclude that vitamin C 
increases IQ when in fact 
it doesn’t.

Correct Decision:
Conclude that vitamin C 
increases IQ when in 
fact it does.

Using the answer for the vitamin C experiment as a model, specify the null hypoth-

esis and the four possible outcomes for each of the following exercises:
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 *(a) Question 11.1(b) on page 202.

 Answer on page 435.

 (b) Question 11.1(c).

 11.15 We must be concerned about four possible outcomes before conducting a hypoth-
esis test.

 (a) Assuming that the test already has been conducted and the null hypothesis has been 
retained, about which of the four possible outcomes must we still be concerned?

 (b) Assuming that the test already has been conducted and the null hypothesis has been 
rejected, about which of the four possible outcomes must we still be concerned?

 11.16 Using the .05 level of significance, an investigator retains H0. There is, he concludes, 
a probability of .95 that H0 is true. Comments?

 11.17 In another study, an investigator rejects H0 at the .01 level of significance. There is, 
she concludes, a probability of .99 that H0 is false. Comments?

 11.18 For a projected one-tailed test, lower tail critical, at the .05 level of significance, 
construct two rough graphs. Each graph should show the sector in the true sam-
pling distribution that produces a type II error and the sector that produces a correct 
decision. One graph should reflect the case when H0 really is false because the true 
population mean is slightly less than the hypothesized population mean, and the 
other graph should reflect the case when H0 really is false because the true popula-
tion mean is appreciably less than the hypothesized population mean. (Hint: First, 
identify the decision rule for the hypothesized population mean, and then draw the 
true sampling distribution for each case.)

 11.19 How should a projected hypothesis test be modified if you’re particularly concerned 
about

 (a) the type I error?

 (b) the type II error?

 11.20 Consult the power curves in Figure 11.7 to estimate the approximate detection rate, 
rounded to the nearest tenth, for each of the following situations:

 (a) a four-point effect, with a sample size of 13

 (b) a ten-point effect, with a sample size of 29

 (c) a seven-point effect  with a sample size of  18 (Interpolate)

 11.21 Consult Figure 11.7 to estimate the approximate size of the smallest important effect 
that would be detected…

 (a) with probability .80, given a sample size of 13.

 (b) with probability .50, given a sample size of 29.

 11.22 Figure 11.7 shows power curves for sample sizes of 13 and 29. Using these curves 
as frames of reference, indicate, in general terms (either less than 13, between 13 
and 29, or greater than 29) the required sample size to detect an effect size of
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 (a) 4 with power .80

 (b) 8 with power .80

 (c) 8 with power .50

 (d) 10 with power .80

 11.23 For each set of alternatives listed next, check the recommended default value, that is, 
the value that you should adopt unless there is a compelling reason to the contrary.

 (a)  one-tailed, lower tail critical test ________  one-tailed, upper tail critical test 
________ two-tailed test ________

 (b)  .10 level of significance ________.05 level of significance ________ .01 level of 
significance  

 (c)  power of .50 ________ power of .80 ________ power of .95 ________
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CHAPTER

12
Estimation  
(Confidence Intervals)

12.1 POINT ESTIMATE FOR μ
12.2 CONFIDENCE INTERVAL (CI) FOR μ
12.3 INTERPRETATION OF A CONFIDENCE INTERVAL

12.4 LEVEL OF CONFIDENCE

12.5 EFFECT OF SAMPLE SIZE

12.6 HYPOTHESIS TESTS OR CONFIDENCE INTERVALS?

12.7 CONFIDENCE INTERVAL FOR POPULATION PERCENT

Summary / Important Terms / Key Equation / Review Questions

Preview

A hypothesis test merely indicates whether an effect is present. A confidence interval 

is more informative since it indicates, with a known degree of confidence, the range of 

possible effects. A confidence interval can appear either in isolation or in the aftermath 

of a test that has rejected the null hypothesis. As a research area matures, the use of 

confidence intervals becomes more prevalent.
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In Chapter 10, an investigator was concerned about detecting any difference between 
the mean SAT math score for all local freshmen and the national average. This concern 
led to a z test and the conclusion that the mean for the local population exceeds the 
national average. Given a concern about the national average, this conclusion is most 
informative; it might even create some joy among local university officials. However, 
the same SAT investigation could have been prompted by a wish merely to estimate 
the value of the local population mean rather than to test a hypothesis based on the 
national average. This new concern translates into an estimation problem, and with the 
aid of point estimates and confidence intervals, information in a sample can be used to 
estimate the unknown population mean for all local freshmen.

12 .1  PO INT  EST IMATE  FOR  μ
A point estimate for μ uses a single value to represent the unknown population 
mean.

This is the most straightforward type of estimate. If a random sample of 100 local 
freshmen reveals a sample mean SAT score of 533, then 533 will be the point estimate 
of the unknown population mean for all local freshmen. The best single point estimate 
for the unknown population mean is simply the observed value of the sample mean.

A  Bas ic  De f ic iency

Although straightforward, simple, and precise, point estimates suffer from a basic 
deficiency. They tend to be inaccurate. Because of sampling variability, it’s unlikely 
that a single sample mean, such as 533, will coincide with the population mean. Since 
point estimates convey no information about the degree of inaccuracy due to sampling 
variability, statisticians supplement point estimates with another, more realistic type of 
estimate, known as interval estimates or confidence intervals.

Progress Check *12.1 A random sample of 200 graduates of U.S. colleges reveals a 
mean annual income of $62,600. What is the best estimate of the unknown mean annual 
income for all graduates of U.S. colleges?

Answer on page 435.

12 .2  CONF IDENCE  INTERVAL  (C I )  FOR  μ
A confidence interval for μ uses a range of values that, with a known degree of 
certainty, includes the unknown population mean.

For instance, the SAT investigator might use a confidence interval to claim, with 95 
percent confidence, that the interval between 511.44 and 554.56 includes the popula-
tion mean math score for all local freshmen. To be 95 percent confident signifies that 
if many of these intervals were constructed for a long series of samples, approximately 
95 percent would include the population mean for all local freshmen. In the long run, 
95 percent of these confidence intervals are true because they include the unknown 
population mean. The remaining 5 percent are false because they fail to include the 
unknown population mean.

Why  Con f idence  I n te r va l s  Work

To understand confidence intervals, you must view them in the context of three 
important properties of the sampling distribution of the mean described in Chapter 10. 

Point Estimate 

A single value that represents some 

unknown population characteristic, 

such as the population mean.

Confidence Interval (CI) 

A range of values that, with a 

known degree of certainty, includes 

an unknown population character-

istic, such as a population mean.
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For the sampling distribution from which the sample mean of 533 originates, as shown 
in Figure 12.1, the three important properties are as follows:

 ■ The mean of the sampling distribution equals the unknown population mean for 
all local freshmen, whatever its value, because the mean of this sampling distri-
bution always equals the population mean.

 ■ The standard error of the sampling distribution equals the value (11) obtained 
from dividing the population standard deviation (110) by the square root of the 

sample size ( 100 ).
 ■ The shape of the sampling distribution approximates a normal distribution 

because the sample size of 100 satisfies the requirements of the central limit 
theorem.

A  Se r ies  o f  Con f idence  I n te r va l s

In practice, only one sample mean is actually taken from this sampling distribution 
and used to construct a single 95 percent confidence interval. However, imagine tak-
ing not just one but a series of randomly selected sample means from this sampling 
distribution. Because of sampling variability, these sample means tend to differ among 
themselves. For each sample mean, construct a 95 percent confidence interval by add-
ing 1.96 standard errors to the sample mean and subtracting 1.96 standard errors from 
the sample mean; that is, use the expression

1.96
X

X

to obtain a 95 percent confidence interval for each sample mean.

T rue  Con f idence  I n te r va l s

Why, according to statistical theory, do 95 percent of these confidence intervals 
include the unknown population mean? As indicated in Figure 12.2, because the sam-
pling distribution is normal, 95 percent of all sample means are within 1.96 standard 
errors of the unknown population mean, that is, 95 percent of all sample means devi-
ate less than 1.96 standard errors from the unknown population mean. Therefore, and 
this is the key point, when sample means are expanded into confidence intervals—by 
adding and subtracting 1.96 standard errors—95 percent of all possible confidence 
intervals are true because they include the unknown population mean. To illustrate 

FIGURE 12.1 

Sampling distribution of the mean (SAT scores).

μ
(unknown)

X

σ
X
 =11 σ

X =11
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this point, 15 of the 16 sample means shown in Figure 12.2 are within 1.96 standard 
errors of the unknown population mean. The corresponding 15 confidence intervals 
have ranges that span the broken line for the population mean, thereby qualifying as 
true intervals because they include the value of the unknown population mean.

Fa l se  Con f idence  I n te r va l s

Five percent of all confidence intervals fail to include the unknown population 
mean. As indicated in Figure 12.2, 5 percent of all sample means (2.5 percent in 
each tail) deviate more than 1.96 standard errors from the unknown population mean. 
Therefore, when sample means are expanded into confidence intervals—by adding 
and subtracting 1.96 standard errors—5 percent of all possible confidence intervals 

FIGURE 12.2 

A series of 95 percent confidence intervals (emerging from a 
sampling distribution).

μ Xμ + 1.96 σxμ – 1.96 σx

μ – 1.96 σx
μ

False Confidence
Intervals

False Confidence
Intervals

True Confidence
Intervals

X1 – 1.96 σx

Sample means that
are not within 1.96
standard errors of 
the unknown 
population mean 
(2.5%)

Sample means that
are not within 1.96
standard errors of the
unknown population
mean (2.5%)

Sample means that
are within 1.96
standard errors of the
unknown population
mean (95%)
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Witte11e_c12.indd   224 11/18/2016   6:13:15 PM



 12.2 CONFIDENCE INTERVAL (CI )  FOR μ 225

are false because they fail to include the unknown population mean. To illustrate this 
point, only 1 of the 16 sample means shown in Figure 12.2 is not within 1.96 standard 
errors of the unknown population mean. The resulting confidence interval, shown as 
shaded, has a range that does not span the broken line for the population mean, thereby 
being  designated as a false interval because it fails to include the value of the unknown 
 population mean.

Conf idence  I n te r va l  f o r  μ  Based  on  z

To determine the previously reported confidence interval of 511.44 to 554.56 for the 
unknown mean math score of all local freshmen, use the following general expression:

CONFIDENCE INTERVAL FOR μ (BASED ON z )

 )( ( )conf XX z  (12.1)

where X represents the sample mean; zconf represents a number from the standard 
 normal table that satisfies the confidence specifications for the confidence interval; and  
σx represents the standard error of the mean.

Given that X , the sample mean SAT math score, equals 533, that zconf equals 1.96 
(from the standard normal tables, where z scores of ±1.96 define the middle 95 percent 
of the area under the normal curve), and that the standard error, σx, equals 11, Formula 
12.1 becomes

554.56
533 (1.96)(11) 533 21.56

511.44

where 554.56 and 511.44 represent the upper and lower limits of the confidence inter-
val. Now it can be claimed, with 95 percent confidence, that the interval between 
511.44 and 554.56 includes the value of the unknown mean math score for all local 
freshmen.

Two  Assumpt ions

The use of Formula 12.1 to construct confidence intervals assumes that the popula-
tion standard deviation is known and that the population is normal or that the sample 
size is sufficiently large—at least 25—to satisfy the requirements of the central limit 
theorem.

Progress Check *12.2 Reading achievement scores are obtained for a group of fourth 
graders. A score of 4.0 indicates a level of achievement appropriate for fourth grade, a score 
below 4.0 indicates underachievement, and a score above 4.0 indicates overachievement. 
Assume that the population standard deviation equals 0.4. A random sample of 64 fourth grad-
ers reveals a mean achievement score of 3.82.

(a) Construct a 95 percent confidence interval for the unknown population mean. (Remember 
to convert the standard deviation to a standard error.)

(b) Interpret this confidence interval; that is, do you find any consistent evidence either of 
overachievement or of underachievement?

Answers on page 435.

Witte11e_c12.indd   225 11/18/2016   6:13:15 PM



226 ESTIMATION (CONFIDENCE INTERVALS) 

12 .3  INTERPRETAT ION  OF  A  CONF IDENCE  INTERVAL

A 95 percent confidence claim reflects a long-term performance rating for an extended 
series of confidence intervals. If a series of confidence intervals is constructed to esti-
mate the same population mean, as in Figure 12.2, approximately 95 percent of these 
intervals should include the population mean. In practice, only one confidence interval, 
not a series of intervals, is constructed, and that one interval is either true or false, 
because it either includes the population mean or fails to include the population mean. 
Of course, we never really know whether a particular confidence interval is true or 
false unless the entire population is surveyed. However,

when the level of confidence equals 95 percent or more, we can be reasonably 
confident that the one observed confidence interval includes the true popula-
tion mean.

For instance, we can be reasonably confident that the true population mean math score 
for all local freshmen is neither less than 511.44 nor more than 554.56. That’s the same 
as being reasonably confident that the true population mean for all local freshmen is 
between 511.44 and 554.56.

Progress Check *12.3 Before taking the GRE, a random sample of college seniors 
received special training on how to take the test. After analyzing their scores on the GRE, the 
investigator reported a dramatic gain, relative to the national average of 500, as indicated by 
a 95 percent confidence interval of 507 to 527. Are the following interpretations true or false?

(a) About 95 percent of all subjects scored between 507 and 527.

(b) The interval from 507 to 527 refers to possible values of the population mean for all stu-
dents who undergo special training.

(c) The true population mean definitely is between 507 and 527.

(d) This particular interval describes the population mean about 95 percent of the time.

(e) In practice, we never really know whether the interval from 507 to 527 is true or false.

(f) We can be reasonably confident that the population mean is between 507 and 527.

Answers on page 435.

12 .4  LEVEL  OF  CONF IDENCE

The level of confidence indicates the percent of time that a series of confidence inter-
vals includes the unknown population characteristic, such as the population mean. 
Any level of confidence may be assigned to a confidence interval merely by substitut-
ing an appropriate value for zconf in Formula 12.1. For instance, to construct a 99 percent 
confidence interval from the data for SAT math scores, first consult Table A in Appen-
dix C to verify that zconf values of ±2.58 define the middle 99 percent of the total area 
under the normal curve. Then substitute numbers for symbols in Formula 12.1 to obtain

561.38
533 (2.58)(11) 533 28.38

504.62

It can be claimed, with 99 percent confidence, that the interval between 504.62 and 
561.38 includes the value of the unknown mean math score for all local freshmen. This 

Level of Confidence 

The percent of time that a  

series of confidence intervals 

includes the unknown  

population characteristic, such  

as the population mean.
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implies that, in the long run, 99 percent of these confidence intervals will include the 
unknown population mean.

E f fec t  on  Wid th  o f  I n te r va l

Notice that the 99 percent confidence interval of 504.62 to 561.38 is wider and, 
therefore, less precise than the corresponding 95 percent confidence interval of 511.44 
to 554.56. The shift from a 95 percent to a 99 percent level of confidence requires an 
increase in the value of zconf from 1.96 to 2.58. This increase, in turn, causes a wider, 
less precise confidence interval. Any shift to a higher level of confidence always pro-
duces a wider, less precise confidence interval unless offset by an increase in sample 
size, as mentioned in the next section.

Choos ing  a  Leve l  o f  Con f idence

Although many different levels of confidence have been used, 95 percent and 99 
percent are the most prevalent. Generally, a larger level of confidence, such as 99 per-
cent, should be reserved for situations in which a false interval might have particularly 
serious consequences, such as the failure of a national opinion pollster to predict the 
winner of a presidential election.

12 .5  EFFECT  OF  SAMPLE  S I ZE

The larger the sample size, the smaller the standard error and, hence, the more precise 
(narrower) the confidence interval will be. Indeed, as the sample size grows larger, 
the standard error will approach zero and the confidence interval will shrink to a point 
estimate. Given this perspective, the sample size for a confidence interval, unlike that 
for a hypothesis test, never can be too large.

Se lec t ion  o f  Samp le  S i ze

As with hypothesis tests, sample size can be selected according to specifications 
established before the investigation. To generate a confidence interval that possesses 
the desired precision (width), yet complies with the desired level of confidence, refer to 
formulas for sample size in other statistics books.* Valid use of these formulas requires 
that before the investigation, the population standard deviation be either known or 
estimated.

Progress Check *12.4 On the basis of a random sample of 120 adults, a pollster reports, 
with 95 percent confidence, that between 58 and 72 percent of all Americans believe in life 
after death.

(a) If this interval is too wide, what, if anything, can be done with the existing data to obtain a 
narrower confidence interval?

(b) What can be done to obtain a narrower 95 percent confidence interval if another similar 
investigation is being planned?

Answers on page 435.

* For instance, see Section 17.8 in King, B. M. & Minium, E. W. (2008). Statistical Reason-
ing in the Behavioral Sciences (5th ed.). Hoboken, NJ: Wiley.

Witte11e_c12.indd   227 11/18/2016   6:13:15 PM



228 ESTIMATION (CONFIDENCE INTERVALS) 

12 .6  HYPOTHES IS  TESTS  OR  
CONF IDENCE  INTERVALS?

Ordinarily, data are used either to test a hypothesis or to construct a confidence inter-
val, but not both. Hypothesis tests usually have been preferred to confidence intervals 
in the behavioral sciences, and that emphasis is reflected in this book. As a matter of 
fact, however, confidence intervals tend to be more informative than hypothesis tests.

Hypothesis tests merely indicate whether or not an effect is present, whereas 
confidence intervals indicate the possible size of the effect.

For the vitamin C experiment described in Chapter 11, a hypothesis test merely indi-
cates whether or not vitamin C has an effect on IQ scores, whereas a 95 percent con-
fidence interval indicates the possible size of the effect of vitamin C on IQ scores; for 
instance, we could claim, with 95 percent confidence, that the interval between 102 and 
112 includes the true population mean IQ for students who receive vitamin C. In other 
words, the true effect of vitamin C is probably somewhere between 2 and 12 IQ points 
(above the null hypothesized value of 100).

When  to  Use  Con f idence  I n te r va l s

If the primary concern is whether or not an effect is present—as is often the case in 
relatively new research areas—use a hypothesis test. For example, given that a social 
psychologist is uncertain whether the consumption of alcohol by witnesses increases 
the number of inaccuracies in their recall of a simulated robbery, it would be appro-
priate to use a hypothesis test. Otherwise, given that previous research clearly dem-
onstrates alcohol-induced inaccuracies in witnesses’ testimonies, a new investigator 
might use a confidence interval to estimate the possible mean number of these inac-
curacies.

Indeed, you should consider using a confidence interval whenever a hypothesis test 
results in the rejection of the null hypothesis. For example, referring again to the vita-
min C experiment proposed in Chapter 11, after it’s been established (by rejecting the 
null hypothesis) that vitamin C has an effect on IQ scores, it makes sense to estimate, 
with a 95 percent confidence interval, that the interval between 102 and 112 describes 
the possible size of that effect, namely, an increase (above 100) of between 2 and 12 
IQ points.

12 .7  CONF IDENCE  INTERVAL  
FOR  POPULAT ION  PERCENT

Let’s describe briefly a type of confidence interval—that for population percents or 
proportions—often encountered in the media. For example, a recent news release 
reported that among a random or “scientific” sample of 1,500 adult Americans, 64 per-
cent favor some form of capital punishment. Furthermore, the margin of error equals 
±3  percent, given that we wish to be 95 percent confident of our results. Rephrased 
slightly, this is the same as claiming, with 95 percent confidence, that the interval 
between 61 and 67 percent (from 64 ± 3) includes the true percent of Americans who 
favor some form of capital punishment.

Essentially, this 95 percent confidence interval originates from the following expres-
sion:

 (1.96) ( ± )sample percent standard error of the percent

Margin of Error 

That which is added to and 

subtracted from some sample 

value, such as the sample 

proportion or sample mean, 

to obtain the limits of a confi-

dence interval.
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where 1.96 comes from the standard normal curve and the standard error of the percent 
is analogous to the standard error of the mean.* Otherwise, all of the previous com-
ments about confidence intervals for population means apply to confidence intervals 
for population percents or proportions. Thus, in the present case, we can be reasonably 
certain that the true population percent is between 61 and 67 percent.

Sample  S i ze  and  Marg in  o f  E r ro r

Often encountered in national polls, the huge sample of 1,500 Americans reduces 
the size of the standard error and thereby guarantees a relatively small margin of error 
of ±3 percent. If, in the pollster’s judgment, a larger margin of error would have been 
tolerable, smaller samples could have been used. For instance, if a larger margin of 
error of ±5 percent would have been tolerable, a random sample of about 500 adults 
could have been used, while if a still larger margin of error of ±10 percent would have 
been tolerable, a random sample of about only 100 adults could have been used.

Po l l s te r s  Use  La rge r  Samp les

In any event, pollsters often use samples in the hundreds, or even the thousands, to 
produce narrower, more precise confidence intervals. When contrasted with the much 
smaller samples of most researchers, these larger samples reflect a number of factors, 
including the relative cheapness of pollsters’ observations, often just a randomly dialed 
phone call away, as well as the notion that samples can never be too large in surveys—
although they can be too large in experiments, as discussed in Section 11.10

A  F ina l  Cau t ion

When based on randomly selected respondents, confidence intervals reflect only 
one kind of error—the statistical error due to random sampling variability. There are 
other kinds of nonstatistical errors that could compromise the value of a confidence 
interval. For example, the previous estimate that 61 to 67 percent of all Americans 
favor capital punishment might have been inflated by adding to a neutral question such 
as “Do you favor capital punishment?” a biased phrase, “in view of the recent epidemic 
of murders of innocent children?” Or the previous interval might fail to reflect the 
 targeted population of all adult Americans because the random sample actually reflects 
a severely limited population. For example, there might be a substantial number of 
 nonrespondents whose attitudes toward capital punishment differ appreciably from the 
attitudes of those who responded. In the absence of this kind of background informa-
tion, reports of confidence intervals should be interpreted cautiously.

Progress Check *12.5 In a recent scientific sample of about 900 adult Americans, 70 
percent favor stricter gun control of assault weapons, with a margin of error of ±4 percent for 
a 95 percent confidence interval. Therefore, the 95 percent confidence interval equals 66 to 
74 percent. Indicate whether the following interpretations are true or false:

(a) The interval from 66 to 74 percent refers to possible values of the sample percent.

(b) The true population percent is between 66 and 74 percent.

*A proportion (or a percent, which is merely 100 times a proportion) is a special type of mean 

where, after all observations have been coded as either 0 or 1, the 1s are added and divided by 

the total number of observations. Therefore, although not emphasized in this book, the standard 

error of the proportion (or percent) could be obtained from the formula for the standard error of 

the mean.
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(c) In the long run, a series of intervals similar to this one would fail to include the population 
percent about 5 percent of the time.

(d) We can be reasonably confident that the population percent is between 66 and 74 percent.

Answers on page 435.

Othe r  Types  o f  Con f idence  I n te r va l s

Confidence intervals can be constructed not only for population means and percents 
but also for differences between two population means, as discussed in subsequent 
chapters. Although not discussed in this book, confidence intervals also can be con-
structed for other characteristics of populations, including variances and correlation 
coefficients.

Summary

Rather than test a hypothesis about a single population mean, you might choose to 
estimate this population characteristic, using a point estimate or a confidence interval.

In point estimation, a single sample characteristic, such as a sample mean, estimates 
the corresponding population characteristic. Point estimates ignore sampling variabil-
ity and, therefore, tend to be inaccurate.

Confidence intervals specify ranges of values that, in the long run, include the 
unknown population characteristic, such as the mean, a certain percent of the time. 
For instance, given a 95 percent confidence interval, then, in the long run, approxi-
mately 95 percent of all of these confidence intervals are true because they include 
the unknown population characteristic. Confidence intervals work because they are 
products of sampling distributions.

Any level of confidence can be assigned to a confidence interval, but the 95 percent 
and 99 percent levels are the most prevalent. Given one of these levels of confidence, 
then, even though we can never know whether a particular confidence interval is true 
or false, we can be reasonably confident that a particular interval actually includes the 
unknown population characteristic.

Narrower, more precise confidence intervals are produced by lower levels of con-
fidence (for example, 95 percent rather than 99 percent) and by larger sample sizes.

Confidence intervals tend to be more informative than hypothesis tests. Hypothesis 
tests merely indicate whether or not an effect is present, whereas confidence intervals 
indicate the possible size of the effect. Whenever appropriate—including whenever the 
null hypothesis has been rejected—consider using confidence intervals.

Confidence intervals for population percents or proportions are similar, both in ori-
gin and interpretation, to confidence intervals for population means.

Important Terms

Point estimate  Confidence interval (CI)

Level of confidence  Margin of error

Key Equation

CONFIDENCE INTERVAL

CI ( )( )conf X
X z
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REV IEW QUEST IONS

 12.6 (True or False) You should consider using a confidence interval whenever 

 (a) the null hypothesis has been rejected.

 (b) the issue is whether or not an effect is present.

 (c) the issue involves possible effect sizes.

 (d) there is no meaningful null hypothesis.

 *12.7 In Question 10.5 on page 191, it was concluded that, the mean salary among the 
population of female members of the American Psychological Association is less 
than that ($82,500) for all comparable members who have a doctorate and teach full 
time.

 (a) Given a population standard deviation of $6,000 and a sample mean salary of 
$80,100 for a random sample of 100 female members, construct a 99 percent con-
fidence interval for the mean salary for all female members.

 (b) Given this confidence interval, is there any consistent evidence that the mean salary 
for all female members falls below $82,500, the mean salary for all members?

 Answers on page 435.

 12.8 In Review Question 11.12 on page 218, instead of testing a hypothesis, you might 
prefer to construct a confidence interval for the mean weight of all 2-pound boxes of 
candy during a recent production shift.

 (a) Given a population standard deviation of .30 ounce and a sample mean weight of 
33.09 ounces for a random sample of 36 candy boxes, construct a 95 percent con-
fidence interval.

 (b) Interpret this interval, given the manufacturer’s desire to produce boxes of candy 
that, on the average, exceed 32 ounces.

 12.9 It’s tempting to claim that, once a particular 95 percent confidence interval has been 
constructed, it includes the unknown population characteristic with a probability of 
.95. What is wrong with this claim?

 *12.10 Imagine that one of the following 95 percent confidence intervals estimates the 
effect of vitamin C on IQ scores:

95% CONFIDENCE INTERVAL LOWER LIMIT UPPER LIMIT

1 100 102
2 95 99
3 102 106
4 90 111
5 91 98

 (a) Which one most strongly supports the conclusion that vitamin C increases IQ scores?
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 (b) Which one implies the largest sample size?

 (c) Which one most strongly supports the conclusion that vitamin C decreases IQ 
scores?

 (d) Which one would most likely stimulate the investigator to conduct an additional 
experiment using larger sample sizes?

 Answers on page 436.

 12.11 Unlike confidence intervals, hypothesis tests require that some predetermined popu-
lation value be used to evaluate sample values. Can you think of any other differ-
ences between hypothesis tests and confidence intervals?
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Preview

The next three chapters describe various t tests. Whenever, as usually is the case, 

the population standard deviation is unknown, it must be estimated with the sample 

standard deviation. Estimating the unknown population standard deviation has 

important implications that require both the use of degrees of freedom and the 

replacement of the z test with the t test. (You might wish to review the discussion of 

degrees of freedom in Section 4.6.)

Witte11e_c13.indd   233 11/18/2016   7:17:32 PM



234 t  TEST FOR ONE SAMPLE

13 .1  GAS  MILEAGE  INVEST IGAT ION

Federal law might eventually specify that new automobiles must average, for example, 
45 miles per gallon (mpg) of gasoline. Because it’s impossible to test all new cars, 
compliance tests would be based on random samples from the entire production of each 
car model. If a hypothesis test indicates substandard performance, the manufacturer 
would be penalized, we’ll assume, $200 per car for the entire production.

In these tests, the null hypothesis states that, with respect to the mandated mean 
of 45 mpg, nothing special is happening in the population for some car model—that 
is, there is no substandard performance and the population mean equals or exceeds 
45 mpg. The alternative hypothesis reflects a concern that the population mean is less 
than 45 mpg. Symbolically, the two statistical hypotheses read:

0

1

: 45

: 45

H

H

From the manufacturer’s perspective, a type I error (a stiff penalty, even though the car 
complies with the standard) is very serious. Accordingly, to control the type I error, 
let’s use the .01 instead of the customary .05 level of significance. From the federal 
regulator’s perspective, a type II error (not penalizing the manufacturer even though 
the car fails to comply with the standard) also is serious. In practice, a sample size 
should be selected, as described in Section 11.11, to control the type II error, that is, to 
ensure a reasonable detection rate for the smallest decline (judged to be important) of 
the true population mean below the mandated 45 mpg. To simplify computations in the 
present example, however, the projected one-tailed test is based on data from a very 
small sample of only six randomly selected cars.

For reasons that will become apparent, the z test must be replaced by a new hypoth-
esis test, the t test. Spend a few minutes familiarizing yourself with the boxed summary 
for the gas mileage investigation, noting the considerable similarities between it and 
summaries of previous hypothesis tests with the z test.

13 .2  SAMPL ING  D ISTR IBUT ION  OF  t

Like the sampling distribution of z, the sampling distribution of t represents the distri-
bution that would be obtained if a value of t were calculated for each sample mean for 
all possible random samples of a given size from some population. In the early 1900s, 
William Gosset discovered the sampling distribution of t and subsequently reported his 
achievement under the pen name of “Student.” Actually, Gosset discovered not just one 
but an entire family of t sampling distributions (or “Student’s” distributions). Each t dis-
tribution is associated with a special number referred to as degrees of freedom, first dis-
cussed in Section 4.6. The concept of degrees of freedom is introduced because we’re 
using variability in a sample to estimate the unknown variability in the population. 
Recall that when the n deviations about the sample mean are used to estimate variability 
in the population, only n − 1 are free to vary because of the restriction that the sum of 
these deviations must always equal zero. Since one degree of freedom is lost because of 
the zero-sum restriction, there are only n − 1 degrees of freedom, that is, symbolically, 

Sampling Distribution of t 

The distribution that would be 

obtained if a value of t were cal-

culated for each sample mean for 

all possible random samples of a 

given size from some population.

DEGREES OF FREEDOM (ONE SAMPLE)

  1 df n  (13.1)

Reminder: 

Degrees of freedom (df) refers to 

the number of values free to vary 

when, for example, sample variabil-

ity is used to estimate the unknown 

population variability.

where df represents degrees of freedom and n equals the sample size. Since the gas 
mileage investigation involves six cars, the corresponding t test is based on a sampling 
distribution with five degrees of freedom (from df = 6 − 1).
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Compared  to  the  S tanda rd  No rma l  D i s t r i bu t ion

Figure 13.1 shows three t distributions. When there is an infinite (∞) number of 
degrees of freedom (and, therefore, the sample standard deviation becomes the same as 
the population standard deviation), the distribution of t is the same as the standard nor-
mal distribution of z. Notice that even with only four or ten degrees of freedom, a t dis-
tribution shares a number of properties with the normal distribution. All t distributions 
are symmetrical, unimodal, and bell-shaped, with a dense concentration that peaks in 
the middle (when t equals 0) and tapers off both to the right and left of the middle (as t 
becomes more positive or negative, respectively). The inflated tails of the t distribution, 
particularly apparent with small values of df, constitute the most important difference 
between t and z distributions.

Tab le   fo r  t  D i s t r i bu t ions

To save space, tables for t distributions concentrate only on the critical values of 
t that correspond to the more common levels of significance. Table B of Appendix C 
lists the critical t values for either one- or two-tailed hypothesis tests at the .05, .01, 
and  .001 levels of significance. All listed critical t values are positive and originate 

HYPOTHESIS TEST SUMMARY: 
t TEST FOR A POPULATION MEAN  
(GAS MILEAGE INVESTIGATION)

Research Problem 

Does the mean gas mileage for some population of cars drop below the 
legally required minimum of 45 mpg?

Statistical Hypotheses

0

1

: 45

: 45

H

H

Decision Rule

Reject H0 at the .01 level of significance if t  –3.365 (from Table B, Appendix 
C, given df = n − 1 = 6 − 1 = 5).

Calculations 

Given 43X , 0.89
X

s

(See Table 13.1 on page 240 for computations.),

43 45
2.25

0.89
t

Decision 

Retain H0 at the .01 level of significance because t = –2.25 is less negative 
than –3.365.

Interpretation 

The population mean gas mileage could equal the required 45 mpg or more. 
The manufacturer shouldn’t be penalized.
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236 t  TEST FOR ONE SAMPLE

from the upper half of each distribution. Because of the symmetry of the t distribution, 
you can obtain the corresponding critical t values for the lower half of each distribution 
merely by placing a negative sign in front of any entry in the table.

F ind ing  C r i t i ca l  t  Va lues

To find a critical t in Table B, read the entry in the cell intersected by the row for 
the correct number of degrees of freedom and the column for the test specifications. 
For example, to find the critical t for the gas mileage investigation, first go to the right-
hand panel for a one-tailed test, then locate both the row corresponding to five degrees 
of freedom and the column for a one-tailed test at the .01 level of significance. The 
intersected cell specifies 3.365. A negative sign must be placed in front of 3.365, since 
the hypothesis test requires the lower tail to be critical. Thus, –3.365 is the critical t 
for the gas mileage investigation, and the corresponding decision rule is illustrated in 
Figure 13.2, where the distribution of t is centered about zero (the equivalent value of 
t for the original null hypothesized value of 45 mpg).

If the gas mileage investigation had involved a two-tailed test (still at the .01 level 
with five degrees of freedom), then the left-hand panel for a two-tailed test would have 
been appropriate, and the intersected cell would have specified 4.032. Both positive 
and negative signs would have to be placed in front of 4.032, since both tails are criti-
cal. In this case, 4.032 would have been the pair of critical t values.

FIGURE 13.1 

Various t distributions.

df = 10

df = ∞ distribution for z)

df = 4

–2 –1 0 1 2

(same as normal)

FIGURE 13.2 

Hypothesized sampling distribution of t (gas mileage investigation).

45

Retain H0Reject H0

–3.365

–4 –3 –2 –1 0 1 2 3 4

X

t
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Miss ing  d f  i n  Tab le  B  o f  Append i x  C

If the desired number of degrees of freedom doesn’t appear in the df column of 
Table B, use the row in the table with the next smallest number of degrees of freedom. 
For example, if 36 degrees of freedom are specified, use the information from the 
row for 30 degrees of freedom. Always rounding off to the next smallest df produces 
a slightly larger critical t, making the null hypothesis slightly more difficult to reject. 
This procedure defuses potential disputes about borderline decisions by investigators 
with a stake in rejecting the null hypothesis.

Progress Check *13.1 Find the critical t values for the following hypothesis tests:

(a) two-tailed test, α = .05, df = 12

(b) one-tailed test, lower tail critical, α = .01, df = 19

(c) one-tailed test, upper tail critical, α = .05, df = 38

(d) two-tailed test, α = .01, df = 48

Answers on page 436.

13 .3  t  TEST

Usually, as in the gas mileage investigation, the population standard deviation is 
unknown and must be estimated from the sample. The subsequent shift from the stan-
dard error of the mean, X , to its estimate, Xs , has an important effect on the entire 
hypothesis test for a population mean. The familiar z test,

hyp

X

Xsample mean hypothesized population mean
z

standard error

with its normal distribution, must be replaced by a new t test,

t RATIO FOR A SINGLE POPULATION MEAN

 

hyp

X

Xsample mean hypothesized population mean
t

estimated standard error s  (13.2)

t Ratio 

A replacement for the z ratio 

whenever the unknown popula-

tion standard deviation must be 

estimated.

with its t sampling distribution and n − 1 degrees of freedom. For the gas mileage 
investigation, given that the sample mean gas mileage, X, equals 43; that the hypothe-
sized population mean, μhyp, equals 45; and that the estimated standard error, Xs , equals 
0.89 (from Table 13.1), Formula 13.2 becomes

43 45
2.25

0.89
t

with df = 5. Since the observed value of t (–2.25) is less negative than the critical value 
of t (–3.365), the null hypothesis is retained, and we can conclude that the auto manu-
facturer shouldn’t be penalized since the mean gas mileage for the population cars 
could equal the mandated 45 mpg.
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Grea te r  Va r iab i l i t y  o f  t  Ra t io

As has been noted, the tails of the sampling distribution for t are more inflated than 
those for z, particularly when the sample size is small.* Consequently, to accommodate 
the greater variability of t, the critical t value must be larger than the corresponding criti-
cal z value. For example, given the one-tailed test at the .01 level of significance for the 
gas mileage investigation, the critical value for t (–3.365) is larger than that for z (–2.33).

13 .4  COMMON THEME  OF  HYPOTHES IS  TESTS

The remainder of this book discusses an alphabet variety of tests—z, t, F, U, T, and 
H—for an assortment of situations. Notwithstanding the new formulas with their spe-
cial symbols,

all of these hypothesis tests represent variations on the same theme: If some 
observed characteristic, such as the mean for a random sample, qualifies as a 
rare outcome under the null hypothesis, the hypothesis will be rejected. Other-
wise, the hypothesis will be retained.

To determine whether an outcome is rare, the observed characteristic is converted to 
some new value, such as t, and compared with critical values from the appropriate sam-
pling distribution. Generally, if the observed value equals or exceeds a positive critical 
value (or if it equals or is more negative than a negative critical value), the outcome 
will be viewed as rare and the null hypothesis will be rejected.

13 .5  REMINDER  ABOUT  DEGREES  OF  FREEDOM

The notion of degrees of freedom is used throughout the remainder of this book. Typ-
ically, when it is used to estimate some unknown population characteristic, not all 
observed values within the sample are free to vary. For example, the gas mileage data 
consist of six values: 40, 44, 46, 41, 43, and 44. Nevertheless, the t test for these data 
has only five degrees of freedom because of the zero-sum restriction. Only five of these 
six observed values are free to vary about their mean of 43 and, therefore, provide valid 
information for purposes of estimation. The concept of degrees of freedom is intro-
duced only because we are using observations in a sample to estimate some unknown 
characteristic of the population.

In subsequent sections, we’ll encounter other mathematical restrictions, and some-
times several degrees of freedom will be lost. In any event, however, the degrees of 
freedom always indicate the number of values free to vary, given one or more math-
ematical restrictions on a set of values used to estimate some unknown population 
characteristic.

13 .6  DETA ILS :  EST IMAT ING  THE  STANDARD  ERROR  ( Xs )

If the population standard deviation is unknown, it must be estimated from the sample. 
This seemingly minor complication has important implications for hypothesis test-
ing—indeed, it is the reason why the z test must be replaced by the t test. Now s 
replaces σ in the formula for the standard error of the mean. Instead of

X
n

*Essentially, the inflated tails are caused by the extra variability of the estimated standard 

error in the denominator of t. For a complete explanation, see Chapter 7 in Howell, D. H. (2013). 

Statistical Methods for Psychology (8th ed.). Belmont, CA: Wadsworth.
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we have

ESTIMATED STANDARD ERROR OF THE MEAN

 
X

s
s

n  (13.3)

where Xs  represents the estimated standard error of the mean; n equals the sample size; 
and s has been defined as

             1

SS SS
s

n df  

where s is the sample standard deviation; df refers to the degrees of freedom; and SS 
has been defined as

2
2 2 X

SS X X X
n

This new version of the standard error, the estimated standard error of the mean, is 
used whenever the unknown population standard deviation must be estimated.

Progress Check *13.2 A consumers’ group randomly samples 10 “one-pound” pack-
ages of ground beef sold by a supermarket. Calculate (a) the mean and (b) the estimated 
standard error of the mean for this sample, given the following weights in ounces: 16, 15, 14, 
15, 14, 15, 16, 14, 14, 14.

(NOTE: Refer to Panels I and II of Table 13.1 for detailed guidance when calculating the 
mean and estimated standard error for this new set of data.)

Answers on page 436.

13 .7  DETA ILS :  CALCULAT IONS  FOR  THE  t  TEST

The three panels in Table 13.1 show the computational steps that produce a t of –2.25 
for the gas mileage investigation.

Pane l  I

This panel involves most of the computational labor, and it generates values for the 
sample mean, X, and the sample standard deviation, s. The sample standard deviation 
is obtained by first using Formula 4.4 (on page 69) to calculate the sum of squares,

2
2 X

SS X
n

and after dividing the sum of squares, SS, by its degrees of freedom, n − 1, extracting 
the square root.

Pane l  I I

Dividing the sample standard deviation, s, by the square root of the sample size, n, 
gives the value for the estimated standard error, Xs .

Estimated Standard Error of the 

Mean ( Xs ) 

The standard error of the mean 

used whenever the unknown pop-

ulation standard deviation must be 

estimated.

Reminder: 

Replace n with n − 1 only when 

dividing SS to obtain s.

Witte11e_c13.indd   239 11/18/2016   7:17:32 PM



240 t  TEST FOR ONE SAMPLE

Table 13.1
CALCULATIONS FOR THE t TEST 
(GAS MILEAGE INVESTIGATION)

I. FINDING X AND s
(a) Computational sequence:

Assign a value to n ( 1).
Sum all X scores ( 2 ).
Substitute numbers in the formula ( 3 ) and solve for X .
Square each X score ( 4 ), one at a time, and then add all squared X scores ( 5 ).
Substitute numbers in the formula ( 6 ) and solve for s ( 7 ).

(b) Data and computations:

 4
X X 2

40 1600
44 1936
46 2116
41 1681
43 1849
44 1936

  1 n = 6     2  ΣX = 258      5  ΣX  2  = 11118

 3
    

258
43

6

X
X

n

 6

 

2 2
2 258 66564

11118 11118 11118 11094 24
6 6

X
SS X

n

 7

 

24
4.8 2.19

1 6 1

SS
s

n

II. FINDING Xs
(a) Computational sequence:

Substitute the numbers obtained above in the formula  8 and solve for sX .
(b) Computations:

 8

 

2.19 2.19
0.89

2.456
X

s
s

n

III. FINDING THE OBSERVED t
(a) Computational sequence:

Assign a value to 𝝁hyp  9, the hypothesized population mean.
Substitute the numbers obtained above in the formula  10 and solve for t.

 (b) Computations:
 9  𝝁hyp = 45

10

 

43 45 2
2.25

0.89 0.89

hyp

X

X
t

s
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Pane l  I I I

Finally, dividing the difference between the sample mean, X, and the null hypoth-
esized value, 𝝁hyp, by the estimated standard error, Xs , yields the value of the t ratio.

Progress Check *13.3 The consumers’ group in Question 13.2 suspects that a super-
market makes extra money by supplying less than the specified weight of 16 ounces in its 
“one-pound” packages of ground beef. Given that a random sample of 10 packages yields a 
mean of 14.7 ounces and an estimated standard error of the mean of 0.26 ounce, use the cus-
tomary step-by-step procedure to test the null hypothesis at the .05 level of significance with t.

Answer on page 436.

13 .8  CONF IDENCE  INTERVALS  FOR  𝝁 BASED  ON  t

Under slightly different circumstances, you might wish to estimate the unknown mean 
gas mileage for the population of cars, rather than test a hypothesis based on 45 mpg. 
For example, there might be no legally required minimum of 45 mpg, but merely a 
desire on the part of the manufacturer to estimate the mean gas mileage for a popula-
tion of cars—possibly as a first step toward the design of a new, improved version of 
the current model.

When the population standard deviation is unknown and, therefore, must be esti-
mated, as in the present case, t replaces z in the new formula for a confidence interval: 

CONFIDENCE INTERVAL FOR 𝝁 BASED ON t

 ( )( )conf XX t s  (13.4)

where X represents the sample mean; tconf represents a number (distributed with n − 1 
degrees of freedom) from the t tables, which satisfies the confidence specifications for 
the confidence interval; and Xs  represents the estimated standard error of the mean, 
defined in Formula 13.3.

F ind ing  t conf

To find the appropriate value for tconf in Formula 13.4, refer to Table B in Appendix C. 
Read the entry from the cell intersected by the row for the correct number of degrees of 
freedom and the column for the confidence specifications. In the present case, if a 95 
percent confidence interval is desired, first locate the row corresponding to 5 degrees of 
freedom (from df = n − 1 = 6 − 1 = 5), and then locate the column for the 95 percent 
level of confidence, that is, the column heading identified with a single asterisk. (A 
double asterisk identifies the column for the 99 percent level of confidence.) The inter-
sected cell specifies that a value of 2.571 should be entered in Formula 13.4.*

*Specifications for confidence intervals are taken from the left-hand panel of Table B because 

the symmetrical limits of a confidence interval are analogous to a two-tailed hypothesis test. 

Essentially, both procedures require that a specified number of standard errors be added and 

subtracted relative to either the value of the null hypothesis (to obtain the upper and lower critical 

values for a two-tailed hypothesis test) or the value of the sample mean (to obtain the upper and 

lower limits of a confidence interval).
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Given this value for tconf, as well as the value of 43 for X (from Table 13.1), the 
sample mean gas mileage, and 0.89 for Xs , the estimated standard error, Formula 13.3 
becomes

45.29
43 (2.571)(0.89) 43 2.29

40.71

It can be claimed, with 95 percent confidence, that the interval between 40.71 and 
45.29 includes the true mean gas mileage for all of the cars in the population.

I n te rp re ta t i on

The interpretation of this confidence interval is the same as that based on z. In the long 
run, 95 percent of all confidence intervals, similar to the one just discussed, will include 
the unknown population mean. Although we never really know whether this particular 
confidence interval is true or false, we can be reasonably confident that the true mean 
for the entire population of cars is neither less than 40.71 mpg nor more than 45.29 mpg.

Progress Check *13.4 The consumers’ group (in Question 13.3) concludes that, in spite 
of the claims of the supermarket, the mean weight of its “one-pound” packages of ground 
beef drops below the specified 16 ounces even when chance sampling variability is taken into 
account.

(a) Construct a 95 percent confidence interval for the true weight of all “one-pound” pack-
ages of ground beef.

(b) Interpret this confidence interval.

Answers on page 436.

13 .9  ASSUMPT IONS

Whether testing hypotheses or constructing confidence intervals for population means, 
use t rather than z whenever, as almost always is the case, the population standard 
deviation is unknown. Strictly speaking, when using t, you must assume that the under-
lying population is normally distributed. Even if this normality assumption is violated, 
t retains much of its accuracy as long as the sample size isn’t too small. If a very small 
sample (less than about 10) is being used and you believe that the sample originates 
from a non-normal population—possibly because of a pronounced positive or negative 
skew among the observations in the sample—it would be wise to increase the size of 
the sample before testing a hypothesis or constructing a confidence interval.

Summary

When the population standard deviation, σ, is unknown, it must be estimated 
with the sample standard deviation, s. By the same token, the standard error of the 
mean, ,X  then must be estimated with Xs . Under these circumstances, t rather than 
z should be used to test a hypothesis or to construct a confidence interval for the 
population mean.

The t ratio is distributed with n − 1 degrees of freedom, and the critical t values are 
obtained from Table B in Appendix C. Because of the inflated tails of t sampling dis-
tributions, particularly when the sample size is small, critical t values are larger (either 
positive or negative) than the corresponding critical z values.
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Degrees of freedom (df) refer to the number of values free to vary, given one or 
more mathematical restrictions on a set of values used to estimate some population 
characteristic.

The use of t assumes that the underlying population is normally distributed. Viola-
tions of this assumption are important only when the observations in small samples 
appear to originate from non-normal populations.

Important Terms

Sampling distribution of t Estimated standard error of the

t ratio mean ( Xs )

Degrees of freedom (df  ) 

Key Equations

t RATIO

where

hyp

X

X

X
t

s

s
s

n

REV IEW QUEST IONS

 *13.5 A library system lends books for periods of 21 days. This policy is being reevaluated 
in view of a possible new loan period that could be either longer or shorter than 
21 days. To aid in making this decision, book-lending records were consulted to 
determine the loan periods actually used by the patrons. A random sample of eight 
records revealed the following loan periods in days: 21, 15, 12, 24, 20, 21, 13, and 
16. Test the null hypothesis with t, using the .05 level of significance.

 Answers on pages 436 and 437.

 13.6 It’s well established, we’ll assume, that lab rats require an average of 32 trials in a 
complex water maze before reaching a learning criterion of three consecutive error-
less trials. To determine whether a mildly adverse stimulus has any effect on per-
formance, a sample of seven lab rats were given a mild electrical shock just before 
each trial.

 (a) Given that X  = 34.89 and s = 3.02, test the null hypothesis with t, using the .05 level 
of significance.

 (b) Construct a 95 percent confidence interval for the true number of trials required to 
learn the water maze.

 (c) Interpret this confidence interval.

 *13.7 Is the temperature of the earth getting warmer because heat is trapped by green-
house gas emissions, such as carbon dioxide, in the earth’s atmosphere? The 
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National Climatic Data Center reports on its website at http://www.ncdc.noaa.gov/
pub/data/anomalies.html that the average global temperatures for recent years 
have deviated above the long-term mean temperature for the entire twentieth 
century. Expressed in Fahrenheit degrees, the annual deviations above the long-
term mean temperature for each of ten recent years, listed in chronological order 
up to 2015, were 1.15, 1.15, 1.01, 1.03 1.15, 1.22, 1.03, 1.13, 1.21, and 1.35.

 (a) Given that X  = 1.14 and s = 0.10 for these ten years, use t at the .01 level of signifi-
cance to test the null hypothesis that the temperature of earth is not getting warmer. 
In other words, could the sample mean deviation for these ten years have originated 
from a population of annual deviations for the entire twentieth century having a 
mean deviation equal to zero?

 (b) If appropriate (because the null hypothesis has been rejected), construct a 99 per-
cent confidence interval and interpret this interval.

 Answers on page 437.

 13.8 Assume that, on average, healthy young adults dream 90 minutes each night, as 
inferred from a number of measures, including rapid eye movement (REM) sleep. An 
investigator wishes to determine whether drinking coffee just before going to sleep 
affects the amount of dream time. After drinking a standard amount of coffee, dream 
time is monitored for each of 28 healthy young adults in a random sample. Results 
show a sample mean, X , of 88 minutes and a sample standard deviation, s, of  
9 minutes.

 (a) Use t to test the null hypothesis at the .05 level of significance.

 (b) If appropriate (because the null hypothesis has been rejected), construct a 95 per-
cent confidence interval and interpret this interval.

 13.9 In the gas mileage test described in this chapter, would you prefer a smaller or a 
larger sample size if you were

 (a) the car manufacturer? Why?

 (b) a vigorous prosecutor for the federal regulatory agency? Why?

 13.10 Even though the population standard deviation is unknown, an investigator uses  
z rather than the more appropriate t to test a hypothesis at the .05 level of signifi-
cance.

 (a) Is the true level of significance larger or smaller than .05?

 (b) Is the true critical value larger or smaller than that for the critical z?
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Preview

This chapter describes the t test for studies that compare a treatment group with a 

control group and that, if designed properly, permit unambiguous conclusions about 

cause-effect relationships. If the null hypothesis for this test is rejected, the result 

often is described as “statistically significant.” Statistically significant results can be 

evaluated further by estimating the size of the underlying effect (difference between 

population means).

Instead of simply reporting whether or not a result is statistically significant, it is 

preferable to calculate and report “p-values.” p-values concentrate solely on the degree 

of rarity of the observed result without regard to an arbitrary predetermined level of 

significance cutoff.
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246 t  TEST FOR TWO INDEPENDENT SAMPLES

14 .1  EPO  EXPER IMENT

Recent editions of the world’s best-known bicycle race, the Tour de France, has seen 
some cyclists expelled for attempting to enhance their performance by using a variety 
of banned substances, including a synthetic “blood-doping” hormone, erythropoietin 
(EPO), that stimulates the production of oxygen-bearing (and fatigue-inhibiting) red 
blood cells. Assume that a mental health investigator at a large clinic wants to deter-
mine whether EPO—viewed as a potential therapeutic tool—might increase the endur-
ance of severely depressed patients. Volunteer patients are randomly assigned to one of 
two groups: a treatment group (X1) that receives a prescribed amount of EPO and a con-
trol group (X2) that receives a harmless neutral substance. Subsequent endurance scores 
are based on the total time, in minutes, that each patient remains on a rapidly moving 
treadmill. The statistical analysis focuses on the difference between mean endurance 
scores for the treatment and control groups.

For computational convenience, the results for the current experiment are based 
on very small samples of only six endurance scores per group (rather than on larger 
sample sizes selected with the aid of power curves described in  Section 11.11). Also 
for computational convenience, endurance scores have been rounded to the nearest 
minute even though, in practice, they surely would reflect measurement that is more 
precise. A glance at Figure 14.1 suggests considerable overlap in the scores for the two 
groups. The treatment scores tend to be slightly larger than the control scores, and this 
tendency is supported by the mean difference of 5 minutes (from 11 − 6) in favor of 
the treatment group. How do we interpret this tendency? Is it real and, therefore, likely 
to reappear in a repeat experiment as a difference favoring the treatment group? Or, 
given the obvious overlap in scores for the two groups, combined with the inevitable 
variability among scores, is this tendency transitory and, therefore (to the dismay of 
the investigator), just as likely to appear in a repeat experiment as either no difference 
or even a difference favoring the control group? A t test for two independent samples, 
which evaluates the mean difference of 5 minutes relative to its variability, helps us 
answer this question.

Two  Independen t  Samp les

In the current experiment, there are two independent samples, because each of the 
two groups consists of different patients. When samples are independent, observations 
in one sample are not paired, on a one-to-one basis, with observations in the other 
sample. The current discussion for two independent samples can be compared with 
that in the next chapter for two related samples, when the investigator creates pairs of 

Two Independent Samples 

Observations in each sample 

are based on different (and 

unmatched) subjects.

86420
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= Treatment (X1)

FIGURE 14.1  

Distribution of endurance scores for two groups in the EPO experiment.
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observations either by using the same patients or by matching patients in the treatment 
and control conditions.

Two  Popu la t i ons

The subjects in the current experiment are from a very limited real population: all 
volunteers from the pool of severely depressed patients at some clinic. This is hardly 
an inspiring target for statistical inference. A standard remedy is to characterize the 
sample of patients as if it were a random sample from a much larger hypothetical 
population, loosely defined as “all similar volunteer patients who could conceivably 
participate in the experiment.” Strictly speaking, there are two hypothetical popula-
tions: a treatment population defined for the endurance scores of patients who receive 
EPO and a control population defined for the endurance scores of patients who don’t 
receive EPO. These two populations are cited in the null hypothesis, and as has been 
noted, any generalizations must be viewed as provisional conclusions based on the 
wisdom of the investigator rather than on any logical or statistical necessity. Only 
additional experimentation can determine whether a given experimental finding merits 
the generality assigned to it by the investigator.

Di f fe rence  be tween  Popu la t i on  Means

The difference between population means reflects the effect of EPO on endurance. 
If EPO has little or no effect on endurance, then the endurance scores would tend to be 
about the same for both populations of patients, and the difference between population 
means would be close to zero. But if EPO facilitates endurance, the scores for the treat-
ment population would tend to exceed those for the control population, and the differ-
ence between population means would be positive. The stronger the facilitative effect 
of EPO on endurance, the larger the positive difference between population means. On 
the other hand, if EPO hinders endurance, the endurance scores for the treatment popu-
lation would tend to be exceeded by those for the control population, and the difference 
between population means would be negative.

14 .2  STAT IST ICAL  HYPOTHESES

Nu l l  Hypo thes i s

According to the null hypothesis, nothing special is happening because EPO does 
not facilitate endurance. In other words, either there is no difference between the means 
for the two populations (because EPO has no effect on endurance) or the difference 
between population means is negative (because EPO hinders endurance). An equiva-
lent statement in symbols reads:

H0 : μ1 − μ2 ≤ 0

where H0 represents the null hypothesis and μ1 and μ2 represent the mean endurance 
scores for the treatment and control populations, respectively.

Al te rna t i ve  ( o r  Resea rch )  Hypo thes i s

The investigator wants to reject the null hypothesis only if the treatment increases 
endurance scores. Given this perspective, the alternative (or research) hypothesis 
should specify that the difference between population means is positive because EPO 
facilitates endurance. An equivalent statement in symbols reads:

1 1 2: 0H

Effect 

Any difference between two  

population means.
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where H1 represents the alternative hypothesis and, as above, μ1 and μ2 represent the 
mean endurance scores for the treatment and control populations, respectively. This 
directional alternative hypothesis translates into a one-tailed test with the upper tail 
critical. As emphasized in Section 11.3, a directional alternative hypothesis should be 
used when there’s a concern only about differences in a particular direction.

Two  O the r  Poss ib le  A l te rna t i ve  Hypo theses

Although not appropriate for the current experiment, there are two other possible 
alternative hypotheses:

1. Another directional hypothesis, expressed as

H1 : μ1 − μ2 < 0

 translates into a one-tailed test with the lower tail critical.

2. A nondirectional hypothesis, expressed as

H1 : μ1 − μ2 ≠ 0

 translates into a two-tailed test.

Progress Check *14.1 Identifying the treatment group with μ1, specify both the null 
and alternative hypotheses for each of the following studies. Select a directional alternative 
hypothesis only when a word or phrase justifies an exclusive concern about population mean 
differences in a particular direction.

(a) After randomly assigning migrant children to two groups, a school psychologist deter-
mines whether there is a difference in the mean reading scores between groups exposed 
to either a special bilingual or a traditional reading program.

(b) On further reflection, the school psychologist decides that, because of the extra expense 
of the special bilingual program, the null hypothesis should be rejected only if there is evi-
dence that reading scores are improved, on average, for the group exposed to the special 
bilingual program.

(c) An investigator wishes to determine whether, on average, cigarette consumption is reduced 
for smokers who chew caffeine gum. Smokers in attendance at an antismoking workshop 
are randomly assigned to two groups—one that chews caffeine gum and one that does 
not—and their daily cigarette consumption is monitored for six months after the workshop.

(d) A political scientist determines whether males and females differ, on average, about the 
amount of money that, in their opinion, should be spent by the U.S. government on home-
land security. After being informed about the size of the current budget for homeland secu-
rity, in billions of dollars, randomly selected males and females are asked to indicate the 
percent by which they would alter this amount—for example, –8 percent for an 8 percent 
reduction, 0 percent for no change, 4 percent for a 4 percent increase.

Answers on page 437.

14 .3  SAMPL ING  D ISTR IBUT ION  OF  X1  –  X2

Because of the inevitable variability associated with any difference between the sam-
ple mean endurance scores for the treatment and control groups, 1X  − 2X , we can’t 
interpret a single observed mean difference at face value. The new mean difference 
for a repeat experiment would most likely differ from that for the original  experiment. 
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The sampling distribution of 1X  − 2X  is a concept introduced to account for the 
variability associated with differences between sample means. It represents the entire 
spectrum of differences between sample means based on all possible pairs of ran-
dom samples from the two underlying populations. Once the sampling distribution 
has been centered about the value of the null hypothesis, we can determine whether 
the one observed sample mean difference qualifies as a common or a rare outcome.  
(A common outcome signifies that the observed sample mean difference could be due 
to variability or chance and, therefore, shouldn’t be taken seriously. On the other hand, 
a rare outcome signifies that the observed sample mean difference probably reflects a 
real difference and, therefore, should be taken seriously.) Since all the possible pairs 
of random samples usually translate into a huge number of possibilities—often of 
astronomical proportions—the sampling distribution of 1X  − 2X  isn’t constructed from 
scratch. As with the sampling distribution of X described in Chapter 9, statistical the-
ory must be relied on for information about the mean and standard error for this new 
sampling distribution.

Mean  o f  t he  Samp l ing  D i s t r i bu t ion ,  μX X1 2

Recall from Chapter 9 that the mean of the sampling distribution of X equals the 
population mean, that is,

Xμ μ

where xμ  is the mean of the sampling distribution and μ is the population mean. 
 Similarly, the mean of the new sampling distribution of 1X  − 2X  equals the difference 
between population means, that is,

1 2
1 2X Xμ μ μ

where 
1 2X Xμ  is the mean of the new sampling distribution and 1 2μ μ  is the  difference 

between population means. This conclusion is not particularly startling. Because of 
sampling variability, it’s unlikely that the one observed difference between sample 
means equals the difference between population means. Instead, it’s likely that, just 
by chance, the one observed difference is either larger or smaller than the difference 
between population means. However, because not just one but all possible differences 
between sample means contribute to the mean of the sampling distribution, 

21X Xμ , the 
effects of sampling variability are neutralized, and the mean of the sampling distribution 
equals the difference between population means. Accordingly, these two terms are used 
interchangeably. Any claims about the difference between population means, including 
the null hypothesized claim that this difference equals zero, can be transferred directly 
to the mean of the sampling distribution.

S tanda rd  E r ro r  o f  t he  Samp l ing  D i s t r i bu t ion ,  σX X1 2

Also recall from Chapter 9 that the standard deviation of the sampling distribution 
(or standard error) of X equals

2

X nn

where x is the standard error,  is the population standard deviation, and n is the 
sample size. To highlight the similarity between this expression and that for the new 
sampling distribution, the population variance, 2, is introduced in the above equation 
by placing both the numerator and denominator under a common square root sign.

Sampling Distribution of X X1 2 

Differences between sample means 

based on all possible pairs of ran-

dom samples from two underlying 

populations.
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The standard deviation of the new sampling distribution of 1 2X X  equals

1 2

2 2
1 2

1 2
X X n n

where 
1 2X X  is the new standard error, 2

1  and 2
2  are the two population variances, 

and n1 and n2 are the two sample sizes.
The new standard error emerges directly from the original standard error with the 

addition of a second term, 2
2  divided by n2, reflecting extra variability due to the shift 

from a single sample mean to differences between two sample means. Therefore, the 
value of the new standard error always will be larger than that of the original one. The 
original standard error reflects only the variability of single sample means about the 
mean of their sampling distribution. But the new standard error reflects extra variability 
when, as a result of random pairings, large differences between pairs of sample means 
occur, just by chance, because they happen to deviate in opposite directions.

You might find it helpful to view the standard error of the difference between 
means, x x1 2

, as a rough measure of the average amount by which any sample mean 

difference deviates from the difference between population means. Viewed in this fash-

ion, if the observed difference between sample means is smaller than the standard error, 

it qualifies as a common outcome—well within the average expected by chance, and 

the null hypothesis, H0, is retained. On the other hand, if the observed difference is suf-

ficiently larger than the standard error, it qualifies as a rare outcome—well beyond the 

average expected by chance, and H0 is rejected.
The size of the standard error for two samples, 

1 2X X —much like that of the stan-
dard error for one sample described earlier—becomes smaller with increases in sample 
sizes. With larger sample sizes, the values of 1 2X X  tend to cluster closer to the differ-
ence between population means, 1 2, allowing more precise generalizations.

14 .4  t  TEST

The hypothesis test for the current experiment will be based not on the sampling dis-
tribution of 1X  − 2X  but on its standardized counterpart, the sampling distribution of t. 
Although there also is a sampling distribution of z, its use requires that both population 
standard deviations be known. Since, in practice, this information is rarely available, 
the z test is hardly ever appropriate, and only the t test will be described.

t  Ra t io

The null hypothesis can be tested using a t ratio. Expressed in words,

    –     

 

( ) ( )difference between sample means hypothesized difference between population means
t

estimated standard error

Expressed in symbols,

Standard Error of the Difference 

Between Means, σX X1 2
 

A rough measure of the average 

amount by which any sample mean 

difference deviates from the differ-

ence between population means.

t RATIO FOR TWO POPULATION MEANS (TWO INDEPENDENT SAMPLES)

 1 2

1 2 1 2 hyp

X X

X X
t

s  
(14.1)
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which complies with a t sampling distribution having degrees of freedom equal to 
the sum of the two sample sizes minus two, that is, df = n1 + n2 − 2, for reasons 
discussed in Section 14.5. In Formula 14.1, 1 2X X  represents the one observed dif-
ference between sample means; 1 2( )hyp represents the hypothesized difference of 
zero between population means; and 

1 2X Xs  represents the estimated standard error, as 
defined later in Formula 14.3.

F ind ing  C r i t i ca l  t  Va lues

Once again, we must consult Table B in Appendix C to determine critical values 
that distinguish between common and rare values of t on the assumption that the null 
hypothesis is true. To find a critical t in Table B, follow the same procedure described 
previously. Read the entry in the cell intersected by the row for the correct number of 
degrees of freedom, adjusted for two independent samples, and the column for the test 
specifications. To find the critical t for the current experiment, first go to the right-hand 
panel for a one-tailed test; next, locate the row corresponding to 10 degrees of freedom 
(from df = n1 + n2 − 2 = 6 + 6 − 2 = 10); and then locate the column for a one-tailed 
test at the .05 level of significance. The intersected cell specifies 1.812. The corre-
sponding decision rule is illustrated in Figure 14.2, where the sampling distribution of 
t is centered about the null hypothesized value of zero.

Progress Check *14.2 Using Table B in Appendix C, find the critical t values for each of 
the following hypothesis tests:

(a) two-tailed test; α = .05; n1 = 12; n2 = 11

(b) one-tailed test, upper tail critical; α = .05; n1 = 15; n2 = 13

(c) one-tailed test, lower tail critical; α = .01; n1 = n2 = 25

(d) two-tailed test; α = .01; n1 = 8; n2 = 10

Answers on page 437.

Summary  fo r  EPO  Expe r iment

Spend a few minutes familiarizing yourself with the boxed hypothesis test summary 
for the EPO experiment. Note the considerable similarities between it and previous 
summaries of hypothesis tests. Given the apparent separation between the two groups 

FIGURE 14.2  

Hypothesized sampling distribution of t (EPO experiment).

0

Retain H0

X1 – X2

Reject H0

t

0

1–1–2 2

1.812
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depicted in Figure 14.1, you might have anticipated that the calculated t of 2.16 would 
exceed the critical t of 1.812. Therefore, we can reject H0 and conclude that, on aver-
age, EPO increases the endurance scores of treatment patients.

14 .5  DETA ILS :  CALCULAT IONS  FOR  THE  t  TEST

Four panels in Table 14.1 represent the steps required to produce a t of 2.16 for the 
EPO experiment.

HYPOTHESIS TEST SUMMARY

t Test for Two Population Means: Independent Samples 
(EPO Experiment)

Research Problem
Does the population mean endurance score for treatment (EPO) patients 
exceed that for control patients?

Statistical Hypotheses

 

0 1 2

1 1 2

: 0

: 0

H

H

Reject H0 at the .05 level of significance if t ≥ 1.812 (from Table B in  
Appendix C, given df = n1 + n2 – 2 = 6 + 6 – 2 = 10).

Calculations
11 6 0

2.16
2.32

t

 
(See Table 14.1 for all computations.) 

Decision
Reject H0 at the .05 level of significance because t = 2.16 exceeds 1.812.

Interpretation
The difference between population means is greater than zero. There is evidence that 
EPO increases the mean endurance scores of treatment patients.

Pane l  I

Requiring the most computational effort, this panel produces values for the two 
sample means, 1X  and 2X , and for the two sample sums of squares, SS1 and SS2, where

2

12
1 1

1

X
SS X

n

and

2

22
2 2

2

X
SS X

n
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Table 14.1
CALCULATIONS FOR THE t TEST: TWO INDEPENDENT SAMPLES 

(EPO EXPERIMENT)

I. FINDING SAMPLE MEANS AND SUMS OF SQUARES, 1X , 2X , SS1, AND SS2

(a) Computational sequence:
Assign a value to n1 (1).
Sum all X1 scores (2 ).
Substitute numbers in the formula (3 ) and solve for 1X .
Square each X1 score (4 ), one at a time, and then add all squared X1 scores (5 ).
Substitute numbers in the formula (6 ) and solve for SS1.
Repeat this entire computational sequence for n2 and X2 and solve for 2X  and SS2.

(b) Data and computations:

ENDURANCE SCORES (MINUTES)

EPO 4 CONTROL

X1 X1
2 X2

2
2X

12 144 7 49
5 25 3 9

11 121 4 16
11 121 6 36
9 81 3 9

18 324 13 169

1 n1 = 6    2  X1 66     5  
2
1 816X      n2 = 6        X 2 36  

2
2 288X

3

  

1
1

1

66
11

6

X
X

n             

2
2

2

36
6

6

X
X

n

6

  

SS X
X

n
1 1

2 1

2

1

2

816
66

6

816 726

90                                    

SS X
X

n
2 2

2 2

2

2

2

288
36

6

288 216

72

II. FINDING THE POOLED VARIANCE, sp
2

(a) Computational sequence:
 Substitute numbers obtained above in the Formula (7 ) and solve for sp

2.
(b) Computations:

7  

 

s
SS SS

n n
P
2 1 2

1 2 2

90 72

6 6 2

162

10
16 2.

(continued )
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III. FINDING THE STANDARD ERROR, sx x1 2

(a) Computational sequence:
Substitute numbers obtained above in the formula (8 ) and solve for s

X X1 2
.

(b) Computations:

8

          

s
s

n

s

n
X X

P P

1 2

2

1

2

2

16 2

6

16 2

6

32 4

6
5 4 2 32

. . .
. .

IV. FINDING THE OBSERVED t RATIO
(a) Computational sequence:

Substitute numbers obtained above in the formula (9 ), as well as a value of 0 for 
the expression ( )2 2 hyp and solve for t.

(b) Computations:

9

 

t
X X

s

hyp

X X

1 2 1 2

1 2

11 6 0

2 32

5

2 32
2 16

. .
.

Pane l  I I

The present t test assumes that the two population variances are equal. Given that
2 2 2
1 2

, the variance common to both populations can be estimated most accu-

rately by combining the two sample variances to obtain the pooled variance estimate, 
2
Ps . This is accomplished by simply adding the two sample sums of squares, SS1 and 

SS2, and dividing this sum by their degrees of freedom, df = n1 + n2 − 2, that is,

The degrees of freedom for 
2
Ps  equal the sum of the degrees of freedom for the two sam-

ples minus two. Two degrees of freedom are lost, one for each sample, because of the 

zero-sum restriction for the deviations of observations about their respective means. 

Although not obvious from Formula 14.2, the pooled variance, 
2
Ps , represents the mean 

of the variances, 
2
1s  and 

2
2s , for the two samples once these estimates have been adjusted 

for their degrees of freedom. Accordingly, if the values of 
2
1s  and 

2
2s  are different, 

2
Ps  

will always assume some intermediate value. If sample sizes (and, therefore, degrees of 

freedom) are equal, the value of 
2
Ps  will be exactly midway between those of 

2
1s  and 

2
2 .s  

Otherwise, the value of 2
Ps  will be shifted proportionately toward the sample variance 

with the larger number of degrees of freedom.

Pane l  I I I

The estimated standard error, 
1 2X Xs , is calculated by substituting the pooled  

variance, 2
Ps , twice, once as an estimate for 2

1  and once as an estimate for 2
2 ; then 

dividing each term by its sample size, either n1 or n2; and finally, taking the square root 

of the entire expression, that is,

Pooled Variance Estimate, sP
2
  

The most accurate estimate of the 

population variance (assumed to 

be the same for both populations) 

based on a combination of two 

sample sums of squares and their 

degrees of freedom.

POOLED VARIANCE ESTIMATE, sP
2

      

2 1 2 1 2

1 2 2
p

SS SS SS SS
s

df n n   
(14.2)
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Pane l  IV

Finally, dividing the difference between the two sample means, 1 2X X , and the 
null hypothesized population mean difference, (μ1 − μ2)hyp, (of zero) by the estimated 
standard error, 

1 2X Xs , generates a value for the t ratio, as defined in Formula 14.1.

Progress Check *14.3 A psychologist investigates the effect of instructions on the time 
required to solve a puzzle. Each of 20 volunteers is given the same puzzle to be solved as 
rapidly as possible. Subjects are randomly assigned, in equal numbers, to receive two differ-
ent sets of instructions prior to the task. One group is told that the task is difficult (X1), and 
the other group is told that the task is easy (X2). The score for each subject reflects the time 
in minutes required to solve the puzzle. Use a t to test the null hypothesis at the .05 level of 
significance.

SOLUTION TIMES

“DIFFICULT” TASK “EASY” TASK
5 13

20 6
7 6

23 5
30 3
24 6
9 10
8 20

20 9
12 12

Answers on pages 437 and 438.

14 .6  p -VALUES

Most investigators adopt a less-structured approach to hypothesis testing than that 
described in this book. The null hypothesis is neither retained nor rejected, but viewed 
with degrees of suspicion, depending on the degree of rarity of the observed value of t 
or, more generally, the test result. Instead of subscribing to a single predetermined 
level of significance, the investigator waits until after the test result has been observed 
and then assigns a probability, known as a p-value, representing the degree of rarity 
attained by the test result.

The p-value for a test result represents the degree of rarity of that result, given 
that the null hypothesis is true. Smaller p-values tend to discredit the null 
hypothesis and to support the research hypothesis.

ESTIMATED STANDARD ERROR, sX X1 2

 
1 2

2 2

1 2

p p
X X

s s
s

n n  

(14.3)

p-value 

The degree of rarity of a test result, 

given that the null hypothesis  

is true.

Estimated Standard Error, 
1 2

s
X X  

The standard deviation of the 

sampling distribution for the differ-

ence between means whenever the 

unknown variance common to both 

populations must be estimated. 
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Strictly speaking, the p-value indicates the degree of rarity of the observed test 
result when combined with all potentially more deviant test results. In other words, the 
p-value represents the proportion of area, beyond the observed result, in the tail of the 
sampling distribution, as shown in Figure 14.3 by the shaded sectors for two different 
test results. In the left panel of Figure 14.3, a relatively deviant (from zero) observed  
t is associated with a small p-value that makes the null hypothesis suspect, while in the 
right panel, a relatively non-deviant observed t is associated with a large p-value that 
does not make the null hypothesis suspect.

Figure 14.3 illustrates one-tailed p-values that are appropriate whenever the inves-
tigator has an interest only in deviations in a particular direction, as with a one-tailed 
hypothesis test. Otherwise, two-tailed p-values are appropriate. Although not shown in 
Figure 14.3, two-tailed p-values would require equivalent shaded areas to be located 
in both tails of the sampling distribution, and the resulting two-tailed p-value would be 
twice as large as its corresponding one-tailed p-value.

F ind ing  App rox imate  p -Va lues

Table B in Appendix C can be used to find approximate p-values, that is, p-values 
involving an inequality, such as p < .05 or p > .05. To aid in the identification of these 
approximate p-values, a shaded outline has been superimposed over the entries for t in 
Table B. Once you’ve located the observed t relative to the tabular entries, simply fol-
low the vertical line upward to identify the correct approximate p-value.

To find the approximate p-value for the t of 2.16 for the EPO experiment, first 
identify the row in Table B for a one-tailed test with 10 degrees of freedom. The three 
entries in this row, 1.812, 2.764, and 4.144, serve as benchmarks for degrees of rarity 
corresponding to p-values of .05, .01, and .001, respectively. Since the observed t of 
2.16 is located between the first entry of 1.812 and the second entry of 2.764, follow the 
vertical line between the two entries upward to p < .05. From most perspectives, this 
is a small p-value: The test result is rare—it could have occurred just by chance with 
a probability less than .05, given that H0 is true. Therefore, support has been mustered 
for the research hypothesis. This conclusion is consistent with the decision to reject H0 
when a more structured hypothesis test at the .05 level of significance was conducted 
for the same data.

Progress Check *14.4 Find the approximate p-value for each of the following test results:

(a) one-tailed test, upper tail critical; df = 12; t = 4.61

(b) one-tailed test, lower tail critical; df = 19; t = –2.41

FIGURE 14.3  

Shaded sectors showing small and large p-values.

t
0 0

tobs

A. Small p–value
(H0 suspect)

t

tobs

B. Large p–value
(H0 not suspect)
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(c) two-tailed test; df = 15; t = 3.76

(d) two-tailed test; df = 42; t = 1.305

(e) one-tailed test, upper tail critical; df = 11; t = –4.23 (Be careful!)

Answers on page 438.

Read ing  p -Va lues  Repo r ted  by  O the rs

A single research report might describe a batch of tests with a variety of approxi-
mate p-values, such as p < .05, p < .01, and p < .001, and, if the test failed to support 
the research hypothesis, p > .05. You must attend carefully to the direction of the 
inequality symbol. For example, the test result supports the research hypothesis when 
p < .05 but not when p > .05.

 As illustrated in many of the computer outputs in this book, when statistical tests are 
performed by computers, with their capacity to obtain exact p-values (or values of Sig. 
in the case of SPSS), reports contain many different p-values, such as p = .03, p = .27, 
and p = .009. Even though more precise equalities replace inequalities, exact p-values 
listed on computer printouts are interpreted the same way as approximate p-values read 
from tables. For example, it’s still true that p = .03 describes a rare test result, while  
p = .27 describes a result that is not particularly rare. Sometimes you’ll see even a very 
rare p = .000, which, however, does not signify that p actually equals zero—an impos-
sibility, since the t sampling distribution extends outward to infinity—but merely that 
rounding off causes the disappearance of non-zero digits from the reported p-value.

Eva lua t ion  o f  t he  p -Va lue  App roach

This less-structured approach does have merit. Having eliminated the requirement 
that the null hypothesis be either retained or rejected, you can postpone a decision until 
sufficient evidence has been mustered, possibly from a series of investigations. This 
perspective is very attractive when test results are borderline. For instance, imagine 
a hypothesis test in which the null hypothesis is retained, even though an observed  
t of 1.70 is only slightly less deviant than the critical t of 1.812 for the .05 level of sig-
nificance. Given the less-structured approach, an investigator might, with the aid of a 
computer, establish that p = .06 for the observed t. Reporting the borderline result, with 
p = .06, implies at least some support for the research hypothesis.

One weakness of this less-structured approach is that, in the absence of a firm com-
mitment to either retain or reject the null hypothesis according to some predetermined 
level of significance, it’s difficult to deal with the important notions of type I and type II 
errors. For this reason, a more-structured approach to hypothesis testing will continue 
to be featured in this book, although not to the exclusion of the important approach 
involving p-values.

Leve l  o f  S ign i f i cance  o r  p -Va lue?

A final word of caution. Do not confuse the level of significance with a p-value, 
even though both originate from the same column headings of Table B in Appendix C. 
Specified before the test result has been observed, the level of significance describes a 
degree of rarity that, if attained subsequently by the test result, triggers the decision to 
reject H0. Specified after the test result has been observed, a p-value describes the most 
impressive degree of rarity actually attained by the test result.

You need not drop a personal preference for a more structured hypothesis test, with 
a predetermined level of significance, just because a research report contains only 
p-values. For instance, any p-value less than .05, such as p < .05, p = .03, p < .01, or  
p < .001, implies that, with the same data, H0 would have been rejected at the .05 level 
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of significance. By the same token, any p-value greater than .05, such as p > .05, p < .10,  
p < .20, or p = .18 implies that, with the same data, H0 would have been retained at the 
.05 level of significance.

Progress Check *14.5 Indicate which member of each of the following pairs of p-values 
describes the more rare test result:

(a1) p > .05 (a2) p < .05

(b1) p < .001 (b2) p < .01

(c1) p < .05 (c2) p < .01

(d1) p < .10 (d2) p < .20

(e1) p = .04 (e2) p = .02

Progress Check *14.6 Treating each of the p-values in the previous exercise separately, 
indicate those that would cause you to reject the null hypothesis at the .05 level of significance.

Answers on page 438.

14 .7  STAT IST ICALLY  S IGN IF ICANT  RESULTS

It’s important that you accurately interpret the findings of others—often reported as 
“having statistical significance.” Tests of hypotheses often are referred to as tests of 
significance, and test results are described as being statistically significant (if the null 
hypothesis has been rejected) or as not being statistically significant (if the null hypoth-
esis has been retained). Rejecting the null hypothesis and statistically significant both 
signify that the test result can’t be attributed to chance. However, correct usage dictates 
that rejecting the null hypothesis always refers to the population, such as rejecting 
the hypothesized zero difference between two population means, while statistically 
significant always refers to the sample, such as assigning statistical significance to the 
observed difference between two sample means. Either phrase can be used. However, 
assigning statistical significance to a population mean difference would be misleading, 
since a population mean difference equals a fixed value controlled by “nature,” not 
something controlled by the results of a statistical test. Rejecting a sample mean differ-
ence also would be misleading, since a sample mean difference is an observed result 
that serves as the basis for statistical tests, not something to be rejected.

Statistical significance doesn’t imply that the underlying effect is important. Statis-
tical significance between pairs of sample means implies only that the null hypothesis 
is probably false, and not whether it’s false because of a large or small difference 
between population means.

Beware  o f  Excess i ve l y  La rge  Samp le  S i zes

Using excessively large sample sizes can produce statistically significant results 

that lack importance. For instance, assume a new EPO experiment with the same 

amount of variability among endurance scores as in the original experiment, that is, 

with a pooled variance, 2
ps , equal to 16.2 (from Table 14.1). But assume that the new 

experiment has a much smaller mean difference, 1 2X X , equal to only 0.50 minutes 

(instead of 5 minutes in the original experiment) and much larger sample sizes each 

equal to 500 patients (instead of 6). Because of these much larger sample sizes, the new 

standard error would equal only 0.25 (instead of 2.32) and the new t would equal 2.00. 

Now we would have rejected the null hypothesis at the .05 level, even though the new 

Statistical Significance 

Implies only that the null hypoth-

esis is probably false, and not 

whether it’s false because of a 

large or small difference between 

population means.
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 difference between sample means is only one-tenth the size of the original difference. 

With large sample sizes and, therefore, with a small standard error, even a very small 

and unimportant effect (difference between population means) will be detected, and the 

test will be reported as statistically significant.
Statistical significance merely indicates that an observed effect, such as an observed 

difference between the sample means, is sufficiently large, relative to the standard 
error, to be viewed as a rare outcome. (Statistical significance also implies that the 
observed outcome is reliable, that is, it would reappear as a similarly rare outcome 
in a repeat experiment.) It’s very desirable, therefore, that we go beyond reports of 
statistical significance by estimating the size of the effect and, if possible, judging its 
importance.

Avo id  an  E r roneous  Cond i t i ona l  P robab i l i t y

Rejecting 0H  at, for instance, the .05 level of significance, signifies that the prob-
ability of the observed, or a more extreme, result is less than or equal to .05 assuming

0H  is true. This is a conditional probability that takes the form: 

0Pr (the observed result, given is true) .05.H

The probability of .05 depends entirely on the assumption that 0H  is true since that 
probability of .05 originates from the hypothesized sampling distribution centered 
about 0H .

This statement often is confused with another enticing but erroneous statement, 
namely 0H  itself is true with probability .05 or less, that reverses the order of events in 
the conditional probability. The new, erroneous conditional probability takes the form:

0Pr ( is true, given the observed result) .05.H

At issue is the question of what the probability of .05 refers to. Our hypothesis test-
ing procedure only supports the first, not the second conditional probability. Having 
rejected 0H  at the .05 level of significance, we can conclude, without indicating a spe-
cific probability, that 0H  is probably false, but we can’t reverse the original conditional 
probability and conclude that it’s true with only probability .05 or less. We have not 
tested the truth of 0H  on the basis of the observed result. To do so goes beyond the 
scope of our statistical test and makes an unwarranted claim regarding the probability 
that the null hypothesis actually is true. 

14 .8  EST IMAT ING  EFFECT  S I ZE :  PO INT  EST IMATES  
AND  CONF IDENCE  INTERVALS

It would make sense to estimate the effect for the EPO experiment featured in this 
chapter since the results are statistically significant. (But, strictly speaking, only if the 
results are statistically significant. Otherwise, we would be estimating an “effect” that 
could be merely transitory and attributed to chance.)

Po in t  Es t imate  1 2( )X X

As you probably recall from Chapter 12, a point estimate is the most straightfor-

ward type of estimate. It identifies the observed difference for 1 2X X , in this case, 

5   minutes, as an estimate of the unknown effect, that is, the unknown difference 

between population means, μ1 − μ2. On average, the treatment patients stay on the 

treadmill for 11 minutes, which is almost twice as long as the 6 minutes for the control 

patients. If you think about it, this impressive estimate of effect size isn’t surprising. 

With the very small groups of only 6 patients, we had to create a large, fictitious mean 
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difference of 5 minutes in order to claim a statistically significant result. If this result 

had occurred in a real experiment, it would have signified a powerful effect of EPO on 

endurance that could be detected even with very small samples.

Conf idence  I n te r va l

Although simple, straightforward, and precise, point estimates tend to be inaccurate 
because they ignore sampling variability. Confidence intervals do not because, as noted 
in Chapter 12, they are based on the variability in the sampling distribution of 1 2 .X X  
To estimate the range of possible effects of EPO on endurance, a confidence interval 
can be constructed for the difference between population means, μ1 − μ2.

Confidence intervals for 𝝁1 – 𝝁2 specify ranges of values that, in the long run, 
include the unknown effect (difference between population means) a certain 
percent of the time.

Given two independent samples, a confidence interval for μ1 − μ2 can be constructed 
from the following expression:

Confidence Intervals for  

𝝁1 − 𝝁2 

Ranges of values that, in the long 

run, include the unknown effect a 

certain percent of the time.
CONFIDENCE INTERVAL (CI) FOR 𝝁1 – 𝝁2 (TWO INDEPENDENT SAMPLES)

 1 2
1 2 co X XnfX X st

 
(14.4)

where 1 2X X  represents the difference between sample means; tconf represents a num-
ber, distributed with n1 + n2 − 2 degrees of freedom, from the t tables, which satis-
fies the confidence specifications; and 

1 2X Xs  represents the estimated standard error 
defined in Formula 14.3.

To find the appropriate value of tconf in Formula 14.4, refer to Table B in Appen-
dix C and follow essentially the same procedure described earlier. For example, if a 
95 percent confidence interval is desired for the EPO experiment, first locate the row 
corresponding to 10 degrees of freedom (from df = n1 + n2 − 2 = 6 + 6 − 2 = 10) and 
then locate the column for the 95 percent level of confidence, that is, the column head-
ing identified with a single asterisk. The intersected cell specifies a value of 2.228 to be 
entered for tconf in Formula 14.4. Given this value for tconf, and values of 5 for the dif-
ference between sample means, 1 2X X , and of 2.32 for the estimated standard error, 

1 2X Xs  (from Table 14.1), Formula 14.4 becomes

 
5 (2.228)(2.32) 5 5

10.1
17

7
.

7

0.1

Now it can be claimed, with 95 percent confidence, that the interval between –0.17 
minutes and 10.17 minutes includes the true effect size, that is, the true difference 
between population means for endurance scores.

I n te rp re t i ng  Con f idence  I n te r va l s  f o r  𝝁1 –  𝝁2

The numbers in this confidence interval refer to differences between population 
means, and the signs are particularly important since they indicate the direction of 
these differences. Otherwise, the interpretation of a confidence interval for μ1 − μ2 is 
the same as that for μ. In the long run, 95 percent of all confidence intervals, similar 
to the one just stated, will include the unknown difference between population means. 
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Although we never really know whether this particular confidence interval is true or 
false, we can be reasonably confident that the true effect (or true difference between 
population means) is neither less than –0.17 minutes nor more than 10.17 minutes If 
only positive differences had appeared in this confidence interval, a single interpreta-
tion would have been possible. However, the appearance of a negative difference in 
the lower limit indicates that EPO might hinder endurance, and therefore, no single 
interpretation is possible. Furthermore, the automatic inclusion of a zero difference in 
an interval with dissimilar signs indicates that EPO may have had no effect whatso-
ever on endurance.*

The range of possible differences (from a low of –0.17 minute to a high of 10.17 
minutes) is very large and imprecise—as you would expect, given the very small sam-
ple sizes and, therefore, the relatively large standard error. A repeat experiment should 
use larger sample sizes in order to produce a narrower, more precise confidence inter-
val that would reduce the range of possible population mean differences and effect 
sizes.

Progress Check *14.7 Imagine that one of the following 95 percent confidence intervals 
is based on an EPO experiment. (Because of the appearance of pairs of limits with dissimilar 
signs, a statistically significant result wasn’t required as a preliminary screen for constructing 
the confidence interval—possibly because, in the early stages of research, the investigator 
simply wanted to know the range of estimates, whether positive or negative, for any possible 
effect of EPO.)

95% CONFIDENCE INTERVAL LOWER LIMIT UPPER LIMIT
1 –3.45 4.25
2 1.89 2.21
3 –1.54 –0.32
4 0.21 1.53
5 –2.53 1.78

(a) Which confidence interval is most precise?

(b) Which confidence interval most strongly supports the conclusion that EPO facilitates 
endurance?

(c) Which confidence interval most strongly supports the conclusion that EPO hinders 
 endurance?

(d) Which confidence interval would most likely stimulate the investigator to conduct an addi-
tional experiment using larger sample sizes?

Answers on page 438.

*Because of the common statistical origins of confidence intervals and hypothesis tests, the 

appearance of only positive limits (and the automatic absence of a zero difference) in the 95 per-

cent confidence interval signifies that the null hypothesis would have been rejected if the same 
data were used to conduct a comparable hypothesis test—that is, in this case, a two-tailed test 

at the .05 level of significance. The seemingly contradictory conclusions between the previous 

hypothesis test and the current confidence interval for the EPO data indicate that a new hypoth-

esis test would not have rejected the null hypothesis if a two-tailed rather than a one-tailed test 

had been used.

Key Point 

A single interpretation is possible 

only if the two limits of the confi-

dence interval for μ1  μ2 share the 

same signs, either both positive or 

both negative.
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14 .9  EST IMAT ING  EFFECT  S I ZE :  COHEN ’S  d

Using a variation of the z score formula in Chapter 5, Cohen’s d describes effect size 
by expressing the observed mean difference in standard deviation units. To calculate d, 
divide the observed mean difference by the standard deviation, that is,

STANDARDIZED EFFECT SIZE, COHEN’S d (TWO INDEPENDENT SAMPLES)

 

1 2

2
p

X Xmean difference
d

standard deviation s
 

(14.5)Standardized Effect Estimate, 

Cohen’s d 

Describes effect size by expressing 

the observed mean difference in 

standard deviation units. where, according to current usage, d refers to a standardized estimate of the effect 

size; 1X  and 2X  are the two sample means; and 2
ps  is the sample standard deviation 

obtained from the square root of the pooled variance estimate.
Division of the mean difference by the standard deviation has several desirable 

 consequences:

 ■ The standard deviation supplies a stable frame of reference not influenced by 
increases in sample size. Unlike the standard error, whose value decreases as sam-
ple size increases, the value of the standard deviation remains the same, except for 
chance, as sample size increases. Therefore, straightforward comparisons can be 
made between d values based on studies with appreciably different sample sizes.

 ■ The original units of measurement cancel out because of their appearance in both 
the numerator and denominator. Subsequently, d always emerges as an estimate 
in standard deviation units, regardless of whether the original mean difference is 
based on, for example, reaction times in milliseconds of pilots to two different 
cockpit alarms or weight losses in pounds of overweight subjects to two types of 
dietary restrictions. Except for chance, comparisons are straightforward between 
values of d—with larger values of d reflecting larger effect sizes—even though 
the original mean differences are based on very different units of measurement, 
such as milliseconds and pounds.

Cohen ’s  Gu ide l i nes  fo r  d

After surveying the research literature, Jacob Cohen suggested a number of general 
guidelines (see Table 14.2) for interpreting values of d:

 ■ Effect size is small if d is less than or in the vicinity of 0.20, that is, one-fifth of 
a standard deviation.

 ■ Effect size is medium if d is in the vicinity of 0.50, that is, one-half of a standard 
deviation.

 ■ Effect size is large if d is more than or in the vicinity of 0.80, that is, four-fifths 
of a standard deviation.*

Although widely adopted, Cohen’s abstract guidelines for small, medium, and large 
effects can be difficult to interpret. You might find these guidelines more comprehensi-
ble by referring to Table 14.3, where Cohen’s guidelines for d are converted into more 

*Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hills-

dale, NJ: Erlbaum.

Table 14.2
COHEN’S  

GUIDELINES FOR d

d
EFFECT 
SIZE  

.20 Small

.50 Medium

.80 Large
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concrete mean differences involving GPAs, IQs, and SAT scores. Notice that Cohen’s 
medium effect, a d value of .50, translates into mean differences of .25 for GPAs, 7.5 
for IQs, and 50 for SAT scores. To qualify as medium effects, the average GPA would 
have to increase, for example, from 3.00 to 3.25; the average IQ from 100 to 107.5; and 
the average SAT score from 500 to 550.

Furthermore, for a particular measure, such as SAT scores, a 20-point mean dif-
ference corresponds to Cohen’s small effect, while an 80-point mean difference cor-
responds to his large effect. However, do not interpret Cohen’s guidelines without 
regard to special circumstances. A “small” 20-point increase in SAT scores might 
be viewed as virtually worthless if it occurred after a lengthy series of workshops on 
taking SAT tests, but viewed as worthwhile if it occurred after a brief study session.

You might also find it helpful to visualize the impact of each of Cohen’s guidelines 
on the degree of separation between pairs of normal curves. Although, of course, not 
every distribution is normal, these curves serve as a convenient frame of reference to 
render values of d more meaningful. As shown in Figure  14.4, separation between 
pairs of normal curves is nonexistent (and overlap is complete) when d = 0. Separation 
becomes progressively more conspicuous as the values of d, corresponding to Cohen’s 

Table 14.3  
COHEN’S GUIDELINES FOR d AND MEAN DIFFERENCES  

FOR GPA, IQ, AND SAT SCORES

MEAN DIFFERENCE

GPA IQ SAT 
d EFFECT SIZE sP = 0.50 sP = 15 sP = 100

.20 Small 0.10 3 20

.50 Medium 0.25 7.5 50

.80 Large 0.40 12 80

No Effect

50%

d = 0

Very Large Effect

99.9%

Cohen's Medium Effect

d = .50

69%

Cohen's Small Effect

d = .20

58%

d = 3.00

Cohen's Large Effect

d = .80

79%

FIGURE 14.4  

Separation between pairs of normal curves for selected values of d. Shaded sectors reflect the percent of scores in one curve that 
exceed the mean of the other curve.
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small, medium, and large effects, increase from .20 to .50 and then to .80. Separa-
tion becomes very conspicuous, with relatively little overlap, given a d value of 3.00, 
equivalent to three standard deviations, for a very large effect.

To dramatize further the differences between selected d values, the percents (and 
shaded sectors) in Figure 14.4 reflect scores in the higher curve that exceed the mean 
of the lower curve. When d = 0, the two curves coincide, and it’s a tossup, 50%, 
whether or not the scores in one curve exceed the mean of the other curve. As values of 
d increase, the percent of scores in the higher curve that exceed the mean of the lower 
curve varies from a modest 58% (six out of ten) when d = .20 to a more impressive 
79% (eight out of ten) when d = .80 to a most impressive 99.9% (ten out of ten) when 
d = 3.00.

We can use d to estimate the standardized effect size for the statistically significant 
results in the EPO experiment described in this chapter. When the mean difference of 5 
is divided by the standard deviation of 4.02 (from the square root of the pooled vari-
ance estimate of 16.2 in Table 14.1), the value of d equals a large 1.24, that is, a mean 
difference equivalent to one and one-quarter standard deviations. (Being itself a prod-
uct of chance sampling variability, this value of d—even if based on real data—would 
be highly speculative because of the instability of d when sample sizes are small.)

14 .10  META-ANALYS IS

The most recent Publication Manual of the American Psychological Association rec-
ommends that reports of statistical significance tests include some estimate of effect 
size. Beginning in the next section, we’ll adopt this recommendation by including the 
standardized estimate of effect size, d, in reports of statistically significant mean differ-
ences. (A slightly more complicated estimate will be used in later chapters when effect 
size can’t be conceptualized as a simple mean difference.) The routine reporting of 
effect sizes will greatly facilitate efforts to summarize research findings.

Because of the inevitable variability, attributable to differences in design, subject 
populations, measurements, etc., as well as chance, the size of effects differs among 
similar studies. Traditional literature reviews attempt to make sense out of these differ-
ences on the basis of expert judgment. Within the last couple of decades, literature 
reviews have been supplemented by more systematic reviews, referred to as “meta-
analysis.” A meta-analysis begins with an intensive review of all relevant studies. This 
includes small and even unpublished studies, to try to limit potential “publication bias” 
arising from only reporting statistically significant results. Typically, extensive details 
are recorded for each study, such as estimates of effect, design (for example, experi-
mental versus observational), subject population, variability, sample size, etc. Then the 
collection of previous findings are combined using statistical procedures to obtain 
either a composite estimate (for example, a standardized mean difference, such as 
Cohen’s d) of the overall effect and its confidence interval, or estimates of subsets of 
similar effects, if required by the excessive variability among the original effects.*

14 .11  IMPORTANCE  OF  REPL ICAT ION

Over the past few decades there have been a series of widely publicized, seemingly 
transitory—if not outright contradictory—health-related research findings. For exam-
ple, initial research suggested that hormonal replacement therapy in women decreases 
the risk of heart attacks and cancer. However, subsequent, more extensive research 

Meta-analysis 

A set of data-collecting and 

 statistical procedures designed 

to summarize the various effects 

reported by groups of similar 

studies. 

*An excellent introduction to meta-analysis can be found in Chapter 1 of Lipsey, M. W., & 

Wilson, D. B. (2000). Practical Meta-Analysis. Thousand Oaks, CA: Sage.
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findings suggested that this therapy has no effect or may even increase these risks. One 
precaution you might adopt is to wait for the replication of any new findings, especially 
for complex, controversial phenomena. Of course, the media most likely would ignore 
such advice given the competitive climate for breaking news.

There is a well-known bias—often called the file drawer effect—that favours the 
publication only of reports that are statistically significant. Typically, reports of non-
significant findings are never published, but are simply put away in file drawers or 
wastebaskets. A solitary significant finding—much like the tip of an iceberg—could 
be a false positive result reflecting the high cumulative probability of a type I error 
when there exist many unpublicized studies with nonsignificant findings. This could 
contribute to the seemingly transitory nature of some widely publicized reports of 
research findings. Ideally, a remedy to the file drawer effect would be to have all 
researchers initially register their research project and then report actual data and 
results of all statistical analyses, whether significant or nonsignificant, to a repository 
of research findings. 

More replication of statistically significant findings is needed. A single publicized 
statistically significant finding may simply reflect a large unknown and unreported 
type I error, due to many unreported non-statistically significant findings relegated to 
the file drawer. The wise consumer of research findings withholds a complete accep-
tance of a single significant finding until it is replicated. 

14 .12  REPORTS  IN  THE  L ITERATURE

It’s become common practice to report means and standard deviations, as well as the 
results of statistical tests. Reports of statistical tests usually are brief, often consisting 
only of a parenthetical statement that summarizes the statistical analysis and usually 
includes a p-value and some estimate of effect size, such as Cohen’s d or a confidence 
interval. A published report of the EPO experiment might read as follows:

Endurance scores for the EPO group (X  = 11, s = 4.24) significantly exceed 
those for the control group (X  = 6, s = 3.79), according to a t test [t (10) = 2.16, 
p < .05 and d = 1.24].

Or expressed in a format prevalent in the current psychological literature, where the 
mean and standard deviation are symbolized as M and SD, respectively:

The endurance scores for the EPO group (M = 11, SD = 4.24) and control group 
(M = 6, SD = 3.79) differed significantly [t (10) = 2.16, p < .05 and d = 1.24].

In both examples, the parenthetical statement indicates that a t based on 10 degrees 
of freedom was found to equal 2.16. Since the p-value of less than .05 reflects a rare test 
result, given that the null hypothesis is true, this result supports the research hypothe-
sis, as implied in the interpretative statements. The d of 1.24 suggests that the observed 
mean difference of 5 is equivalent to one and one-quarter standard deviations and 
qualifies as a large effect size. Values for the two standard deviations were obtained by 
converting SS1 = 90 and SS2 = 72 in Table 14.1 into their respective sample variances 
and standard deviations, using Formulas 4.9 and 4.10. (For your convenience, values 
of standard deviations will be supplied in subsequent questions requiring a literature 
report.)

It’s also become common practice to describe results with data graphs. In data 
graphs, such as that shown in Figure 14.5, the dependent variable, mean endurance, 
is identified with the vertical axis, while values of the independent variable, EPO and 
control, are located as points along the horizontal axis. Dots identify the mean endur-

File Drawer Effect  

A false positive caused by an 

inflated type I error attributable to 

reports of nonsignificant findings 

being tossed in a file drawer or 

waste basket. 
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ance score for EPO and control groups, while error bars reflect the standard error asso-
ciated with each dot. (Since error bars could reflect other measures of variability, such 
as standard deviations or 95 percent confidence intervals, it’s important to identify 
which measure is being used.) Generally speaking, nonoverlapping error bars (for 
 standard errors) imply that differences between means might be statistically signifi-
cant, as, in fact, is the case for the mean differences shown in Figure 14.5. Incidentally, 
data graphs also can appear as bar charts, where error bars are centered on bar tops and 
extend vertically above and below bar tops.

Progress Check *14.8 Recall that in Question 14.3, a psychologist determined the effect 

of instructions on the time required by subjects to solve the same puzzle. For two independent 

samples of ten subjects per group, mean solution times, in minutes, were longer for subjects 

given “difficult” instructions (X  = 15.8, s = 8.64) than for subjects given “easy” instructions  

(X  = 9.0, s = 5.01). A t ratio of 2.15 led to the rejection of the null hypothesis.

(a) Given a standard deviation, sp, of 7.06, calculate the value of the standardized effect  
size, d.

(b) Indicate how these results might be described in the literature.

Answers on page 438.

14 .13  ASSUMPT IONS

Whether testing a hypothesis or constructing a confidence interval, t assumes that both 
underlying populations are normally distributed with equal variances. You need not be 
too concerned about violations of these assumptions, particularly if both sample sizes 
are equal and each is fairly large (greater than about 10). Otherwise, in the unlikely 
event that you observe conspicuous departures from normality or equality of variances 
in the data for the two groups, consider the following possibilities:

1. Increase sample sizes to minimize the effect of any non-normality.

2. Equate sample sizes to minimize the effect of unequal population variances.

FIGURE 14.5  

Data graph where dots identify the mean endurance scores for EPO and control groups. Error 
bars show deviations equal to one standard error above and below each mean.
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3. Use a slightly less sensitive, more complex version of t designed for unequal vari-
ances, alluded to in the next section and described more fully in Chapter 7 of Howell, 
D. C. (2013). Statistical Methods for Psychology (8th ed.). Belmont, CA: Wadsworth.

4. Use a less sensitive but more assumption-free test, such as the Mann-Whitney U test 
described in Chapter 20.

14 .14  COMPUTER  OUTPUT

Table 14.4 shows an SAS output for the t test for EPO, as summarized in the box on 
page 252. Spend a few moments reviewing this material.

Progress Check *14.9 The following questions refer to the SAS output in Table 14.4.

(a) Although, in this case, the results are the same for the t test for equal variances and for the 
t test for unequal variances, which test should be reported? Why?

(b) The exact p-value equals .0569 for a two-tailed test, the default test for SAS. What is the 
more appropriate (exact) one-tailed p-value?

Table 14.4
SAS OUTPUT: t TEST FOR ENDURANCE SCORES

The SAS System
12:17 Thursday, Jan. 14, 2016

t test Procedure

Lower CL Upper CL Lower CL Upper CL

Variable group N Mean Mean Mean Std Dev Std Dev Std Dev Std Err
endure EPO 6 6.5476 11 15.452 2.6483 4.2426 10.406 1.7321
endure control 6 2.0177 6 9.9823 2.3687 3.7947 9.307 1.5492
endure Diff (1–2) –0.178 5 10.1777 2.8123 4.0249 7.0635 2.3238

t Tests
Variable Method Variances df t Value Pr > |t |

endure Pooled Equal 10 1 2.16 0.0569
endure Satterthwaite Unequal 9.88 2.16 0.0572

Equality of Variances

Variable Method Num df Den df F Value Pr > F
endure 2 Folded F 5 5 1.25 0.81250

1 

Comments:
1. Compare the value of t with that given in Table 14.1. Report the results for the customary t test (discussed in this book) that 
assumes equal variances rather than the more generalized t test (not discussed in this book) that accommodates unequal vari-
ances unless, as explained in comment 2, the assumption of equal population variances has been rejected.
2 . Given in Table 14.4 are results of the folded F (or two-tailed F) test for equal population variances or, as it is often called, the 
“F test for homogeneity of variance.” The folded F value of 1.25 is found by dividing the square of the larger standard deviation 
(4.24)(4.24) by the square of the smaller standard deviation (3.79)(3.79). When the p-value for F, shown as Pr > F in the SAS 
output, is too small—say, less than .10—there is a possibility that the population variances are not equal. In this case, the more 
accurate results for the t test for unequal variances should be reported. (Because the F test responds to any non-normality, as 
well as to unequal population variances, some practitioners prefer other tests such as Levene’s test for equal population 
 variances as screening devices for reporting t test results based on unequal variances. For more information about both the t test 
that accommodates unequal population variances and Levene’s test, see Chapter 7 in Howell, D. C. (2013). Statistical Methods 
for Psychology (8th ed.). Belmont, CA: Wadsworth.
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(c) SAS gives the upper and lower confidence limits (CL) for each of six different 95 percent 
confidence intervals, three for means and three for standard deviations. Is the single set 
of CLs for the difference between population means, that is, Diff (1-2), consistent with the 
two-tailed p-values for the t test?

Answers on page 438.

Summary

Statistical hypotheses for the difference between two population means must be 
selected from among the following three possibilities:

Nondirectional: 0 1 2

1 1 2

: 0
: 0

H
H

Directional, lower tail critical: 0 1 2

1 1 2

: 0
: 0

H
H

Directional, upper tail critical: 0 1 2

1 1 2

: 0
: 0

H
H

Tests of this null hypothesis are based on the sampling distribution of the difference 
between sample means, 1 2X X . The mean of this sampling distribution equals the dif-
ference between population means, and its standard error roughly measures the average 
amount by which any difference between sample means deviates from the difference 
between population means.

Because the standard error must be estimated, hypothesis tests use the t ratio for two 
independent samples.

The p-value for a test result indicates its degree of rarity, given that the null hypoth-
esis is true. Smaller p-values tend to discredit the null hypothesis.

A confidence interval also can be constructed to estimate differences between popu-
lation means. A single interpretation is possible only if the two limits of the confidence 
interval share the same sign, either both positive or both negative.

The importance of a statistically significant result can be evaluated with Cohen’s d, 
the unit-free, standardized estimate of effect size. Cohen’s guidelines identify d 
values in the vicinity of .20, .50, and .80 with small, medium, and large effects, 
 respectively.

Beware of the file drawer effect, that is, a false positive caused by an inflated type I 
error due to nonsignificant findings never being published.

The t test assumes that both underlying populations are normally distributed with 
equal variances. Except under rare circumstances, you need not be concerned about 
violations of these assumptions.

Important Terms

Two independent samples  Effect

Sampling distribution of X X1 2  Estimated standard error, 
X X

s
1 2

Pooled variance estimate ps 2
   Statistical significance
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Standard error of the  p-value

difference between means, σX X1 2  
Standardized effect estimate, Cohen’s d

Confidence intervals for 𝝁1 − 𝝁2  File drawer effect

Meta-analysis 

Key Equations

RATIO

1 2

1 2

1 2 1 2

2 2

1 2

2 1 2

1 2

where

and
2

hyp

X X

p p
X X

p

X X
t

s

s s
s

n n

SS SS
s

n n

STANDARDIZED EFFECT

1 2

2
p

X X
d

s

REV IEW QUEST IONS

 *14.10  Figure  4.2 on page 62 describes the results for two fictitious experiments, each 
with the same mean difference of 2 but with noticeably different variabilities. Unre-
solved was the question “Once variability has been considered, should the difference 
between each pair of means be viewed as real or merely transitory?” A t test for 
two independent samples permits us to answer this question for each experimental 
result.

 (a) Referring to Figure 4.2, again decide which of the two identical differences between 
pairs of means—that for Experiment B or for Experiment C—is more likely to be 
viewed as real.

 (b) Given that 2
ps  = .33 for Experiment B, test the null hypothesis at the .05 level of 

significance.

 (c) Given that 2
ps  = 3.67 for Experiment C, test the null hypothesis at the .05 level 

of significance. You needn’t repeat the usual step-by-step hypothesis test  
procedure, but specify the observed value of t and the decision about the null 
hypothesis.

 (d) Specify the approximate p-values for both t tests.
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 (e) Answer the original question about whether the difference between each pair of 
means is real or merely transitory.

 (f) If a difference is real, use Cohen’s d to estimate the effect size.

Answers on pages 438 and 439.

 14.11 To test compliance with authority, a classical experiment in social psychology 
requires subjects to administer increasingly painful electric shocks to seemingly 
helpless victims who agonize in an adjacent room.* Each subject earns a score 
between 0 and 30, depending on the point at which the subject refuses to comply 
with authority—an investigator, dressed in a white lab coat, who orders the 
 administration of increasingly intense shocks. A score of 0 signifies the subject’s 
unwillingness to comply at the very outset, and a score of 30 signifies the subject’s 
willingness to comply completely with the experimenter’s orders.

  Ignore the very real ethical issues raised by this type of experiment, and assume 
that you want to study the effect of a “committee atmosphere” on compliance with 
authority. In one condition, shocks are administered only after an affirmative decision 
by the committee, consisting of one real subject and two associates of the investiga-
tor, who act as subjects but, in fact, merely go along with the decision of the real 
subject. In the other condition, shocks are administered only after an affirmative 
decision by a solitary real subject.

  A total of 12 subjects are randomly assigned, in equal numbers, to the committee 
condition (X1) and to the solitary condition (X2). A compliance score is obtained for 
each subject. Use t to test the null hypothesis at the .05 level of significance.

COMPLIANCE SCORES

COMMITTEE SOLITARY
2 3
5 8

20 7
15 10
4 14

10 0

 14.12 To determine whether training in a series of workshops on creative thinking 
increases IQ scores, a total of 70 students are randomly divided into treatment and 
control groups of 35 each. After two months of training, the sample mean IQ 1X  for 
the treatment group equals 110, and the sample mean IQ 2X  for the control group 
equals 108. The estimated standard error equals 1.80.

 (a) Using t, test the null hypothesis at the .01 level of significance.

 (b) If appropriate (because the null hypothesis has been rejected), estimate the stan-
dardized effect size, construct a 99 percent confidence interval for the true popula-
tion mean difference, and interpret these estimates.

 *14.13 Is the performance of college students affected by the grading policy? In an intro-

ductory biology class, a total of 40 student volunteers are randomly assigned,  

*See S. Milgram, S. (1975). Obedience to Authority: An Experimental View. New York, NY: 

HarperPerennial.
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in equal numbers, to take the course for either letter grades or a simple pass/fail. 

At the end of the academic term, the mean achievement score for the letter grade 

students 1X  equals 86.2, and the mean achievement score for pass/fail students 

2X  equals 81.6. The estimated standard error is 1.50.

 (a) Use t to test the null hypothesis at the .05 level of significance.

 (b)  How would the above hypothesis test change if the roles of X1 and X2 were 
reversed—that is, if X1 were identified with pass/fail students and X2 were identified 
with letter grade students?

 (c) Most students would doubtless prefer to select their favorite grading policy rather 
than be randomly assigned to a particular grading policy. Therefore, why not replace 
random assignment with self-selection?

 (d) Specify the p-value for this test result.

 (e) If the test result is statistically significant, estimate the standardized effect size, 
given that the standard deviation, sp, equals 5.

 (f) State how the test results might be reported in the literature, given that s1 = 5.39 
and s2 = 4.58.

Answers on page 439.

 *14.14 An investigator wishes to determine whether alcohol consumption causes a dete-
rioration in the performance of automobile drivers. Before the driving test, subjects 
drink a glass of orange juice, which, in the case of the treatment group, is laced with 
two ounces of vodka. Performance is measured by the number of errors made on a 
driving simulator. A total of 120 volunteer subjects are randomly assigned, in equal 
numbers, to the two groups. For subjects in the treatment group, the mean number 

  of errors 1X  equals 26.4, and for subjects in the control group, the mean number 

  of errors 2X  equals 18.6. The estimated standard error equals 2.4.

 (a) Use t to test the null hypothesis at the .05 level of significance.

 (b) Specify the p-value for this test result.

 (c) If appropriate, construct a 95 percent confidence interval for the true population 
mean difference and interpret this interval.

 (d) If the test result is statistically significant, use Cohen’s d to estimate the effect size, 
given that the standard deviation, sp, equals 13.15.

 (e) State how these test results might be reported in the literature, given s1 = 13.99 and 
s2 = 12.15.

Answers on pages 439 and 440.

 14.15 Review Question 2.16 on page 44 lists the GPAs for groups of 27 meditators and 27 
nonmeditators.

 (a) Given that the mean GPA equals 3.19 for the meditators and 2.90 for the nonmedi-
tators, and that 2

ps  equals .20, specify the observed value of t and its approximate 
p-value.

 (b) Answer the original question about whether these two groups tend to differ.

 (c) If the p-value is less than .05, use Cohen’s d to estimate the effect size.
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 14.16 After testing several thousand high school seniors, a state department of education 
reported a statistically significant difference between the mean GPAs for female and 
male students. Comments?

 14.17 Someone claims that, given a p-value less than .01, the corresponding null hypoth-
esis also must be true with probability less than .01. Comments?

 14.18 Indicate (Yes or No) whether each of the following statements is a desirable property 
of Cohen’s d.

 (a) immune to changes in sample size

 (b) reflects the size of the p-value

 (c) increases with sample size

 (d) reflects the size of the effect

 (e) independent of the particular measuring units

 (f) facilitates comparisons across studies

 (g) bypasses hypothesis test

 *14.19 During recent decades, there have been a series of widely publicized, seemingly 
transitory, often contradictory research findings reported in newspapers and on 
television. For example, a few initial research findings suggested that vaccination 
causes autism in children. However, subsequent, more extensive research findings, 
as well as a more critical look at the original findings, suggested that vaccination 
doesn’t cause autism (https://www.sciencebasedmedicine.org/reference/vaccines-
and-autism/#overview).

What might be one explanation for the seemingly erroneous initial research finding? 

Answers on page 440.
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CHAPTER

15
t Test for Two Related Samples 
(Repeated Measures)

15.1 EPO EXPERIMENT WITH REPEATED MEASURES

15.2 STATISTICAL HYPOTHESES

15.3 SAMPLING DISTRIBUTION OF D

15.4 t TEST

15.5 DETAILS: CALCULATIONS FOR THE t TEST

15.6 ESTIMATING EFFECT SIZE

15.7 ASSUMPTIONS

15.8 OVERVIEW: THREE t TESTS FOR POPULATION MEANS

15.9 t TEST FOR THE POPULATION CORRELATION COEFFICIENT, ρ
Summary / Important Terms / Key Equations / Review Questions

Preview

Although differences among individuals make life interesting, they also can blunt the 

precision of a statistical analysis because of their considerable impact on the overall 

variability among scores. You can control for individual differences by measuring each 

subject twice and using a t test for repeated measures. This t test can be extra sensitive 

to detecting a false null hypothesis. However, several potential problems must be 

addressed before adopting a repeated-measures design.
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274 t  TEST FOR TWO RELATED SAMPLES (REPEATED MEASURES)

15 .1  EPO  EXPER IMENT  WITH  REPEATED  MEASURES

In the EPO experiment of Chapter 14, the endurance scores of patients reflect not only 
the effect of EPO, if it exists, but also the random effects of many uncontrolled factors. 
One very important type of uncontrolled factor, referred to as individual differences, 
reflects the array of characteristics, such as differences in attitude, physical fitness, 
personality, etc., that distinguishes one person from another. If uncontrolled, individ-
ual differences can cause appreciable random variations among endurance scores and, 
therefore, make it more difficult to detect any treatment effect. When each subject is 
measured twice, as in the experiment described in this chapter, the t test for repeated 
measures can be extra sensitive to detecting a treatment effect by eliminating the dis-
torting effect of variability due to individual differences.

Di f fe rence  (D )  Sco res

Computations can be simplified by working directly with the difference between 
pairs of endurance scores, that is, by working directly with

DIFFERENCE SCORE (D )

  1 2D X X  (15.1)

Difference Score (D) 

The arithmetic difference between 

each pair of scores in repeated 

measures or, more generally, in 

two related samples.

where D is the difference score and X
1
 and X

2
 are the paired endurance scores for each 

patient measured twice, once under the treatment condition and once under the control 
condition, respectively. Essentially, the use of difference scores converts a two-sample 
problem with X

1
 and X

2
 scores into a one-sample problem with D scores.

Mean  D i f fe rence  Sco re  (D )

To obtain the mean for a set of difference scores, add all difference scores and 
divide by the number of scores, that is,

MEAN DIFFERENCE SCORE (D ) 

 
D

D
n  (15.2)

where D is the mean difference score, ΣD is the sum of all positive difference scores 
minus the sum of all negative difference scores, and n is the number of difference 
scores. The sign of D is crucial. For example, in the current experiment, a positive 
value of D would signify that EPO facilitates endurance, while a negative value of D 
would signify that EPO hinders endurance.

Compar ing  the  Two  Expe r iments

To simplify comparisons, exactly the same six X1 scores and six X
2
 scores in the 

original EPO experiment with two independent samples are used to generate the six D 
scores in the new EPO experiment with repeated measures, as indicated in Table 15.1. 
Therefore, the sample mean difference also is the same, both for the original experi-
ment, where 1 2 11 6 5X X , and for the new experiment, where 5D . To dra-
matize the beneficial effects of repeated measures, highly similar pairs of X1 

and X2 
scores appear in the new experiment. For example, high endurance scores of 18 and 13 
 minutes are paired, presumably for a very physically fit patient, while low scores of only  

Table 15.1
SCORES FOR TWO  

EPO EXPERIMENTS

ORIGINAL NEW
X

1
X

2
D

12 7 5
 5 3 2
11 4 7
11 6 5
 9 3 6
18 13 5
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5 and 3 minutes are paired, presumably for another patient in terrible shape. Since in 
real applications there is no guarantee that individual differences will be this large, 
the net effect of a repeated-measures experiment might not be as beneficial as that 
described in the current analysis.

Figure 15.1 shows the much smaller variability among paired differences in endur-
ance scores, D, for the new experiment. The range of scores in the top histogram for X1 
and X2

 equals 15 (from 18 − 3), while that in the bottom histogram for D equals only 5 
(from 7 − 2). This suggests that once the new data have been analyzed with a t test for 
repeated measures, it should be possible not only to reject the null hypothesis again, 
but also to claim a much smaller p-value than that (p < .05) for the t test for the original 
experiment with two independent samples.

Repeated  Measu res

A favorite technique for controlling individual differences is referred to as repeated 
measures, because each subject is measured more than once. By focusing on the differ-
ences between pairs of scores for each subject, the investigator effectively eliminates, 
by the simple act of subtraction, each individual’s unique impact on both endurance 
scores. Accordingly, an analysis of the resulting difference scores reflects only any 
effects due to EPO, if it exists, and random variations of other uncontrolled factors 
or experimental errors not attributable to individual differences. (Experimental errors 
refer to random variations in endurance scores due to the combined impact of numer-
ous uncontrolled changes, such as slight changes in temperature, treadmill speed, etc., 
as well as any changes in a particular subject’s motivation, health, etc., between the 
two experimental sessions.) Because of the smaller standard error term, the result is a 
test with an increased likelihood of detecting any effect due to EPO.

Repeated Measures 

Whenever the same subject is 

measured more than once.

FIGURE 15.1 

Different variabilities (with identical mean differences of 5) in EPO  experiments with two 
 independent samples and with repeated measures. 

86420
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f
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D

D
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Two  Re la ted  Samp les

Favored by investigators who wish to control for individual differences, repeated 
measures represent the most important special case of two related samples. Two related 
samples occur whenever each observation in one sample is paired, on a  one-to-one 
basis, with a single observation in the other sample.

Repeated measures might not always be feasible since, as discussed below,  several 
potential complications must be resolved before measuring subjects twice. An inves-
tigator still might choose to use two related samples by matching pairs of different 
subjects in terms of some uncontrolled variable that appears to have a considerable 
impact on the dependent variable. For example, patients might be matched for their 
body weight because preliminary studies revealed that, regardless of whether or not 
they received EPO, lightweight patients have better endurance scores than heavy-
weight patients. Before collecting data, patients could be matched, beginning with the 
two lightest and ending with the two heaviest (and random assignment dictating which 
member of each pair receives EPO). Now, as with repeated measures, the endurance 
scores for pairs of matched patients tend to be more similar (than those of unmatched 
subjects in two independent samples), and so the statistical test must be altered to 
reflect this new dependency between pairs of matched endurance scores.

Progress Check *15.1 Indicate whether each of the following studies involves two 
 independent samples or two related samples, and in the latter case, indicate whether the 
study involves repeated measures for the same subjects or matched pairs of different subjects.

(a) Estimates of weekly TV-viewing time of third-grade girls compared with those of third-
grade boys

(b) Number of cigarettes smoked by participants before and after an antismoking workshop

(c) Annual incomes of husbands compared with those of their wives

(d) Problem-solving skills of recognized scientists compared with those of recognized artists, 
given that scientists and artists have been matched for IQ

Answers on page 440.

Some  Comp l ica t ions  w i th  Repea ted  Measu rements

Unfortunately, the attractiveness of repeated measures sometimes fades upon closer 
inspection. For instance, since each patient is measured twice, once in the treatment 
condition and once in the control condition, sufficient time must elapse between these 
two conditions to eliminate any lingering effects due to the treatment. If there is any 
concern that these effects cannot be eliminated, use each subject in only one condition.

Counte rba lanc ing

Otherwise, when subjects do perform double duty in both conditions, it is customary 
to randomly assign half of the subjects to experience the two conditions in a particular 
order—say, first the treatment and then the control condition—while the other half of the 
subjects experience the two conditions in the reverse order. Known as counterbalancing, 
this adjustment controls for any sequence effect, that is, any potential bias in favor of 
one condition merely because subjects happen to experience it first (or second).*

Counterbalancing 

Reversing the order of conditions 

for equal numbers of all subjects.

Two Related Samples 

Each observation in one sample is 

paired, on a one-to-one basis, with 

a single observation in the other 

sample.

*Counterbalancing would be inappropriate for repeated-measure experiments that focus 

on any changes in the dependent variable before and after some special event, such as the 

 anti-smoking workshop described in Questions 15.1(b) and 15.8.
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Presumably, the investigator considered these potential complications before begin-
ning the EPO experiment with repeated measures. The two sessions should have been 
separated by a sufficiently long period of time—possibly several weeks—in order to 
dissipate any lingering effects of EPO. In addition, a randomly selected half of the six 
patients should have experienced the two conditions in one order, while the remaining 
patients should have experienced the two conditions in the reverse order.

15 .2  STAT IST ICAL  HYPOTHESES

Nu l l  Hypo thes i s

Converting to difference scores generates a single population of difference scores, 
and the null hypothesis is expressed in terms of this new population. If EPO has either 
no consistent effect or a negative effect on endurance scores when patients are mea-
sured twice, the population mean of all difference scores, μ

D
, should equal zero or less. 

In symbols, an equivalent statement reads:

0: 0DH

Al te rna t i ve  ( o r  Resea rch )  Hypo thes i s

As before, the investigator wants to reject the null hypothesis only if EPO actually 
increases endurance scores. An equivalent statement in symbols reads:

1: 0DH

This directional alternative hypothesis translates into a one-tailed test with the upper 
tail critical.

Two  O the r  Poss ib le  A l te rna t i ve  Hypo theses

Although not appropriate for the current experiment, there are two other possible 
alternative hypotheses. Another directional hypothesis, expressed as

1: 0DH

translates into a one-tailed test with the lower tail critical, and a nondirectional hypoth-
esis, expressed as

1: 0DH

translates into a two-tailed test.

15 .3  SAMPL ING  D ISTR IBUT ION  OF  D

The sample mean of the difference scores, D, varies from sample to sample, and it has a 
sampling distribution with its own mean, D, and standard error, D. When D is viewed 
as the mean for a single sample of difference scores, its sampling distribution can be 
depicted as a straightforward extension of the sampling distribution of X, the mean for a 
single sample of original scores, as described in Chapter 9. Therefore, the mean, D, and 
standard error, D, of the sampling distribution of D have essentially the same properties 
as the mean, X, and standard error, X, respectively, of the sampling distribution of X.

Since the mean of the sampling distribution of X equals the population mean, that 
is, since X = μ, the mean of the sampling distribution of D equals the corresponding 
population mean (for difference scores), that is,

DD
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t RATIO FOR TWO POPULATION MEANS (TWO RELATED SAMPLES)

 hypD

D

D
t

s
 (15.3)

which has a t sampling distribution with n – 1 degrees of freedom. In Formula 15.3,  
D represents the sample mean of the difference scores; 

hypD represents the hypoth-
esized population mean (of zero) for the difference scores; and Ds  represents the 
estimated standard error of D, as defined later in Formula 15.5.

F ind ing  C r i t i ca l  t  Va lues

To find a critical t in Table B in Appendix C, follow the usual procedure. Read the 
entry in the cell intersected by the row for the correct number of degrees of freedom 
and the column for the test specifications. To find the critical t for the current EPO 
experiment, go to the right-hand panel for a one-tailed test in Table B, then locate the 
row corresponding to 5 degrees of freedom (from df = n − 1 = 6 − 1 = 5), and locate 
the column for a one-tailed test at the .05 level of significance. The intersected cell 
specifies 2.015.

Summary  fo r  EPO  Expe r iment

The boxed hypothesis test summary for the current EPO experiment indicates that 
since the calculated t of 7.35 exceeds the critical t of 2.015, we’re able to reject H

0
.

It’s important to mention the use of repeated measures (or any matching) in the 
conclusion of the report. Repeated measures eliminates one important source of vari-
ability among endurance scores—the variability due to individual differences—that 
otherwise inflates the standard error term and causes an increase in β, the probability 
of a type II error.

Because of the smaller standard error for repeated measures, the calculated t of 7.35, 
with df = 5, permits us to claim a much smaller p-value (p < .001) than that (p < .05) 
for a t test based on the same data in the original EPO experiment with two independent 
samples.

Likewise, since the standard error of X equals the population standard deviation divided 
by the square root of the sample size, that is, since /X n , the standard error of D 
equals the corresponding population standard deviation (for difference scores) divided 
by the square root of the sample size, that is,

D
D

n

15 .4  t  TEST

The null hypothesis for two related samples can be tested with a t ratio. Expressed in 
words,

( ) ( )sample mean difference hypothesized population mean difference
t

estimated standard error

Expressed in symbols,
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HYPOTHESIS TEST SUMMARY
t Test for Two Population Means:  

Repeated Measures (EPO Experiment)

Research Problem

When patients are measured twice, once with and once without EPO, does 
the population mean difference score show greater endurance due to EPO?

Statistical Hypotheses

D

D

H

H

0

1

: 0

: 0

Decision Rule

Reject H0 at the .05 level of significance if t   ≥ 2.015 (from Table B in Appendix 
C, given that df   = n  – 1 = 6   – 1 = 5).

Calculations

t
5 0

7.35
0.68

= =  = (See Table 15.1 for all computations.)

Decision
Reject H0 at the .05 level of significance because the calculated t of 7.35 
exceeds 2.015.

Interpretation

There is evidence that when patients are measured twice, EPO is found to 
increase the mean endurance score.

15 .5  DETA ILS :  CALCULAT IONS  FOR  THE  t  TEST

The three panels in Table 15.2 show the computational steps that produce a t of 7.35 
in the current experiment.

Pane l  I 

Panel I involves most of the computational labor, and it generates values for the 
sample mean difference, D, and the sample standard deviation for the difference 
scores, sD. To obtain the sample standard deviation, first use a variation on the com-
putation formula for the sum of squares (Formula 4.4 on page 69), where X has been 
replaced with D, that is,

2
2

D
D

SS D
n
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Table 15.2
CALCULATIONS FOR THE t TEST: REPEATED MEASURES  

(EPO EXPERIMENT)

I. FINDING THE MEAN AND STANDARD DEVIATION, D  AND s
D

(a) Computational sequence:
Assign a value to n, the number of difference scores (1)
Subtract X

2
 from X

1
 to obtain D (2)

Sum all D scores (3)
Substitute numbers in the formula (4) and solve for D
Square each D score (5), one at a time, and then add all squared D scores (6)
Substitute numbers in the formula (7) for SS

D
, and then solve for s

D
 (8) 

(b) Data and computations:

ENDURANCE SCORES (MINUTES)

 
EPO

 
CONTROL

DIFFERENCE 
SCORES

2 5
PATIENT X1 X2 D D 2

1 12  7  5 25
2  5  3  2  4
3 11  4  7 49
4 11  6  5 25
5  9  3  6 36
6 18 13  5 25

1 n = 6 3 ΣD = 30 6 ΣD 2 = 164

4   30
5

6

D
D

n

  7   
2 2

2 30
164 164 150 14

6
D

D
SS D

n

   8     
14

2.8 1.67
1 6 1

D
D

SS
s

n

II. FINDING THE STANDARD ERROR, s
D
–

(a) Computational sequence:
Substitute numbers obtained above in the formula 9 and solve for 

D
s

(b) Computations:

9   
1.67 1.67

0.68
6 2.45

D
D

s
s

n

III. FINDING THE OBSERVED t RATIO
(a) Computational sequence:
 Substitute numbers obtained above in the formula 10, as well as a value  of 0 for 

hypD , and solve for t.

(b) Computations:

10   5 0
7.35

0.68

hypD

D

D
t

s

280
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and then, after dividing the sum of squares, SS
D
, by its degrees of freedom, n − 1, 

extract the square root, that is,

SAMPLE STANDARD DEVIATION, s
D

 
1

D
D

SS
s

n
 (15.4)

ESTIMATED STANDARD ERROR, s
D
–

 D
D

s
s

n
 (15.5)

Pane l  I I

Dividing the sample standard deviation, s
D
, by the square root of its sample size, n, 

gives the estimated standard error, Ds , that is,

Pane l  I I I

Finally, as defined in Formula 15.3, dividing the difference between the sample 
mean, D, and the null hypothesized value, 

hypD (of zero), by the estimated standard 
error, Ds , culminates in the value for the t ratio.

Progress Check *15.2 An investigator tests a claim that vitamin C reduces the severity 
of common colds. To eliminate the variability due to different family environments, pairs of 
children from the same family are randomly assigned to either a treatment group that receives 
vitamin C or a control group that receives fake vitamin C. Each child estimates, on a 10-point 
scale, the severity of their colds during the school year. The following scores are obtained for 
ten pairs of children:

ESTIMATED SEVERITY

PAIR NUMBER VITAMIN C (X
1
) FAKE VITAMIN C (X

2
)

1 2 3
2 5 4
3 7 9
4 0 3
5 3 5
6 7 7
7 4 6
8 5 8
9 1 2

10 3 5

 Using t, test the null hypothesis at the .05 level of significance.

Answer on pages 440 and 441.

15 .6  EST IMAT ING  EFFECT  S I ZE

Conf idence  I n te r va l  f o r  μ
D

Given that two samples are related, as when patients were measured twice in the  
EPO experiment, a confidence interval for μ

D
 can be constructed from the following 

expression:
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where D represents the sample mean of the difference scores; t
conf

 represents a num-
ber (distributed with n – 1 degrees of freedom) from the t tables, which satisfies the 
 confidence specifications; and 

D
s  represents the estimated standard error defined in 

Formula 15.5.

F ind ing  t
conf

To find the appropriate value of t
conf

 in Formula 15.6, refer to Table B in Appendix C 
and follow the usual procedure for obtaining confidence intervals. If a 95 percent con-
fidence interval is desired for the EPO experiment with repeated measures, first locate 
the row corresponding to 5 degrees of freedom, and then locate the column for the 95 
percent level of confidence, that is, the column heading identified with a single asterisk. 
The intersected cell specifies a value of 2.571 for tconf.

Given a value of 2.571 for t
conf

, and (from Table 15.1) values of 5 for D, the sample 
mean of the difference scores, and 0.68 for Ds , the estimated standard error, Formula 
15.6 becomes

6.75
5 (2.571)(0.68) 5 1.75

3.25

It can be claimed, with 95 percent confidence, that the interval between 3.25 minutes 
and 6.75 minutes includes the true mean for the population of difference endurance 
scores.

I n te rp re t i ng  Con f idence  I n te r va l s  f o r  𝝁
D

Because both limits have similar (positive) signs, a single interpretation describes 
all of the possibilities included in this confidence interval. The appearance of only 
positive differences indicates that when patients are measured twice, EPO facilitates 
endurance. Furthermore, we can be reasonably confident that, on average, the true 
facilitative effect is neither less than 3.25 minutes nor more than 6.75 minutes.

Compare the confidence limits of the current interval for two related samples, 3.25 
to 6.75, to those of the previous interval for two independent samples, –0.17 to 10.17. 
Although both intervals are based on the same data with identical mean differences of 
5, the more precise interval for repeated measures, with both limits positive, reflects a 
reduction in the standard error caused by the elimination of variability due to individual 
differences.

Progress Check 15.3 Referring to the vitamin C experiment in Question 15.2, construct 
and interpret a 95 percent confidence interval for the population mean difference score.

Answer on page 441.

S tanda rd i zed  E f fec t  S i ze ,  Cohen ’ s  d

Having rejected the null hypothesis for the EPO experiment with repeated measures, 
we can claim that the sample mean difference of 5 minutes is statistically significant. 
As has been noted in Chapter 14, one way to gauge the importance of a statistically sig-
nificant result is to calculate Cohen’s d. When the two samples are related, the  formula 
for Cohen’s d is:

CONFIDENCE INTERVAL FOR 𝝁
D
 (TWO RELATED SAMPLES)

 conf D
t sD  (15.6)
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where d refers to the standardized estimate of effect size, while D and s
D
 represent the 

sample mean and standard deviation, respectively, of the difference scores.
When the mean difference of 5 is divided by the standard deviation of 1.67 (from 

Table 15.1), Cohen’s d equals 2.99, a very large value equivalent to three standard 
deviations. (According to Cohen’s guidelines, mentioned previously, the estimated 
effect size is small, medium, or large, depending on whether d is .20 or less, .50, or .80 
or more, respectively.)

Progress Check *15.4 For the vitamin C experiment in Question 15.2, estimate and inter-
pret the standardized effect size, d, given a mean, ,D  of –1.50 days and a standard deviation, 
s

D
, of 1.27 days.

Answer on page 441.

15 .7  ASSUMPT IONS

Whether testing a hypothesis or constructing a confidence interval, t assumes that the 
population of difference scores is normally distributed. You need not be too concerned 
about violations of this assumption as long as the sample size is fairly large (greater 
than about ten pairs). Otherwise, in the unlikely event that you encounter conspicuous 
departures from normality, consider either increasing the sample size or using the less 
sensitive but more assumption-free Wilcoxon T test described in Chapter 20.

15 .8  OVERV IEW:  THREE  t  TESTS  
FOR  POPULAT ION  MEANS

In Chapters 13, 14, and 15, three t tests for population means have been described, and 
their more distinctive features are summarized in Table 15.3. Given a hypothesis test 
for one or two population means, a t test is appropriate if, as almost always is the case, 
the population standard deviation must be estimated. You must decide whether to use 
a t test for one sample, two independent samples, or two related samples. This decision 
is fairly straightforward if you proceed, step by step, as follows:

One  o r  Two  Samp les?

First, decide whether there are one or two samples. If there is only one sample, 
because the study deals with a single set of observations, then, of course, you need not 
search any further: The appropriate t is that for one sample.

Are  the  Two  Samp les  Pa i red?

Second, if there are two samples, decide whether or not there is any pairing. If each 
observation is paired, on a one-to-one basis, with a single observation in the other 
sample (because of either repeated measures or matched pairs of different subjects), 
then the appropriate t is that for two related samples.

Finally, if there is no evidence of pairing between individual observations, then the 
appropriate t is that for two independent samples.

STANDARDIZED EFFECT SIZE, COHEN’S d (TWO RELATED SAMPLES)

 
D

D
d

s
 (15.7)
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Examp les

Let’s identify the appropriate t test for each of several similar studies where, with 
the aid of radar guns, investigators clock the speeds of randomly selected motorists on 
a dangerous section of a state highway. Follow the recommended decision procedure 
to arrive at your own answer before checking the answer in the book.

S tudy  A

Research Problem: Clocked speeds of randomly selected trucks are compared with 
clocked speeds of randomly selected cars.

Answer: Because there are two sets of observations (speeds for trucks and speeds for 
cars), there are two samples. Furthermore, since there is no indication of pairing among 
individual observations, the appropriate t test is that for two independent samples.

S tudy  B

Research Problem: Clocked speeds of randomly selected motorists are compared 
with the posted speed limit of 65 miles per hour.

Answer: Because there is a single set of observations, the appropriate t test is that for 
one sample (where the null hypothesis equals 65 miles per hour).

S tudy  C

Research Problem: Clocked speeds of randomly selected motorists are compared 
at two different locations: one mile before and one mile after a large sign listing the 
number of fatalities on that stretch of highway during the previous year.

Answer: Because there are two sets of observations (speeds before and speeds after 
the sign), there are two samples. Furthermore, since each observation in one sample 
(the speed of a particular motorist one mile before the sign) is paired with a single 
observation in the other sample (the speed of the same motorist one mile after the sign), 
the appropriate t test is that for two related samples, with repeated measures.

Beginning with the next set of exercises, you will be exposed to a variety of studies 
for which you must identify the appropriate statistical test. By following a step-by-step 
procedure, such as the one described here, you will be able to make this identification 
not only for textbook studies, but also for those encountered in everyday practice.

Table 15.3
SUMMARY OF t TESTS FOR POPULATION MEANS

TYPE OF 
 SAMPLE

SAMPLE 
MEAN

NULL  
HYPOTHESIS*

STANDARD  
ERROR

 
t RATIO

DEGREES OF 
FREEDOM

One sample X H
0
: μ = some 
number

X
s   

(Formula 13.3)
hyp

X

X

s

n – 1

Two independent 
samples  
(no pairing)

1 2X X 0 1 2: 0H
1 2X X

s   

(Formula 14.3)
1 2

1 2 1 2 hyp

X X

X X

s

n
1
 + n

2
 – 2

Two related 
samples (pairs  
of observations)

0: 0DH
D

s   

(Formula 15.5)
hypD

D

D

s

n – 1 (where   
n refers to pairs 
of observations)

* For a two-tailed test.

D
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Progress Check *15.5 Each of the following studies requires a t test for one or more 
population means. Specify whether the appropriate t test is for one sample, two independent 
samples, or two related samples, and in the last case, whether it involves repeated measures 
or matched pairs of different subjects.

(a) College students are randomly assigned to receive either behavioral or cognitive ther-
apy. After twenty therapeutic sessions, each student earns a score on a mental health 
 questionnaire.

(b) A researcher wishes to determine whether attendance at a day-care center increases the 
scores of three-year-old children on a motor skill test. Random assignment dictates which 
twin from each pair of twenty twins attends the day-care center and which twin stays 
at home. (Such a draconian experiment doubtless would incur great resistance from the 
parents, not to mention the twins!)

(c) One hundred college freshmen are randomly assigned to sophomore roommates who 
have either similar or dissimilar vocational goals. At the end of their first year, the mean 
GPAs of these two groups are to be analyzed.

(d) According to the U.S. Department of Health, the average 16-year-old male can do 23 push-
ups. A physical education instructor finds that in his school district, 30 randomly selected 
16-year-old males can do an average of 28 pushups.

(e) A child psychologist assigns aggression scores to each of 10 children during two 60- minute 
observation periods separated by an intervening exposure to a series of violent TV  cartoons.

Answers on page 441.

15 .9  t  TEST  FOR  THE  POPULAT ION   CORRELAT ION 
COEFF IC IENT,  ρ
In Chapter 6, .80 describes the sample correlation coefficient, r, between the number 
of cards sent and the number of cards received by five friends. Any conclusions about 
the correlation coefficient in the underlying population—for instance, the population 
of all friends—must consider chance sampling variability as described by the sampling 
distribution of r.

Nu l l  Hypo thes i s

Let’s view the greeting card data for the five friends as if they were a random sample 
of pairs of observations from the population of all friends. Then it’s possible to test the 
null hypothesis that the population correlation coefficient, symbolized by the Greek 
letter ρ (rho), equals zero. In other words, it is possible to test the hypothesis that in the 
population of all friends, there is no correlation between the number of cards sent and 
the number of cards received.

Focus  on  Re la t i onsh ips  I ns tead  o f  Mean  D i f fe rences

These five pairs of observations also can be viewed as two related samples, since 
each observation in one sample is paired with a single observation in the other sam-
ple. Now, however, we wish to determine whether there is a relationship between the 
number of cards sent and received, not whether there is a mean difference between 
the number of cards sent and received. Accordingly, the appropriate measure is the 
correlation coefficient, not the sample mean difference, and the appropriate t test is 
for the population correlation coefficient, not for the population mean of difference 
scores.

Population Correlation 

 Coefficient, ρ
A number between +1.00 and 

1.00 that describes the linear 

relationship between pairs of 

quantitative variables for some 

population.
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t  Tes t

A new t test must be used to determine whether the observed r of .80 qualifies as 
a common or a rare outcome under the null hypothesis that r equals zero. To obtain a 
value for the t ratio, use the following formula:

t RATIO FOR A SINGLE POPULATION CORRELATION COEFFICIENT

 
21

2

hyp
r

t
r

n

 (15.8)

where r refers to the sample correlation coefficient (Formula 6.2); hyp refers to the 
hypothesized population correlation coefficient (which always must equal zero); and n 
refers to the number of pairs of observations. The expression in the denominator rep-
resents the estimated standard error of the sample correlation coefficient. As implied 
by the term at the bottom of this expression, the sampling distribution of t has n – 2 
degrees of freedom. When pairs of observations are represented as points in a scatter-
plot, r assumes that the cluster of points approximates a straight line. Two degrees of 
freedom are lost because only n – 2 points are free to vary about some straight line that, 
itself, always depends on two points.

Impo r tance  o f  Samp le  S i ze

According to the present hypothesis test, the population correlation coefficient 
could equal zero.* This conclusion might seem surprising, given that an r of .80 was 
observed for the greeting card exchange. When the value of r is based on only five 
pairs of observations, as in the present example, its sampling variability is huge, and in 
fact, an r of .88 would have been required to reject the null hypothesis at the .05 level. 
Ordinarily, a serious investigation would use a larger sample size, preferably one that, 
with the aid of power curves similar to those described in Section 11.11, reflects the 
investigator’s judgment about what would be the smallest important correlation.

If, in fact, a larger sample size had permitted the rejection of the null hypothesis, an 
r of .80 would have indicated a strong relationship. As mentioned in Chapter 6, values 
of r in the general vicinity of .10, .30, and .50 indicate weak, moderate, or strong rela-
tionships, respectively, according to Cohen’s guidelines.

Progress Check *15.6 A random sample of 27 California taxpayers reveals an r of  
.43 between years of education and annual income. Use t to test the null hypothesis at the  
.05 level of significance that there is no relationship between educational level and annual 
income for the population of California taxpayers.

Answer on page 441.

Assumpt ions

When using the t test for the population correlation coefficient, you must assume 
that the relationship between the two variables, X and Y, can be described with a 
straight line and that the sample originates from a normal bivariate population. The 

*Strictly speaking, since it could have originated from a population with a zero correlation, 

the current r of .80 should have been ignored in Chapters 6 and 7, where it was featured because 

of its computational simplicity.
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latter term means that the separate population distributions for each variable (X and Y) 
should be normal. When these assumptions are suspect—for instance, if the observed 
distribution for one variable appears to be extremely non-normal—the test results are 
only approximate and should be interpreted accordingly.

Summary

Variability due to individual differences can be eliminated by using repeated 
 measures, that is, measuring the same subject twice. Whether because of repeated 
measures for the same subject or matched pairs of different subjects, two samples are 
related whenever each observation in one sample is paired, on a one-to-one basis, with 
a single observation in the other sample.

When using repeated measures, be aware of potential complications due to inadver-
tent interactions between conditions or to a lack of counterbalancing.

HYPOTHESIS TEST SUMMARY

t TEST FOR A POPULATION CORRELATION COEFFICIENT  
(Greeting Card Exchange)

Problem
Could there be a correlation between the number of cards sent and the 
 number of cards received for the population of all friends?

Statistical Hypotheses

0

1

: 0

: 0

H

H

Decision Rule
Reject H0 at the .05 level of significance if t ≥ 3.182 or if t ≤ –3.182 (from 
Table B in Appendix C, given that df = n – 2 = 5 – 2 = 3).

Calculations
Given that r = 0.80 and n = 5:

2

.80 0 .80 .80 .80 .80
2.29

.121 .64 .36 .351 (.80)

3 35 2

t

Decision
Retain H

0
 at the .05 level of significance because t = 2.29 is less positive than 

3.182.

Interpretation
The population correlation coefficient could equal zero. There is no evidence 
of a relationship between the number of cards sent and the number of cards 
received in the population of friends.
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The statistical hypotheses must be selected from among the following three possi-
bilities, where μ

D
 represents the population mean for all difference scores:

Nondirectional:

0

1

: 0

: 0

D

D

H

H

Directional, lower tail critical:

0

1

: 0

: 0

D

D

H

H

Directional, upper tail critical:

0

1

: 0

: 0

D

D

H

H

The t ratio for two related samples has a sampling distribution with n – 1 degrees of 
freedom, given that n equals the number of paired observations.

A confidence interval can be constructed for estimating μ
D
. A single interpretation 

is possible only if the limits of the interval have the same sign, either both positive or 
both negative.

If the t test is statistically significant, Cohen’s d can be used as a standardized 
 estimate of effect size.

When using t for two related samples, you must assume that the population of 
 difference scores is normally distributed. You need not be too concerned about viola-
tions of this assumption as long as sample sizes are relatively large.

To test the hypothesis that the population correlation coefficient equals zero, use a 
new t ratio with n – 2 degrees of freedom.

Important Terms

difference score (D ) Counterbalancing

Repeated measures Population correlation coefficient ( ρ)

Two related samples

Key Equations

t RATIO

where  

hypD

D

D
D

D
t

s

s
s

n

REV IEW QUEST IONS

 *15.7 An educational psychologist wants to check the claim that regular physical exercise 
improves academic achievement. To control for academic aptitude, pairs of college 
students with similar GPAs are randomly assigned to either a treatment group that 
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attends daily exercise classes or a control group. At the end of the experiment, the 
following GPAs are reported for the seven pairs of participants:

GPAs

PAIR 
 NUMBER

PHYSICAL EXERCISE NO PHYSICAL EXERCISE
(X

1
) (X

2
)

1 4.00 3.75
2 2.67 2.74
3 3.65 3.42
4 2.11 1.67
5 3.21 3.00
6 3.60 3.25
7 2.80 2.65

 (a) Using t, test the null hypothesis at the .01 level of significance.

 (b) Specify the p-value for this test result.

 (c) If appropriate (because the test result is statistically significant), use Cohen’s d to 
estimate the effect size.

 (d) How might this test result be reported in the literature?

 Answers on pages 441 and 442.

 15.8  A school psychologist wishes to determine whether a new antismoking film actually 
reduces the daily consumption of cigarettes by teenage smokers. The mean daily 
cigarette consumption is calculated for each of eight teenage smokers during the 
month before and the month after the film presentation, with the following results:

MEAN DAILY CIGARETTE CONSUMPTION

SMOKER NUMBER BEFORE FILM (X1) AFTER FILM (X2)
1 28 26
2 29 27
3 31 32
4 44 44
5 35 35
6 20 16
7 50 47
8 25 23

  (Note: When deciding on the form of the alternative hypothesis, H1, remember that a 
positive difference score (D = X

1
 − X

2
) reflects a decline in cigarette consumption.)

 (a) Using t, test the null hypothesis at the .05 level of significance.

 (b) Specify the p-value for this test result.

 (c) If appropriate (because the null hypothesis was rejected), construct a 95 percent 
confidence interval for the true population mean for all difference scores and 
use Cohen’s d to obtain a standardized estimate of the effect size. Interpret 
these results.

 (d) What might be done to improve the design of this experiment?
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 15.9 A manufacturer of a gas additive claims that it improves gas mileage. A random 
sample of 30 drivers tests this claim by determining their gas mileage for a full tank 
of gas that contains the additive (X1) and for a full tank of gas that does not contain 
the additive (X2). The sample mean difference, D, equals 2.12 miles (in favor of the 
additive), and the estimated standard error equals 1.50 miles.

 (a) Using t, test the null hypothesis at the .05 level of significance.

 (b) Specify the p-value for this result.

 (c) Are there any special precautions that should be taken with the present experimental 
design?

 *15.10 In a classic study, which predates the existence of the EPO drug, Melvin Williams 
of Old Dominion University actually injected extra oxygen-bearing red cells into 
the subjects’ bloodstream just prior to a treadmill test. Twelve long-distance run-
ners were tested in 5-mile runs on treadmills. Essentially, two running times were 
obtained for each athlete, once in the treatment or blood-doped condition after the 
injection of two pints of blood and once in the placebo control or non-blood-doped 
condition after the injection of a comparable amount of a harmless red saline solu-
tion. The presentation of the treatment and control conditions was counterbalanced, 
with half of the subjects unknowingly receiving the treatment first, then the control, 
and the other half receiving the conditions in reverse order.

Since the difference scores, as reported in the New York Times, on May 4, 1980, 

are calculated by subtracting blood-doped running times from control running times, 

a positive mean difference signifies that the treatment has a facilitative effect, that 

is, the athletes’ running times are shorter when blood doped. The 12 athletes had 

a mean difference running time, D, of 51.33 seconds with a standard deviation, s
D
, 

of 66.33 seconds.

 (a) Test the null hypothesis at the .05 level of significance.

 (b) Specify the p-value for this result.

 (c) Would you have arrived at the same decision about the null hypothesis if the dif-
ference scores had been reversed by subtracting the control times from the blood-
doped times?

 (d) If appropriate, construct and interpret a 95 percent confidence interval for the true 
effect of blood doping.

 (e) Calculate and interpret Cohen’s d for these results.

 (f) How might this result be reported in the literature?

 (g) Why is it important to counterbalance the presentation of blood-doped and control 
conditions?

 (h) Comment on the wisdom of testing each subject twice—once under the blood-
doped condition and once under the control condition—during a single 24-hour 
period. (Williams actually used much longer intervals in his study.)

 Answers on pages 442 and 443.

 15.11 A researcher randomly assigns college freshmen to either of two experimental con-
ditions. Because both groups consist of college freshmen, someone claims that it is 
appropriate to use a t test for the two related samples. Comments?
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 15.12 Although the samples are actually related, an investigator ignores this fact in the sta-
tistical analysis and uses a t test for two independent samples. How will this mistake 
affect the probability of a type II error?

 15.13 A random sample of 38 statistics students from a large statistics class reveals an r 
of –.24 between their test scores on a statistics exam and the time they spent taking 
the exam. Test the null hypothesis with t, using the .01 level of significance.

 *15.14 In Table 7.4 on page 142, seven of the ten top hitters in the major league baseball in 
2014 had lower batting averages in 2015, supporting regression toward the mean. 
Treating averages as whole numbers (without decimal points) and subtracting their 
batting averages for 2015 from those for 2014 (so that positive difference scores 
support regression toward the mean), we have the following ten difference scores: 
28, 53, 17, 37, 27, 27, 22, −25, −7, 0.

 (a) Test the null hypothesis (that the hypothetical population mean difference equals 
zero for all sets of top ten hitters over the years) at the .05 level of significance.

 (b) Find the p-value.

 (c) Construct a 95 percent confidence interval.

 (d) Calculate Cohen’s d.

 (e) How might these findings be reported?
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16
Analysis of Variance  
(One Factor)

16.1 TESTING A HYPOTHESIS ABOUT SLEEP DEPRIVATION AND AGGRESSION

16.2 TWO SOURCES OF VARIABILITY

16.3 F TEST

16.4 DETAILS: VARIANCE ESTIMATES

16.5 DETAILS: MEAN SQUARES (MS ) AND THE F RATIO

16.6 TABLE FOR F THE DISTRIBUTION

16.7 ANOVA SUMMARY TABLES

16.8 F TEST IS NONDIRECTIONAL

16.9 ESTIMATING EFFECT SIZE

16.10 MULTIPLE COMPARISONS

16.11 OVERVIEW: FLOW CHART FOR ANOVA

16.12 REPORTS IN THE LITERATURE

16.13 ASSUMPTIONS

16.14 COMPUTER OUTPUT

Summary / Important Terms / Key Equations / Review Questions

Preview

The next three chapters describe a type of statistical analysis known as “analysis of 

variance.” It is designed to detect differences between two or more groups defined for 

a single factor or independent variable with measures on different subjects (Chapter 

16); for a single factor with repeated measures on the same subjects (Chapter 17); 

and for two factors (Chapter 18). As its name implies, variability or variance among 

observations is identified with various sources that, when tested appropriately, indicate 

whether observed differences between group means are probably real or merely due to 

chance.

A significant F test often is a prelude to additional analyses, including an estimate 

of the size of any detected effect, as well as multiple comparison tests that are 

designed to pinpoint precisely which pairs of mean differences contribute to the overall 

significant result.
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16 .1  TEST ING  A  HYPOTHES IS  ABOUT  SLEEP 
DEPR IVAT ION  AND  AGGRESS ION

Does sleep deprivation cause us to be either more or less aggressive? To test this 
assumption, a psychologist randomly assigns volunteer subjects to sleep-deprivation 
periods of either 0, 24, or 48 hours (the independent variable or factor). Subsequently, 
subjects are tested for aggressive behavior in a controlled social situation. Aggression 
scores (the dependent variable) indicate the total number of different aggressive behav-
iors, such as put-downs, arguments, or verbal interruptions, demonstrated by subjects 
during the test period.

S ta t i s t i ca l  Hypo theses

The current null hypothesis states that, on average, the three populations of subjects, 
who are deprived of sleep for either 0, 24, or 48 hours, will have similar aggression 
scores. Expressed symbolically, the null hypothesis reads:

0 0 24 48:H

where 0 24 48, ,and
 represent the mean aggression scores for the populations of sub-

jects who are deprived of sleep for 0, 24, and 48 hours, respectively. Rejection of the 
null hypothesis implies, most generally, that sleep deprivation influences aggressive 
behavior, since the alternative or research hypothesis, H1, simply states that the null 
hypothesis is false. Ordinarily, the alternative or research hypothesis reads:

1 0: is false.H H

New Tes t  f o r  More  Than  Two  Popu la t i on  Means

Resist any urge to test this null hypothesis with t, since, as will be discussed in 
 Section 16.10, the regular t test usually can’t handle null hypotheses for more than 
two population means. When data are quantitative, an overall test of the null hypoth-
esis for more than two population means requires a new statistical procedure known 
as  analysis of variance, which is often abbreviated as ANOVA (from ANalysis Of 

 VAriance and pronounced an-OH’-vuh).

One-Fac to r  ANOVA

This chapter describes the simplest type of analysis of variance. Often referred 
to as a one-factor (or one-way) ANOVA, it tests whether differences exist among 
population means categorized by only one factor or independent variable, such 
as hours of sleep deprivation, with measures on different subjects. The ANOVA 
techniques described in this chapter presume that all scores are independent. In 
other words, each subject contributes just one score to the overall analysis. Special 
ANOVA techniques, described in Chapter 17, must be used when scores lack inde-
pendence because each subject contributes more than one score (or because subjects 
are matched across groups). Later sections in the current chapter treat the computa-
tional procedures for ANOVA; the next few sections emphasize the intuitive basis 
for ANOVA.

Two  Poss ib le  Ou tcomes

To simplify computations, unrealistically small, numerically friendly samples are 
used in this and the next two chapters. In practice, samples that are either unduly small 

Analysis of Variance (ANOVA) 

An overall test of the null hypoth-

esis for more than two population 

means.

One-Factor ANOVA 

The simplest type of ANOVA that 

tests for differences among popu-

lation means categorized by only 

one independent variable.
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or excessively large should be avoided, as suggested in Section 11.11.* Let’s assume 
that the psychologist randomly assigns only three subjects to each of the three levels of 
sleep deprivation. Subsequently, subjects’ aggression scores reflect their behavior in a 
controlled social situation.

Table 16.1 shows two fictitious experimental outcomes that, when analyzed with 
ANOVA, produce different decisions about the null hypothesis: It is retained for one 
outcome but rejected for the other. Before reading on, predict which outcome would 
cause the null hypothesis to be retained and which would cause it to be rejected.

You are correct if you predicted that Outcome A would cause the null hypothesis to 
be retained, while Outcome B would cause the null hypothesis to be rejected.

Mean  D i f fe rences  S t i l l  Impo r tan t

Your predictions for Outcomes A and B most likely were based on the relatively 
small differences between group means for Outcome A and the relatively large dif-
ferences between group means for Outcome B. Observed mean differences have been 
a major ingredient in previous t tests, and these differences are just as important in 
ANOVA. It is easy to lose sight of this fact because observed mean differences appear, 
somewhat disguised, as one type of variability in ANOVA. It takes extra effort to 
view ANOVA—with its emphasis on the analysis of several sources of variability—as 
related to previous t tests. Reminders of this fact occur throughout the current chapter.

16 .2  TWO  SOURCES  OF  VAR IAB IL ITY

Di f fe rences  be tween  G roup  Means

First, without worrying about computational details, look more closely at one source 
of variability in Outcomes A and B: the differences between group means. Differences 

*A power analysis could be used—with the aid of software, such as Minitab’s Power and 
Sample Size or G*Power at http://www.gpower.hhu.de/—to identify sample sizes that will 

reasonably detect the smallest important effect, as defined for the multiple population means 

in one-factor and two-factor ANOVA.

Table 16.1
TWO POSSIBLE OUTCOMES OF A SLEEP-DEPRIVATION EXPERIMENT: 

AGGRESSION SCORES

OUTCOME A
HOURS OF SLEEP DEPRIVATION

ZERO TWENTY-FOUR FORTY-EIGHT
3 4 2
5 8 4
7 6 6

Group mean: 5 6 4  Grand mean = 5

OUTCOME B
HOURS OF SLEEP DEPRIVATION

ZERO TWENTY-FOUR FORTY-EIGHT
0 3 6
4 6 8
2 6 10

Group mean: 2 5 8  Grand mean = 5
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of 5, 6, and 4 appear between group means in Outcome A, and these relatively small 
differences might reflect only chance. Even though the null hypothesis is true (because 
sleep deprivation does not affect the subjects’ aggression scores), group means tend to 
differ merely because of chance sampling variability. It’s reasonable to expect, there-
fore, that the null hypothesis for Outcome A should not be rejected. There appears to 
be a lack of evidence that sleep deprivation affects the subjects’ aggression scores in 
Outcome A.

On the other hand, differences of 2, 5, and 8 appear between the group means 
for Outcome B, and these relatively large differences might not be attributable to 
chance. Instead, they indicate that the null hypothesis probably is false (because 
sleep deprivation affects the subjects’ aggression scores). It’s reasonable to expect, 
therefore, that the null hypothesis for Outcome B should be rejected. There appears 
to be evidence of a treatment effect, that is, the existence of at least one differ-
ence between the population means defined by the independent variable (sleep  
deprivation).

Var iab i l i t y  w i th in  G roups

A more definitive decision about the null hypothesis views the differences between 
group means as one source of variability to be compared with a second source of vari-
ability. An estimate of variability between groups, that is, the variation among scores 
of subjects who, being in different groups, receive different experimental treatments, 
must be compared with another, completely independent estimate of variability within 
groups, that is, the variation among scores of subjects who, being in the same group, 
receive the same experimental treatment. As will be seen, the more that the variability 
between groups exceeds the variability within groups, the more suspect will be the null 
hypothesis.

Let’s focus on the second source of variability—the variability within groups for 
subjects treated similarly. Referring to Table  16.1, focus on the differences among 
the scores of 3, 5, and 7 for the three subjects who are treated similarly in the first 
group. Continue this procedure, one group at a time, to obtain an overall impression 
of variability within groups for all three groups in Outcome A and for all three groups 
in Outcome B. Notice the relative stability of the differences among the three scores 
within each of the various groups, regardless of whether the group happens to be in 
Outcome A or Outcome B. For instance, one crude measure of variability, the range, 
equals either 3 or 4 for each group shown in Table 16.1.

 A key point is that the variability within each group depends entirely on the 
scores of subjects treated similarly (exposed to the same sleep deprivation period), 
and it never involves the scores of subjects treated differently (exposed to differ-
ent sleep deprivation periods). In contrast to the variability between groups, the 
variability within groups never reflects the presence of a treatment effect. Regard-
less of whether the null hypothesis is true or false, the variability within groups 
reflects only random error, that is, the combined effects on the scores of indi-
vidual subjects of all uncontrolled factors, such as individual differences among 
subjects, slight variations in experimental conditions, and errors in measurement. 
In ANOVA, the within-group estimate often is referred to simply as the error term, 
and it is analogous to the pooled variance estimate (sp

2) in the t test for two inde-
pendent samples.

Progress Check *16.1 Imagine a simple experiment with three groups, each containing 
four observations. For each of the following outcomes, indicate whether there is variability 
between groups and also whether there is variability within groups.

NOTE: You need not do any calculations, with the possible exception of an occasional group 
mean, in order to answer this question.

Treatment Effect 

The existence of at least one 

 difference between the population 

means.

Variability between Groups 

Variability among scores of 

subjects who, being in different 

groups, receive different experi-

mental treatments

Variability within Groups  

Variability among scores of 

subjects who, being in the 

same group, receive the same 

experimental treatment.

Random Error 

The combined effects of all uncon-

trolled factors on the scores of 

individual subjects.
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(a) GROUP 1 GROUP 2 GROUP 3

8  8  8
8  8  8
8  8  8
8  8  8

(b) GROUP 1 GROUP 2 GROUP 3

8  4 12
8  4 12
8  4 12
8  4 12

(c) GROUP 1 GROUP 2 GROUP 3

4  6  5
6  6  7
8 10  9

14 10 11

(d) GROUP 1 GROUP 2 GROUP 3

6 11 20
8 12 18
8 14 23

10 15 25

Answers on page 443.

16 .3  F  TEST

In previous chapters, the null hypothesis has been tested with a t ratio. In the two-sample 
case, t reflects the ratio between the observed difference between the two sample means 
in the numerator and the estimated standard error in the denominator. For three or more 
samples, the null hypothesis is tested with a new ratio, the F ratio. Essentially, F reflects 
the ratio of the observed differences between all sample means (measured as variability 
between groups) in the numerator and the estimated error term or pooled variance esti-
mate (measured as variability within groups) in the denominator term, that is,

F RATIO

 
variability between groups

F
variability within groups

 (16.1)

Like t, F has its own family of sampling distributions that can be consulted, as described 
in Section 16.6, to test the null hypothesis. The resulting test is known as an F test.

An F test of the null hypothesis is based on the notion that if the null hypothesis 
is true, both the numerator and the denominator of the F ratio would tend to be 
about the same, but if the null hypothesis is false, the numerator would tend to 
be larger than the denominator.
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I f  Nu l l  Hypo thes i s  I s  T rue

If the null hypothesis is true (because there is no treatment effect due to different 
sleep deprivation periods), the two estimates of variability (between and within groups) 
would reflect only random error. In this case,

random error
F

random error

Except for chance, estimates in both the numerator and the denominator are similar, 
and generally, F varies about a value of 1.

I f  Nu l l  Hypo thes i s  I s  Fa l se

If the null hypothesis is false (because there is a treatment effect due to different 
sleep deprivation periods), both estimates still would reflect random error, but the esti-
mate for between groups would also reflect the treatment effect. In this case,

random error treatment effect
F

random error

When the null hypothesis is false, the presence of a treatment effect tends to cause a 
chain reaction: The observed differences between group means tend to be large, as 
does the variability between groups. Accordingly, the numerator term tends to exceed 
the denominator term, producing an F whose value is larger than 1. When the null 
hypothesis is false because of a large treatment effect, there is an even more pro-
nounced chain reaction, beginning with very large observed differences between group 
means and ending with an F whose value tends to be considerably larger than 1.

Progress Check *16.2 If the null hypothesis is true, both the numerator and denominator 
of the F ratio would reflect only      (a)     . If the null hypothesis is false, the numerator of the F 
ratio would also reflect the      (b)     . If the null hypothesis is false because of a large treatment 
effect, the value of F would tend to be considerably larger than      (c)     .

Answers on page 443.

When  S ta tus  o f  Nu l l  Hypo thes i s  I s  Unknown

In practice, of course, we never really know whether the null hypothesis is true or 
false. Following the usual procedure, we assume the null hypothesis to be true and 
view the observed F within the context of its hypothesized sampling distribution, as 
shown in Figure 16.1. If, because the differences between group means are relatively 
small, the observed F appears to emerge from the dense concentration of possible F 
ratios smaller than the critical F, the experimental outcome would be viewed as a com-
mon occurrence. Therefore, the null hypothesis would be retained. On the other hand, 
if, because the differences between group means are relatively large, the observed F 
appears to emerge from the sparse concentration of possible F ratios equal to or greater 
than the critical F, the experimental outcome would be viewed as a rare occurrence, 
and the null hypothesis would be rejected. In the latter case, the value of the observed 
F is presumed to be inflated by a treatment effect.

Tes t  Resu l t s  f o r  Ou tcomes  A  and  B

Full-fledged F tests for Outcomes A and B agree with the earlier intuitive decisions. 
Given the .05 level of significance, the null hypothesis should be retained for Outcome 
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FIGURE 16.1 

Hypothesized sampling distribution of F (for 2 and 
6 degrees of freedom).
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0 2 4 6 8
F

HYPOTHESIS TEST SUMMARY

One-Factor F Test (Sleep Deprivation Experiment, Outcome B)

Research Problem
On average, are subjects’ aggression scores in a controlled social situation 
affected by sleep deprivation periods of 0, 24, or 48 hours?

Statistical Hypotheses

0 0 24 48

1 0

:

: is false.

H

H H

Decision Rule
Reject H0 at the .05 level of significance if F  ≥ 5.14 (from Table C, Appendix 
C, given dfbetween = 2 and dfwithin = 6).

Calculations

7.36 (See Tables 16.3 and 16.6 for additional details.)F

Decision
Reject H0 at the .05 level of significance because F  = 7.36 exceeds 5.14.

Interpretation
Hours of sleep deprivation affect the subjects’ mean aggression scores in a 
controlled social situation.

A, since the observed F of 0.75 is smaller than the critical F of 5.14. However, the null 
hypothesis should be rejected for Outcome B, since the observed F of 7.36 exceeds 
the critical F. The hypothesis test for Outcome B, as summarized in the accompanying 
box, will be discussed later in more detail.
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16 .4  DETA ILS :  VAR IANCE  EST IMATES

The analysis of variance uses sample variance estimates to measure variability between 
groups and within groups. Introduced in Chapter 4, the sample variance measures vari-
ability among any set of observations by first finding the sum of squares, SS, that is, the 
sum of the squared deviations about their mean:

2
SS X X

and then dividing the sum of squares, SS, by its degrees of freedom, that is,

2

1

SS SS
s

n df

where s2 is the sample variance. This estimate can be used to identify two general 
 features for each of the several variance estimates in ANOVA:

1. Sum of squares, SS, in the numerator: The numerator term for s2 represents the sum 
of the squared deviations about the sample mean, X. More generally, the numera-
tor term for any variance estimate in ANOVA always is the sum of squares, that 
is, the sum of squared deviations for some set of scores about their mean.

2. Degrees of freedom, df, in the denominator: The denominator for s2 represents 
the number of degrees of freedom for these deviations. (Remember, as discussed 
in Section 4.6, only n − 1 of these deviations are free to vary. One degree of 
freedom is lost because the sum of n deviations about their own mean always 
must equal 0.) More generally, the denominator term for any variance estimate 
in ANOVA always is the number of degrees of freedom, that is, the number of 
deviations in the numerator that are free to vary and, therefore, supply valid 
information for the purpose of estimation.

Mean  Squa re

A variance estimate in ANOVA, referred to as a mean square, consists of some 
sum of squares divided by its degrees of freedom.

This operation always produces a number equal to the mean of the squared deviations, 
hence the designation mean square, abbreviated as MS. In ANOVA, the latter term is 
the most common, and it will be used in subsequent discussions. A general expression 
for any variance estimate reads:

Mean Square (MS) 

A variance estimate obtained by 

dividing a sum of squares by its 

degrees of freedom.

MEAN SQUARE: GENERAL EXPRESSION

 
SS

MS
df

 (16.2)

where MS represents the mean square; SS denotes the sum of squared deviations about 
their mean; and df equals the corresponding number of degrees of freedom. Formula 
16.2 should be read as “the mean square equals the sum of squares divided by its 
degrees of freedom.”

The F test of the null hypothesis for the sleep deprivation experiment reflects the 
ratio of two variance estimates: the mean square for variability between the three sleep 
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deprivation groups in the numerator and the mean square for variability within these 
three groups, often referred to as the error term, in the denominator. To obtain values 
for these mean squares, first we must calculate their respective sums of squares and 
degrees of freedom, as described next.

Sum o f  Squa res  ( SS ) :  De f in i t i ona l  Fo rmu las

Most of the computational effort in ANOVA is directed toward the various sum of 
squares terms: the sum of squares for variability between groups, SSbetween; the sum of 
squares for variability within groups, SSwithin; and the sum of squares for the total of 
these two, SStotal. Remember, any sum of squares always equals the sum of the squared 
deviations of some set of scores about their mean. Let’s begin with the definitional 
formula for SStotal because it’s the most straightforward extension of the sample sum of 
squares, SS, first encountered in Chapter 4.

 ■ SStotal equals the sum of the squared deviations of all scores about the grand 
mean. Expressed symbolically, SStotal = 2( )grandX X , where X represents each 
score and grandX  represents the one overall mean for all scores. Although SStotal 
isn’t directly involved in the calculation of the F ratio, it serves as a valuable 
computational check.

 ■ SSbetween equals the sum of the squared deviations of group means about the grand 

mean, the overall mean based on all groups (or all scores). Expressed symboli-

cally, SSbetween = nΣ( groupX  – grandX )2, where n represents the number of scores in 

each group, groupX  is the mean for each group, and grandX  is the overall mean for 

all groups. This term contributes to the numerator of the F ratio. The sample size 

for each group, n, in the expression for SSbetween reflects the fact that the deviation 

groupX  – grandX  is the same for every score, n, in that group.

 ■ SSwithin equals the sum of the squared deviations of all scores about their respec-

tive group means. Expressed symbolically, SSwithin = Σ(X – groupX )2, where X rep-

resents each score and groupX  is the mean for each group. This term contributes to 

the denominator of the F ratio. Essentially, it requires that we calculate the sum 

of squares, SS, within each group and then add these terms across all groups—in a 

procedure similar to that used with the two SS terms in the numerator of Formula 

14.2 (page 254) for the polled variance estimate, sp
2. Since SSwithin always reflects 

only the pooled variability among subjects treated similarly, it can be referred to, 

more generally, as the sum of squares for random error and symbolized as SSerror.

Sum o f  Squa res  ( SS ) :  Computa t ion  Fo rmu las

Sums of squares can be calculated by using either definition formulas with means 
or computation formulas with totals. Calculating the various SS terms with means is 
not only cumbersome but also inaccurate if, because of rounding off, the means are 
approximate numbers. It is both more efficient and more accurate to use the equiva-
lent computation formulas, as we first did in Chapter 4 (page 69), when the definition 
 formula for the sample sum of squares was transformed into its corresponding compu-
tation formula, that is,

2
2 2 X

SS X X X
n

where the total, ΣX, represents a key component in the conversion from means in the 
definition formulas to totals in the computation formulas.

Sum of Squares (SS) 

The sum of squared deviations 

of some set of scores about their 

mean. 
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The computation formulas for the three new SS terms in Table 16.2 can be viewed 
as variations on the original computation formula for the sum of squares. Note the 
following features common to both the original computation formula and the three 
new computation formulas:

1. Each formula consists of two components separated by a minus sign.

2. Means are replaced by their corresponding totals. The grand mean, grandX , is 

replaced by the grand total, G, and any group mean, groupX , is replaced by its 

group total, T.

3. Whether a score or a total, each entry in the numerator is squared and, in the 
case of a total, divided by its sample size, either N for the grand total or n for any 
group total.

Table 16.3 indicates how to use these computation formulas for the nine aggression 
scores from Outcome B of the sleep deprivation experiment. Note that the expression 

2T
n  requires the following computation sequence: first, square each group total, T; 

then divide by its sample size, n; and finally, sum across all groups.

Table 16.2
WORD, DEFINITION, AND COMPUTATION FORMULAS FOR SS TERMS

For the total sums of squares,

2

2
2

the sum of squared deviations for scores about the grand mean

( )

, where is the grand total and is its sample size

t otal

grand

SS

X X

G N
G

X
N

totalSS

For the between sum of squares,

2

2 2

the sum of squared deviations for group means about the grand mean

( )

, where is the group total and is its sample size

between

group grand

T G

n

SS

n X X

T n
N

betweenSS

For the within sum of squares,

2

2
2

the sum of squared deviations of scores about their respective
group means

( )

 

,

 
within

group

T
X

SS

X X

n
withinSS

 

REMINDER:
X  = raw score
T  = group total
n  = group sample size
G  = grand total
N  = grand (combined) sample size
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Table 16.3
CALCULATION OF SS TERMS

A. COMPUTATION SEQUENCE

Find each group total, T, and the grand total, G, for all combined groups (1).

Substitute numbers into computation formula (2) and solve for SSbetween.

Substitute numbers into computation formula (3) and solve for SSwithin.

Substitute numbers into computation formula (4) and solve for SStotal.

Do accuracy check (5).

B. DATA AND COMPUTATIONS

HOURS OF SLEEP DEPRIVATION

0 24 48
0  3  6
4  6  8
2  6 10

1 Group Totals (T ) = 6 15 24 Grand Total (G ) = 45

2  
2 2

22 2 2
6 15 24 45 36 225 576 2025

3 3 3 9 3 3 3 9

12 75 192 225 279 225 54

between

T G
SS

n N

3
  2

2

2 2 2
2 2 2 2 2 2 2 2 2 (6) (15) (24)

(0) (4) (2) (3) (6) (6) (6) (8) (10 )
3 3 3

36 225 576
0 16 4 9 36 36 36 64 100 301 279 22

3 3 3

within

T
SS X

n

4
  2

2

2
2 2 2 2 2 2 2 2 2 (45)

(0) (4) (2) (3) (6) (6) (6) (8) (10)
9

2025
0 16 4 9 36 36 36 64 100 301 225 76

9

total

G
SS X

N

5   

76 54 22

76 76

total between withinSS SS SS
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Degrees  o f  F reedom (d f )

Formulas for the number of degrees of freedom differ for each SS term, and for 
convenience, the various df formulas are listed in Table 16.4. Remember, the degrees 
of freedom reflect the number of deviations free to vary in any sum of squares term, 
given one or more restrictions. In the present case, the restriction always entails the 
loss of one degree of freedom because the sum must equal zero for each set of devia-
tions about its respective mean. The N − 1 degrees of freedom for dftotal reflect the loss 
of one degree of freedom when all N scores are expressed as deviations about their 
grand mean. The k − 1 degrees of freedom for dfbetween reflect the loss of one degree 
of freedom when the k group means are expressed as deviations about the one grand 
mean. Finally, the N − k degrees of freedom for dfwithin reflect the loss of one degree of 
freedom (for each of the k groups) when each subset of the N scores is expressed as 
deviations about their respective (k) group means.

To determine the df for any SS, simply substitute the appropriate numbers and sub-
tract. For the present experiment, which involves a total of nine scores (N = 9) and 
three groups (k = 3):

1 9 1 8

1 3 1 2

9 3 6

total

between

within

df N

df k

df N k

*You may have noticed in Table 16.2 that three components, namely, ΣX2, 
2

,T
n  and 

2G
N

, each 

appear twice in the various SS terms. Some practitioners prefer to simply calculate each of these 

components and then solve for the SS terms. Although more efficient, this shortcut compromises 

the use of Formula 16.3 as a check for computational accuracy.

Check ing  Computa t iona l  Accu racy

To minimize computational errors, calculate from scratch each of the three SS terms, 
even though this entails some duplication of effort.* Then, as an almost foolproof 
check of computational accuracy, as shown at the bottom of Table  16.3, substitute 
numerical results to verify that SStotal equals the sum of the various SS terms, that is,

SUMS OF SQUARES (ONE FACTOR)

 total between withinSS SS SS  (16.3)

Reminder: 

Degrees of freedom refers to the 

number of deviations free to vary 

in any sum of squares term, given 

one or more restrictions.

Table 16.4 
FORMULAS FOR df TERMS

    dftotal  = N – 1, that is, the number of all scores − 1
 dfbetween  = k – 1, that is the number of groups − 1
   dfwithin   = N – k, that is, the number of all scores − number of groups
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This formula can be used to verify that the correct number of degrees of freedom has 
been assigned to each of the SS terms in the present experiment.

16 .5  DETA ILS :  MEAN  SQUARES  ( MS )  
AND  THE  F  RAT IO

Having found the values of the various SS terms and their degrees of freedom, we can 
determine the values of the two mean squares for variability between and within groups 
and then calculate the value of F, as suggested in Figure 16.2. 

The value of the mean square for variability between groups, MSbetween, is given by 
the following expression:

Check ing  fo r  Accu racy

In ANOVA, the degrees of freedom for dftotal always equal the combined degrees of 
freedom for the remaining df terms, that is,

DEGREES OF FREEDOM (ONE FACTOR)

 dftotal = dfbetween + dfwithin (16.4)

FIGURE 16.2 

Sources of variability for ANOVA and the F ratio.

Variability between groups
(subjects in different groups
receive different
experimental treatment)

Total variability

Variability within groups
(subjects within the same
group receive the same
experimental treatment)

MSbetween =
SSbetween

dfbetween

F =
MSbetween

MSwithin

MSwithin =
SSwithin

dfwithin

MEAN SQUARE BETWEEN GROUPS

 MSbetween = between

between

SS

df
 (16.5)
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where MSwithin reflects the variability among scores for subjects who are treated simi-
larly within each group, pooled across all groups. (MSwithin, which also is symbolized as 
MSerror, is a generalized version of the pooled sample variance, sp

2, used with the t test 
for two independent samples in Chapter 14). Even if there is a treatment effect, MSwithin 
measures only random error.

For the sleep deprivation experiment,

22
3.67

6
within

within
within

SS
MS

df

Finally, Formula 16.1 for F can be rewritten as

where MSbetween reflects the variability between means for groups of subjects who are 

treated differently. Relatively large values of MSbetween suggest the presence of a treat-

ment effect.
For the sleep deprivation experiment,

54
27

2
between

between
between

SS
MS

df

The value of the mean square for variability within groups, MSwithin, is given by the 
following expression:

MEAN SQUARE WITHIN GROUPS

 
within

within
within

SS
MS

df  

(16.6)

Reminder: 

SSwithin and MSwithin also are 

symbolized as SSerror and MSerror, 

respectively. 

F RATIO (ONE FACTOR)

 

between

within

MS
F

MS  
(16.7)

As mentioned previously, if the null hypothesis is true (because aggression scores are 
not affected by hours of sleep deprivation), the value of F will vary about a value of 
approximately 1, but if the null hypothesis is false, the value of F will tend to be larger 
than 1.

The null hypothesis is suspect for the sleep deprivation experiment since

27
7.36

3.67
between

within

MS
F

MS

16 .6  TABLE  FOR  THE  F  D ISTR IBUT ION

A decision about the null hypothesis requires that the observed F be compared with 
a critical F. The critical F is identified through the pair of degrees of freedom for the 
mean squares in the numerator and denominator of the F ratio. Critical F values for 
hypothesis tests at the .05 level (light numbers) and the .01 level (dark numbers) are 
listed in Table 16.5 (for a few F sampling distributions) and in Table C in Appendix 
C (for the full range of F sampling distributions). To read either table, simply find the 
cell intersected by the column with the degrees of freedom equal to dfbetween and by the 
row with the degrees of freedom equal to dfwithin. Table 16.5 illustrates this procedure 

F Ratio 

Ratio of the between-group mean 

square (for subjects treated dif-

ferently) to the within-group 

mean square (for subjects treated 

similarly).
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when, as in the present experiment, 2 and 6 degrees of freedom are associated with the 
numerator and denominator of F, respectively. In this case, the column with 2 degrees 
of freedom and the row with 6 degrees of freedom intersect a cell (shaded) that lists a 
critical F value of 5.14 for a hypothesis test at the .05 level of significance. Because the 
observed F of 7.36 exceeds this critical F, the overall null hypothesis can be rejected. 
There is evidence that, on average, sleep deprivation affects the subjects’ aggression 
scores.

Progress Check *16.3 Find the critical values for the following F tests:

(a) α = .05, dfbetween  = 1, dfwithin  = 18

(b) α = .01, dfbetween  = 3, dfwithin  = 56

(c) α = .05, dfbetween  = 2, dfwithin  = 36

(d) α = .05, dfbetween  = 4, dfwithin  = 95

Answers on page 443.

F ind ing  App rox imate  p -Va lues

To find its approximate p-value, locate an observed F relative to the .05 level (light 
numbers) and the .01 level (dark numbers) listed in Table C in Appendix C. As noted 

Table 16.5
SPECIMEN TABLE FROM TABLE C OF APPENDIX C  

CRITICAL VALUES OF F  
.05 LEVEL OF SIGNIFICANCE (LIGHT NUMBERS) 
.01 LEVEL OF SIGNIFICANCE (DARK NUMBERS)

DEGREES OF
FREEDOM IN 
DENOMINATOR

DEGREES OF FREEDOM IN NUMERATOR

1 2 3 4**
1 161 200 216

4052 4999 5403
2 18.51 19.00 19.16

98.49 99.01 99.17
3 10.13 9.55 9.28

34.12 30.81 29.46
4 7.17 6.94 6.59

21.20 18.00 16.69
5 6.61 5.79 5.41

16.26 13.27 12.06
6 5.99 5.14 4.76

13.74 10.92 9.78
7 5.59 4.47 4.35

12.25 9.55 8.45
8
*
*
*

Reminder: 

To use the F table, you must 

know the df in the numerator and 

denominator of the F ratio. 
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in the upper corner of Table C, if the observed F is smaller than the light numbers, p > 
.05. If the observed F is between light and dark numbers, p < .05. If the observed F is 
larger than the dark numbers, p < .01.

Progress Check *16.4 Find the approximate p-value for the following observed F ratios, 
where the numbers in parentheses refer to the degrees of freedom in the numerator and 
denominator, respectively.

(a) F (2, 11) = 4.56 

(b) F (1, 13) = 11.25 

(c) F (3, 20) = 2.92

(d) F (2, 29) = 3.66

Answers on page 444.

16 .7  ANOVA  SUMMARY  TABLES

Traditionally, both in statistics textbooks and the literature, ANOVA results have been 
summarized as shown in Table 16.6. “Source” refers to the source of variability, that 
is, between groups, within groups, and total. Notice the arrangement of column head-
ings from SS and df  to MS and F. Also, notice that the bottom row for total variability 
contains entries only for SS and df. Ordinarily, the shaded numbers in parentheses don’t 
appear in ANOVA tables, but in Table 16.6 they show the origin of each MS and of 
F. The asterisk in Table 16.6 emphasizes that the observed F of 7.36 exceeds the criti-
cal F of 5.14 and therefore causes the null hypothesis to be rejected at the .05 level of 
significance.

Othe r  Labe l s

Some ANOVA summary tables use labels other than those shown in Table 16.6. For 
instance, “Between” might be replaced with “Treatment,” since the variability between 
groups reflects any treatment effect. Or “Between” might be replaced by a description 
of the actual experimental treatment, such as “Hours of Sleep Deprivation” or “Sleep 
Deprivation.” Likewise, “Within” might be replaced with “Error,” since variability 
within groups reflects only the presence of random error.

Table 16.6 
ANOVA TABLE (SLEEP DEPRIVATION EXPERIMENT)

SOURCE SS df MS F

Between 54 2
54

2  
27

27

3.67
 7.36*

Within 22 6
22

6  
3.67

Total 76 8

* Significant at the .05 level.
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Progress Check *16.5 A psychologist tests whether a series of workshops on assertive 
training increases eye contacts initiated by shy college students in controlled interactions with 
strangers. A total of 32 subjects are randomly assigned, 8 to a group, to attend either zero, one, 
two, or three workshop sessions. The results, expressed as the number of eye contacts during 
a standard observation period, are shown in the following chart. (Also shown for your compu-
tational convenience are the values for the sum of squares, group totals, and the grand total.)

EYE CONTACTS AS A FUNCTION OF NUMBER OF SESSIONS

ZERO ONE TWO THREE

1 2 4 7
0 1 2 1
0 2 3 6
2 4 6 9
3 4 7 10
4 6 8 12
2 3 5 8
1 3 5 7

T 13 25 40    60   ΣX = G = 138
               ΣX 2  = 882

(a) Test the null hypothesis at the .05 level of significance. (Use computation formulas for 
various sums of squares.)

(b) Summarize the results with an ANOVA table. Save these results for subsequent questions.

Answers on page 444.

16 .8  F  TEST  I S  NOND IRECT IONAL

It might seem strange that even though the entire rejection region for the null hypoth-
esis appears only in the upper tail of the F sampling distribution, as in Figure 16.1, the 
F test in ANOVA is the equivalent of a nondirectional test. Recall that all variations in 
ANOVA are squared. When squared, all values become positive, regardless of whether 
the original differences between groups (or group means) are positive or negative. All 
squared differences between groups have a cumulative positive effect on the observed 
F and thereby ensure that F is a nondirectional test, even though only the upper tail of 
its sampling distribution contains the rejection region.

F  and  t 2

Squaring the t test would produce a similar effect. When squared, all values of t2 
become positive, regardless of whether the original value for the observed t was posi-
tive or negative. Hence, the t2 test also qualifies as a nondirectional test, even though 
the entire rejection region appears only in the upper tail of the t2 sampling distribution. 
In fact, the values of t2 and F are identical when both tests can be applied to the same 
data for two independent groups. When only two groups are involved, the t2 test can be 
viewed as a special case of the more general F test in ANOVA for two or more groups.

16 .9  EST IMAT ING  EFFECT  S I ZE

As discussed in Chapter 14, a statistically significant t test indicates that the null 
hypothesis is probably false but nothing about the size of the effect. Cohen’s d  supplies 
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where η2 represents the proportion of explained variance and SSbetween and SStotal repre-
sent the between group and total sum of squares, respectively. This ratio estimates not 
population mean differences, but the proportion (from 0 to 1) of the total variance for 
all scores, as reflected in SStotal, that can be explained by or attributed to the variance 
of treatment groups, as reflected in SSbetween. Speaking very generally, η2 indicates the 
proportion of differences among all scores attributable to differences among treatment 
groups. The larger this proportion, the larger the estimated size of the overall effect of 
the treatment on the dependent variable.

The Greek symbol η2, pronounced eta-squared, is often referred to as the squared 
curvilinear correlation coefficient. This terminology reinforces the notion that η2 is 
just a square root away from a number describing the nonlinear correlation between 
values of the independent and dependent variables. Notice also that this interpretation 
of η2 is very similar to that for r2, the squared linear correlation coefficient described 
in Chapter 7.

Refer to Figure 16.3 to gain some appreciation of how the squared curvilinear 
correlation, η2, reflects the proportion of variance explained by the independent vari-
able. This figure shows values of η2 for three different outcomes, reflecting no effect, a 
maximum effect, and a partial effect, for the sleep deprivation experiment.

Pane l  I

There is no apparent visual separation between the scores for each of the three groups, 

since each group mean, groupX , equals the grand mean, grandX . Therefore, there is no 

variability between groups, SSbetween = 0, and

2 0 0
0

0
between between

total between within within within

SS SS

SS SS SS SS SS

The value of 0 for η2  implies that none of the variance among scores can be attributed 
to variance between treatment groups. The treatment variable has no effect whatsoever 
on the dependent variable.

Squared Curvilinear  

Correlation (η2) 

The proportion of variance in the 

dependent variable that can be 

explained by or attributed to the 

independent variable.

a  standardized estimate of effect size, which has the desirable property of being 
 independent of sample sizes.

Like the t test, a statistically significant F indicates merely that the null hypothesis 
is probably false; otherwise, it fails to provide an accurate estimate of effect size. A 
new estimate of effect size must both reflect the overall effect associated with the null 
hypothesis in ANOVA and be independent of sample sizes.* A most straightforward 
estimate, denoted as η2, capitalizes on existing information in the ANOVA summary 
table by specifying that SSbetween be divided by SStotal, that is,

*Independence of sample size is an important property of estimates of effect size. Essentially, 

large sample sizes in ANOVA automatically inflates the numerator term, MSbetween, relative to the 

denominator term, MSwithin, of the F test. For instance, the F of 0.75 for Outcome A in Table 16.1, 

was not significant at the .05 level. If, however, the sample size for each of the three groups were 

increased from n = 3 to n = 30, the new F of 7.50 would have been significant at the .01 level 

even though the differences between group means remain the same.

PROPORTION OF EXPLAINED VARIANCE, η2 (ONE-FACTOR ANOVA)

2 between

total

SS

SS  

(16.8)
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Pane l  I I

There is complete visual separation between the scores for each of the three groups, 
since each score, X, coincides with its own distinctive group mean, .groupX  Therefore, 
there is no variability within groups, SSwithin = 0, and

2 1
0

between between between between

total between within between between

SS SS SS SS

SS SS SS SS SS

The value of 1 for η2 implies that all of the variance among scores can be attributed to 
the variance between treatment groups. The treatment variable has a maximum (per-
fect) effect on the dependent variable.

Pane l  I I I

In spite of some overlap, there is an apparent visual separation between scores for the 
three groups. Now there is variability both within and between groups, as for Outcome 
B of the sleep deprivation experiment (Table 16.6), SSbetween = 54 and SSwithin = 22, and

2 54 54
.71

54 22 76
between between

total between within

SS SS

SS SS SS

FIGURE 16.3 

Values of η2 for three possible outcomes of the 
sleep deprivation experiment.

f

= 24 = 48= 0

86420

1

2

3

10

f

86420

1

2

3

10

X

X

f

86420

1

2

3

10

I   NO VARIABILITY BETWEEN GROUPS
(  2 = 0)

II   ALL  VARIABILITY BETWEEN GROUPS

III   SOME  VARIABILITY BETWEEN GROUPS

X

X0,X24,X48

X24 X48X0

X24 X48X0

Sleep Deprivation (Hours)

(  2 = 1)

(  2 = .71)

η

η

η
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The value of .71 for η2 implies that .71 (or 71 percent) of the variance among scores 
can be attributed to variance between treatment groups, as reflected in SSbetween. More 
 specifically, this large value of .71 suggests that 71 percent of the variance in aggression 
scores is attributable to whether subjects are deprived of sleep for 0, 24, or 48 hours, 
while the remaining 29 percent of variance in aggression scores is not attributable to 
hours of sleep deprivation. (Notice that, although the same differences appear between 
the group means in the two bottom panels, the value of η2 drops from 1 in Panel II to 
.71 in Panel III. This is a reminder that our estimate of effect size, η2, depends not only 
on the variability between group means but also on the error variability within groups.)

Guidelines for η2 can be derived from Cohen’s recommendations for a similar measure, 
the correlation coefficient, r, that, when squared, also uses the proportion of explained 
variance to estimate the effect size. As indicated in Table 16.7, estimated effect size is 
small, medium, or large, depending on whether the value η2 is in the general vicinity of 
.01, .09, or .25, respectively.* The estimated effect size of .71 for Outcome B of the sleep 
deprivation experiment would be considered spectacularly large, and it reflects the fact 
that these data were created to dramatize the differences due to sleep deprivation with 
small, computationally friendly sample sizes. However, even if the data were real, this 
estimate of effect size—itself a product of sampling variability—would be considered 
highly speculative because of the instability of η2 when sample sizes are small. 

A  Recommendat ion

Consider calculating η2 (or its less straightforward but more accurate competitor, 
omega-squared, symbolized as ω2 and cited in more advanced statistics books) when-
ever F is statistically significant. As mentioned in Section 14.9, don’t apply Cohen’s 
guidelines without regard to special circumstances that could give considerable impor-
tance to even a very small estimated effect.

Progress Check *16.6 Given the rejection of the null hypothesis in Question 16.5, esti-
mate the effect size with η2.

Answer on page 444.

16 .10  MULT IPLE  COMPARISONS

Rejection of the overall null hypothesis indicates only that all population means are 
not equal. In the case of the original sleep deprivation experiment, the rejection of H0 
signals the presence of one or more inequalities between the mean aggression scores 
for populations of subjects exposed to 0, 24, or 48 hours of sleep deprivation, that 
is, between μ0, μ24, and μ48. To pinpoint the one or more differences between pairs of 
population means that contribute to the rejection of the overall H0, we must use a test 
of multiple comparisons. A test of multiple comparisons is designed to evaluate not 
just one but a series of differences between population means, such as those for each of 
the three possible differences between pairs of population means for the present experi-
ment, namely, μ0 − μ24, μ0 − μ48, and μ24 − μ48.

t  Tes t  No t  App rop r ia te

These differences can’t be evaluated with a series of regular t tests, except under 
special circumstances alluded to later in this section. The regular t test is designed to 
evaluate a single comparison for a pair of observed means, not multiple comparisons 
for all possible pairs of observed means. Among other complications, the use of mul-

Table 16.7
GUIDELINES  

FOR η2

η2 EFFECT
.01 Small
.09 Medium
.25 Large

*Cohen, J. (1988). Statistical Power Analysis in the Behavioral Sciences (2nd ed.). Hillsdale, 

NJ: Erlbaum.

Multiple Comparisons 

The possible comparisons when-

ever more than two population 

means are involved.
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where HSD is the positive critical value for any difference between two means; q is a 
value, technically referred to as the Studentized Range Statistic, obtained from Table G 
in Appendix C; MSwithin is the customary mean square for within-group variability for 
the overall ANOVA; and n is the sample size in each group.*

tiple t tests increases the probability of a type I error (rejecting a true null hypothesis) 
beyond the value specified by the level of significance.

Co in -Toss ing  Examp le

A coin-tossing example might clarify this problem. When a fair coin is tossed only 
once, the probability of heads equals .50—just as, when a single t test is to be con-
ducted at the .05 level of significance, the probability of a type I error equals .05. When 
a fair coin is tossed three times, however, heads can appear not only on the first toss but 
also on the second or third toss, and hence the probability of heads on at least one of the 
three tosses exceeds .50. By the same token, for a series of three t tests, each conducted 
at the .05 level of significance, a type I error can be committed not only on the first test 
but also on the second or third test, and hence the probability of committing a type I 
error on at least one of the three tests exceeds .05. In fact, the cumulative probability of 
at least one type I error can be as large as .15 for a series of three t tests and even larger 
for a more extended series of t tests.

Tukey ’ s  HSD  Tes t

The above shortcoming does not apply to a number of specially designed multiple 
comparison tests, including Tukey’s HSD or “honestly significant difference” test. 
Once the overall null hypothesis has been rejected in ANOVA, Tukey’s HSD test can 
be used to test all possible differences between pairs of means, and yet the cumulative 
probability of a type I error never exceeds the specified level of significance.

F ind ing  the  C r i t i ca l  Va lue

Given a significant F for the overall null hypothesis, as in the sleep deprivation 
experiment, Tukey’s test supplies a single critical value, HSD, for evaluating the signif-
icance of each difference for every possible pair of means, that is, 0 24 0 48, ,X X X X  
and 24 48X X . Essentially, the critical value for HSD is adjusted upward for the num-
ber of group means, k, being compared to compensate for the increased cumulative 
probability of incurring at least one type I error. The net effect of this upward adjust-
ment is to make it more difficult to reject the null hypothesis for any particular pair of 
population means—and to increase the likelihood of detecting only honestly significant 
(or real) differences.

If the absolute difference between any pair of means equals or exceeds the critical 
value for HSD, the null hypothesis for that particular pair of population means can be 
rejected. To determine HSD, use the following expression:

Tukey’s HSD Test 

A multiple comparison test for 

which the cumulative probability 

of a type I error never exceeds the 

specified level of significance.

TUKEY’S HSD TEST

 

withinMS
HSD q

n  
(16.9)

*Equation 16.9 assumes equal sample sizes. Otherwise, if sample sizes are not equal and you 

lack access to an automatically adjusting computer program, such as Minitab, SAS, or SPSS, 

replace n in Equation 16.9 with the mean of all sample sizes, .n
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To obtain a value for q at the .05 level (light numbers) or the .01 level (dark num-
bers) in Table G, find the cell intersected by k, the number of groups, and dfwithin, the 
degrees of freedom for within-group (or error) variability in the original ANOVA. 
Given values of k = 3 and dfwithin = 6 for the sleep deprivation experiment, the inter-
sected cell shows a value of 4.34 for q at the .05 level. Substituting q = 4.34, MSwithin 
= 3.67, and n = 3 in Equation 16.9, we can solve for HSD as follows:

3.67
4.34 4.34 (1.10) 4.77

3
withinMS

HSD q
n

I n te rp re ta t i on  fo r  S leep  Dep r i va t ion  Expe r iment

Table  16.8 shows absolute differences of either 3, 6, or 3 for the three pairs of 
means in the current experiment. (This table serves as a good model for evaluating the 
significance of differences between all possible pairs of sample means.) Since only 
the difference of 6 for the comparison involving 0X  and 48X  exceeds the critical HSD 
value of 4.77, only the null hypothesis for μ0 − μ48 can be rejected at the .05 level. We 
can conclude that, when compared with 0 hours of sleep deprivation, 48 hours of sleep 
deprivation tends to produce, on average, more aggressive behavior in a controlled 
social situation. There is no evidence, however, that subjects deprived of sleep for 24 
hours are either more aggressive than those deprived for 0 hours or less aggressive than 
those deprived for 48 hours.

Es t imat ing  E f fec t  S i ze

The effect size for any significant difference between pairs of means can be esti-
mated with Cohen’s d, as adapted from Equation 14.5 on page 262 that is,

Table 16.8
ALL POSSIBLE ABSOLUTE  

DIFFERENCES BETWEEN PAIRS  
OF MEANS (FOR THE SLEEP  
DEPRIVATION EXPERIMENT)

0 2X 24 5X 48 8X

0 2X — 3 6*

24 5X — 3

48 8X —

*Significant at the .05 level.

STANDARDIZED EFFECT SIZE, COHEN’S d (ADAPTED FOR ANOVA)

 

1 2 1 2

2
withinp

X X X X
d

MSs
 

(16.10)

where d is an estimate of the standardized effect size, 1X  and 2X  are the pair of signifi-

cantly different means, and withinMS , the square root of the within-group mean square 

for the one-factor ANOVA, represents the sample standard deviation.
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To estimate the standardized effect size for the one significant difference between 
means for 0 and 48 hours of sleep deprivation, enter 48X  – 0X  = 6 and MSwithin = 3.67 
in Equation 16.10 and solve for d:

48 0

6 6
, 3.13

19.23.67
d X X

which is a very large effect, equivalent to more than three standard deviations. (Accord-
ing to Cohen’s guidelines for d, described on page 262, the effect size is large if d is 
more than 0.8.) This result isn’t surprising given the very large effect size of η2  = .71 
for the proportion of explained variance attributable to the differences between all three 
groups in the sleep deprivation experiment.

Progress Check *16.7 Given the rejection of the null hypothesis in Question 16.5, Tukey’s 
HSD test can be used to identify pairs of population means that differ. Using the .05 level of 
significance, calculate the critical value for HSD and use it to evaluate the statistical signifi-
cance of each possible mean difference. Use the matrix shown in Table 16.8 as a model. The 
various sample means are 0X  = 1.63, 1X  = 3.13, 2X  = 5.00, and 3X  = 7.50.

(a) Estimate the standardized effect size for any significant pair of mean differences with 
Cohen’s d.

(b) Interpret the results of your analysis.

Answers on pages 444 and 445.

Othe r  Mu l t i p le  Compar i son  Tes ts

That only Tukey’s HSD test, sometimes referred to as Tukey’s a test, has been dis-
cussed should not be interpreted as an unqualified endorsement. At least a half dozen 
other multiple comparison tests are available, and depending on a number of consid-
erations, any of these could be the most appropriate test for a particular set of com-
parisons. For example, a very conservative multiple comparison test, Scheffe’s test, 
provides better protection against false alarms or type I errors, but at the price of being 
more vulnerable to misses or type II errors. (Unlike Tukey’s HSD test, Scheffe’s test 
also can be used to evaluate more complex comparisons, such as, for example, the 
difference between the mean for 0 hours and the combined mean for both 24 and 48 
hours.) On the other hand, other, more liberal multiple comparison tests, including 
even an extension of the regular t test for two independent samples, variously referred 
to as the protected t test or as the LSD (least significant difference) test, provide better 
protection against misses or type II errors, but at the price of being more vulnerable to 
false alarms or type I errors. Depending on the relative seriousness of the type I and II 
errors, therefore, you might choose to use some other multiple comparison test—pos-
sibly one that reverses the strength and weakness of Tukey’s HSD test.

Se lec t ing  a  Mu l t i p le  Compar i son  Tes t

We will not deal with the relatively complex, controversial issue of when, depend-
ing on circumstances, a specific multiple comparison test is most appropriate.* Indeed, 
sometimes it isn’t even necessary to resolve this issue. With a computer program, such 
as Minitab, SPSS, or SAS, a few keystrokes can initiate not just one, but an entire series 

*For more information about tests of multiple comparisons, including tests of special 

“planned” comparisons that can replace the overall F test in ANOVA, see Chapter 12 in Howell, 

D. C. (2013). Statistical Methods for Psychology (8th ed.). Belmont, CA: Wadsworth.
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of multiple comparison tests. Insofar as the pattern of significant and nonsignificant 
comparisons remains about the same for all tests—as has often happened, in our expe-
rience—you simply can report this finding without concerning yourself about the most 
appropriate multiple comparison test for that particular set of comparisons. In those 
cases where the status of a particular comparison is ambiguous, being designated as 
significant by some of the multiple comparison tests and as nonsignificant by the 
remaining tests, this comparison could be reported as having “borderline” significance.

16 .11  OVERV IEW:  FLOW CHART  FOR  ANOVA

Figure 16.4 serves as a reminder about the steps that should be taken whenever you’re 
using an F test in ANOVA. Only if the F test is significant should you proceed to esti-
mate the overall effect size with η2  and to test for significant mean differences with 
Tukey’s HSD test. Finally, the effect size for any significant difference between pairs 
of means can be estimated with Cohen’s d.

16 .12  REPORTS  IN  THE  L ITERATURE

For the sake of brevity, reports of hypothesis tests in the current literature usually don’t 
reproduce an ANOVA summary table, such as Table 16.6, but are limited to a review 
of relevant descriptive statistics, such as the group means and standard deviations, and 
one or more general conclusions. A parenthetical statement summarizes the statistical 
test and estimates the effect size. Also reported are the results of any multiple compari-
son tests, as well as estimates of effect sizes for any significant multiple comparisons. 
For example, an investigator might report the sleep deprivation experiment as follows:

Aggression scores for subjects deprived of sleep for 0 hours (X = 2, s = 2.00), 
those deprived for 24 hours (X = 5, s = 1.73), and those deprived for 48 hours 
(X = 8, s = 2.00) differ significantly [F (2, 6) = 7.36; MSE = 3.67; p < .05;  
η2 = .71]. According to Tukey’s HSD test, however, only the difference of 6 
between mean aggression scores for the 0 and 48 hour groups is significant 
(HSD = 4.77, p < .05, d = 3.13).

FIGURE 16.4 

Overview: Flow chart for one-factor ANOVA.

F  TEST

ESTIMATE
EFFECT SIZE (  2)

TEST
MULTIPLE COMPARISONS (HSD)

Nonsignificant HSD (ns) Significant HSD (p < .05)

ESTIMATE
EFFECT SIZE (d)

Significant F (p < .05)Nonsignificant F (ns)

η
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The first sentence identifies the means and standard deviations for the various groups. 
Otherwise, if references were limited to results of the statistical analysis, there would 
be no information about the actual pattern of group differences, along with the vari-
abilities of individual scores for the three groups. The parenthetical statement indi-
cates that an F based on 2 and 6 degrees of freedom equals 7.36. MSE represents 
MSerror, the within-group or error mean square used in the denominator of F.

 The F test has an approximate p-value of less than .05 because, as can be seen in 
Table 16.5, the observed F of 7.36 is larger than the critical F of 5.14 for the .05 level 
of significance (but smaller than the critical F of 10.92 at the .01 level of significance). 
Furthermore, since the p-value of less than .05 reflects a rare outcome, given that the 
null hypothesis is true, it supports the research hypothesis, as implied in the interpre-
tative statement. The entry, η2  = .71, is the estimated effect size, and it signifies that 
.71 or 71 percent—over two-thirds—of the total variance in aggression scores can be 
attributed to the three differences in hours of sleep deprivation. Finally, Tukey’s HSD 
test, with a critical value of 4.77, reveals that the only significant difference occurs 
between groups deprived of sleep for 0 and 48 hours, and this difference has a very 
large standardized effect size, d, estimated to be 3.13.

16 .13  ASSUMPT IONS

The assumptions for F tests in ANOVA are the same as those for t tests for two inde-
pendent samples. All underlying populations are assumed to be normally distributed, 
with equal variances. You need not be too concerned about violations of these assump-
tions, particularly if all sample sizes are equal and each sample is fairly large (greater 
than about 10). Otherwise, in the unlikely event that you encounter conspicuous 
departures from normality or equality of variances, consider various alternatives sim-
ilar to those discussed in Chapter 14 for the t test. More specifically, you might (1) 
increase sample sizes (to minimize the effect of non-normality); (2) equalize sample 
sizes (to minimize the effect of unequal population variances); (3) use a more com-
plex version of F (designed for unequal population variances); or (4) use a less sensi-
tive but more assumption-free test, such as the Kruskal-Wallis H test described in 
Chapter 20.*

16 .14  COMPUTER  OUTPUT

Table 16.9 shows the Minitab output for a one-factor ANOVA for the original sleep 
deprivation experiment. Compare this output with the results described in Table 16.6.

Progress Check *16.8 The following questions refer to the Minitab printout.

(a) Calculate the value of eta squared (η2).

(b) Determine the value that best estimates the unknown population standard deviation 
assumed to be common to the three sleep deprivation conditions.

(c) Indicate whether the results for Tukey’s pairwise comparisons, expressed as intervals in 
the output, can be interpreted as confirming the results for Tukey’s HSD, expressed as 
mean differences in Table 16.8.

Answers on page 445.

*For more information about the version of F designed for unequal variances, see Chapter 11 

in Howell, D. C. (2013). Statistical Methods for Psychology (8th ed.). Belmont, CA: Wadsworth.
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Comments:
1. The family error rate refers to the probability of at least one type I error for the entire set 
(3) of pairwise comparisons.
2. Although the Minitab format for Tukey’s HSD test differs from that shown in Table 16.8, the 
results are the same. Now each comparison is described with a 95 percent confi dence interval 
for the population mean difference, adjusted for multiple comparisons. As implied in the dis-
cussion of confi dence intervals in Section 14.8, intervals whose limits have the same sign, 
either both positive or both negative, are associated with statistically signifi cant differences.

1.

2.

ONE-WAY ANALYSIS OF VARIANCE
ANALYSIS OF VARIANCE FOR AGGRESSION
SOURCE df SS MS     F       p

DEPRIV 2 54.00 27.00    7.36    0.024
Error 6 22.00 3.67
Total 8 76.00

INDIVIDUAL 95% CIS FOR 
MEAN BASED ON POOLED STDEV

Level  N   Mean StDev   ---+---------+---------+--------
--+---
0    3   2.000 2.000    (-------*--------)
24   3   5.000 1.732       (--------*-------)
48   3   8.000 2.000          (-------*-------)

  ---+--------+----------+---------+
--+---
Pooled StDev = 1.915 0.0    3.5      7.0      10.5

TUKEY’S PAIRWISE COMPARISONS
1  Family error rate = 0.0500

Individual error rate = 0.0220
Critical value = 4.34
Intervals for (column level mean) – (row level mean)

2 0 24

24 –7.798
1.798

48 –10.798 –7.798
–1.202 1.798

1 

Table 16.9
MINITAB OUTPUT: ONE-FACTOR ANALYSIS OF VARIANCE FOR 
AGGRESSION SCORES AS A FUNCTION OF SLEEP DEPRIVATION

 SUMMARY  317

Summary

Analysis of variance (ANOVA) tests the null hypothesis for two or more population 
means by classifying total variability into two independent components: variability 
between groups and variability within groups. Both components refl ect only random 
error if the null hypothesis is true, and the resulting F ratio (variability between groups 
divided by variability within groups) tends toward a value of approximately 1. If the 
null hypothesis is false, variability between groups refl ects both random error and a 
treatment effect, whereas variability within groups still refl ects only random error, and 
the resulting F ratio tends toward a value greater than 1.

2
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318 ANALYSIS OF VARIANCE (ONE FACTOR) 

Each variance estimate or mean square (MS) is found by dividing the appropriate 
sum of squares (SS) term by its degrees of freedom (df). Once a value of F has been 
obtained, it’s compared with a critical F from the table for the F distribution. If the 
observed F equals or is larger than the critical F, the null hypothesis is rejected. Oth-
erwise, for all smaller observed values of F, the null hypothesis is retained.

Whenever F is statistically significant, use η2 to estimate effect size.
Rejection of the overall null hypothesis indicates only that not all population means 

are equal. To pinpoint differences between specific pairs of population means that con-
tribute to the rejection of the overall null hypothesis, use Tukey’s HSD test. This test 
ensures that the cumulative probability of a type I error never exceeds the specified 
level of significance. When the HSD test identifies a significant difference, use Cohen’s 
d to estimate effect size.

F tests in ANOVA assume that all underlying populations are normally distributed, 
with equal variances. Ordinarily, you need not be too concerned about violations of 
these assumptions.

Important Terms

Analysis of variance (ANOVA) Tukey’s HSD test

Treatment effect One-factor ANOVA

Variability within groups Variability between groups

F ratio Random error

Mean square (MS )  Sum of squares (SS )

Squared curvilinear correlation (η2) Multiple comparisons

Key Equations

F RATIO

where

and

between

within

between
between

between

within
within

within

total between within

total between within

MS
F

MS

SS
MS

df

SS
MS

df

SS SS SS

df df df

PROPORTION OF EXPLAINED VARIANCE

2 between

total

SS

SS
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REV IEW QUEST IONS

Note:  When answering review questions in this chapter and the next two ANOVA chapters, 
you can bypass the customary step-by-step hypothesis testing procedure and sum-
marize your results with an ANOVA table, as in Table 16.6.

 16.9 Given the aggression scores below for Outcome A of the sleep deprivation experi-
ment, verify that, as suggested earlier, these mean differences shouldn’t be taken 
seriously by testing the null hypothesis at the .05 level of significance. Use the com-
putation formulas for the various sums of squares and summarize results with an 
ANOVA table.

HOURS OF SLEEP DEPRIVATION

ZERO TWENTY-FOUR FORTY-EIGHT

3 4 2
5 8 4
7 6 6

Group mean: 5 6 4 Grand mean = 5

 *16.10 Another psychologist conducts a sleep deprivation experiment. For reasons beyond 

his control, unequal numbers of subjects occupy the different groups. (Therefore, 

when calculating 
2

,T
n  in SSbetween and SSwithin, you must adjust the denominator term, 

n, to reflect the unequal numbers of subjects in the group totals.)

 (a) Summarize the results with an ANOVA table. You need not do a step-by-step hypoth-
esis test procedure.

HOURS OF SLEEP DEPRIVATION

ZERO TWENTY-FOUR FORTY-EIGHT
1 4 7
3 7 12
6 5 10
2 9
1

 (b) If appropriate, estimate the effect size with η2.

 (c) If appropriate, use Tukey’s HSD test (with n = 4 for the sample size, n) to identify 

pairs of means that contribute to the significant F, given that 0X  = 2.60, 24X  = 5.33, 

and 48X  = 9.50.

 (d) If appropriate, estimate effect sizes with Cohen’s d.

 (e) Indicate how all of the above results would be reported in the literature, given sample 
standard deviations of s0 = 2.07, s24 = 1.53, and s48 = 2.08.

 Answers on page 445.
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 16.11 The investigator mentioned in Review Question 14.14 wishes to conduct a more exten-
sive test of the effect of alcohol consumption on the performance of automobile drivers, 
possibly to gain more information about the legal maximum for DUI arrests. Before the 
driving test, subjects drink a glass of orange juice laced with controlled amounts of 
vodka. Their performance is measured by the number of errors on a driving simulator. 
Five subjects are randomly assigned to each of five groups receiving different amounts 
of vodka (either 0, 1, 2, 4, or 6 ounces), and the following results were obtained:

DRIVING ERRORS AS A FUNCTION OF  
ALCOHOL CONSUMPTION (OUNCES)

ZERO ONE TWO FOUR SIX
1 4 6 15 20
1 3 1 6 25
3 1 2 9 10
6 7 10 17 10
4 5 7 9 9

T 15 20 26 56 74

ΣX  = G  = 191 ΣX 2 = 2371

 (a) Summarize the results with an ANOVA table. (Note: Save these results for use with 
Review Question 17.7.)

 (b) If appropriate, estimate the effect size with η2.

 (c) If appropriate, use Tukey’s HSD test to pinpoint pairs of means that contribute to 

the significant F, given that 0X   = 3, 1X   = 4, 2X   = 5.2, 4X   = 11.2, and 6X   = 14.8. 

Furthermore, if appropriate, estimate effect sizes with Cohen’s d.

 *16.12 For some experiment, imagine four possible outcomes, as described in the following 
ANOVA table.

A. SOURCE SS df MS F

Between 900 3 300 3
Within 8000 80 100

Total 8900 83

B. SOURCE SS df MS F

Between 1500 3 500 5
Within 8000 80 100

Total 9500 83

C. SOURCE SS df MS F

Between 300 3 100 1
Within 8000 80 100

Total 8300 83

D. SOURCE SS df MS F

Between 300 3 100 1
Within   400   4 100

Total 700 7
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 (a) How many groups are in Outcome D?

 (b) Assuming groups of equal size, what’s the size of each group in Outcome C?

 (c) Which outcome(s) would cause the null hypothesis to be rejected at the .05 level of 
significance?

 (d) Which outcome provides the least information about a possible treatment effect?

 (e) Which outcome would be the least likely to stimulate additional research?

 (f) Specify the approximate p-values for each of these outcomes.

Answers on page 445 and 446.

 16.13 Twenty-three overweight male volunteers are randomly assigned to three different 
treatment programs designed to produce a weight loss by focusing on either diet, 
exercise, or the modification of eating behavior. Weight changes were recorded, to 
the nearest pound, for all participants who completed the two-month experiment. 
Positive scores signify a weight drop; negative scores, a weight gain.

Note: See the comment in Review Question 16.10 about calculations when sample sizes 
are unequal.

WEIGHT CHANGES

DIET EXERCISE BEHAVIOR MODIFICATION
3 –1 7
4 8 1
0 4 10

–3 2 0
5 2 18

10 –3 12
3 4
0 6

5

T 22 12 63
n 8 6 9

ΣX  = G  = 97; N  = 23   ΣX 2 = 961

 (a) Summarize the results with an ANOVA table.

 (b) Whenever appropriate, use Tukey’s HSD test and estimate all effect sizes, given that 
the means for diet, exercise, and behavior modification equal 2.75, 2.00, and 7.00, 
respectively.

 16.14 The F test describes the ratio of two sources of variability: that for subjects treated 
differently and that for subjects treated similarly. Is there any sense in which the t 
test for two independent groups can be viewed likewise?
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CHAPTER

17
Analysis of Variance  
(Repeated Measures)

17.1 SLEEP DEPRIVATION EXPERIMENT WITH REPEATED MEASURES

17.2 F  TEST

17.3 TWO COMPLICATIONS

17.4 DETAILS: VARIANCE ESTIMATES

17.5 DETAILS: MEAN SQUARE (MS ) AND THE F RATIO

17.6 TABLE FOR THE F DISTRIBUTION

17.7 ANOVA SUMMARY TABLES

17.8 ESTIMATING EFFECT SIZE

17.9 MULTIPLE COMPARISONS

17.10 REPORTS IN THE LITERATURE

17.11 ASSUMPTIONS

Summary / Important Terms / Key Equations / Review Questions

Preview

This chapter is an extension of the t test for two related samples (Chapter 15) to the 

F test for more than two related samples. As before, when differences between two 

or more groups are based on repeated measures for the same subjects, an important 

source of variability caused by individual differences can be eliminated from the main 

analysis. This can yield a more powerful analysis, that is, one more likely to detect a 

false null hypothesis. Also as before, several potential problems must be addressed 

before adopting a repeated-measures design.
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 17.1 SLEEP DEPRIVATION EXPERIMENT WITH REPEATED MEASURES  323

17 .1  SLEEP  DEPR IVAT ION  EXPER IMENT  
W ITH  REPEATED  MEASURES

Recall the sleep deprivation experiment featured in the previous chapter. Three subjects 
in each of three groups were deprived of sleep for either 0, 24, or 48 hours and then 
were assigned aggression scores based on their behavior in a controlled social situa-
tion. The F test was significant [F(2, 6) = 7.36, MSE = 3.67, p < .05, η2 = .71], and 
according to Tukey’s HSD test, there was a significant difference between the means 
for the 0- and 48-hour deprivation groups (p < .05, d = 3.13).

This chapter describes an important alternative design for the sleep deprivation 
experiment, where each subject serves under not just one but all three levels of sleep 
deprivation. Referred to as repeated-measures ANOVA, this type of analysis tests 
whether differences exist among population means with measures on the same sub-
jects. To facilitate comparisons between the original experiment with single mea-
sures on different subjects and the new experiment with repeated measures on the 
same subjects, exactly the same set of nine scores originally shown as Outcome B in 
Table 16.1 will be used to illustrate repeated-measures ANOVA. Table 17.1 shows 
these nine scores, but now the three scores in each row are viewed as repeated mea-
sures across the three levels of sleep deprivation for single subjects, coded as either 
A, B, or C.

Since the same subject serves in all three levels of sleep deprivation, differences in 
aggression scores between 0, 24, and 48 hours are based on identical sets of subjects 
and, therefore, key estimates of variability no longer are inflated by a most important 
type of random error—the variability due to differences between individuals. If the null 
hypothesis is false, the net effect is a more powerful F test. In the absence of individual 
differences, both numerator and denominator terms of the F ratio become smaller, but 
the error term in the denominator of the F ratio, MSerror, becomes disproportionately 
smaller, as demonstrated later in Section 17.7. This translates into a most desirable 
outcome: an increased likelihood of rejecting the false null hypothesis with a signifi-
cant F test.

Repeated-Measures ANOVA 

A type of analysis that tests 

whether differences exist among 

population means with measures 

on the same subjects.

Table 17.1
SLEEP DEPRIVATION EXPERIMENT WITH REPEATED MEASURES:  

AGGRESSION SCORES

HOURS OF SLEEP DEPRIVATION subjectX

SUBJECT ZERO TWENTY-FOUR FORTY-EIGHT (SUBJECT MEAN)

A 0 3  6 3
B 4 6  8 6
C 2 6 10 6

group
X =
(Group mean)

2 5 8
grand

X  = 5

(Grand mean)

Progress Check *17.1 Imagine a simple experiment with repeated measures for four 
subjects, coded as W, X, Y, and Z, across three levels or values of the independent variable. 
For each of the following outcomes, indicate the presence or absence of variability due to 
individual differences (by inspecting the totals for each subject). Among those outcomes where 
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this variability is present, identify the outcome having the greatest amount of variability due  
to individual differences.

(a) LEVEL 1 LEVEL 2 LEVEL 3

W 6 3 10
X 6 3 10
Y 6 3 10
Z 6 3 10

(b) LEVEL 1 LEVEL 2 LEVEL 3

W 4 3 5
X 6 6 7
Y 18 20 19
Z 24 20 21

(c) LEVEL 1 LEVEL 2 LEVEL 3

W 5 13 20
X 7 14 18
Y 8 15 21
Z 11 14 23

Answers on page 446.

17 .2  F  TEST

Except for the fact that measures are repeated, the new F test is essentially the same as 
that described in Chapter 16. The statistical hypotheses still are:

 

0 0 24 48

1 0

:

:H H i

H

s false

where μ0, μ24, and μ48 represent the mean aggression scores for the single population of 
subjects who are deprived of sleep for 0, 24, and 48 hours. Once again, rejection of the 
null hypothesis implies that sleep deprivation influences aggressive behavior.

As before, the F test of the null hypothesis is based on the notion that if the null 
hypothesis really is true, both the numerator and denominator of the F ratio will tend to 
be about the same, but if the null hypothesis is false, the numerator (still MSbetween) will 
tend to be larger than the denominator (now MSerror). As implied, the new denominator 
term, MSerror, tends to be smaller than that for the original one-factor ANOVA because 
of the elimination of variability due to individual differences in repeated-measures 
ANOVA.

The hypothesis test for the sleep deprivation experiment with repeated measures, as 
summarized in the accompanying box, will be discussed later in more detail. Notice 
the huge increase in the value of F from 7.36 (for the original one-factor ANOVA) 
to 27 (for the repeated-measures ANOVA), even though both F ratios are based on 
the same set of nine scores (and the same differences between the three deprivation 
conditions). The relatively large individual differences in the current example illustrate 

Witte11e_c17.indd   324 11/18/2016   7:21:14 PM



 17.3 TWO COMPLICATIONS  325

HYPOTHESIS TEST SUMMARY

REPEATED-MEASURES F TEST 
(Sleep Deprivation Experiment)

Research Problem

On average, are subjects’ aggression scores in a controlled social situation 
 affected by sleep deprivation periods of 0, 24, and 48 hours, where each 
subject experiences all three periods?

Statistical Hypothesis

0 0 24 48:H

1 0: is falseH H

Decision Rule

Reject H0 at the .05 level of significance if F  ≥ 6.94 (from Table C in Appendix C, 
given dfbetween = 2 and dferror = 4).

Calculations

27 (See Tables 17.3 and 17.5 for more details.)F

Decision

Reject H0 at the .05 level of significance because F  = 27 exceeds 6.94.

Interpretation

Mean aggression scores in a controlled social situation are affected by sleep 
deprivation when subjects experience all three levels of deprivation.

the beneficial effects of repeated-measures ANOVA. In practice, the net effect of a 
repeated-measures experiment might not be as dramatic.

17 .3  TWO  COMPL ICAT IONS

The same two complications exist for repeated-measures ANOVA as for the repeated-
measures t test (see Section 15.1). Presumably, in the sleep deprivation experi-
ment, sufficient time elapses between successive sessions to eliminate any lingering 
effects due to earlier deprivation periods. If there is any concern that earlier effects 
of the independent variable linger during subsequent sessions, do not use repeated  
measures.

An extension of counterbalancing can be used to eliminate any potential bias in 
favor of one condition merely because of the order in which it was experienced. Pre-
sumably, in the sleep deprivation experiment, each of the three subjects has been 
randomly assigned to undergo a different one of three possible orders of deprivation 
sequences—either 0, 24, and 48 hours; or 48, 0, and 24 hours; or 24, 48, and 0 hours—
that, taken together over all three subjects, equalizes the number of times a particular 
deprivation level was experienced first, second, or third.
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17 .4  DETA ILS :  VAR IANCE  EST IMATES

Sum o f  Squa res  ( SS ) :  De f in i t i ona l  Fo rmu las

As a point of departure, the total sum of squares still equals the sum of the between-
group and within-group components, namely,

total between withinSS SS SS

and as indicated in Table 17.2, these three sum of squares terms have the same defi-
nitional formulas as in one-factor ANOVA. In repeated-measures ANOVA, however, 
the total sum of squares is expanded to include a new component for subjects, namely,

SUM OF SQUARES (REPEATED MEASURES)

 
total between subject errorSS SS SS SS

 
(17.1)

where the original sum of squares for variability within groups, SSwithin, is partitioned 
into two new sum of squares terms, SSsubject and SSerror, since

 
within subject errorSS SS SS

 ■ SSsubject equals the sum of squared deviations of the means for each subject about 

the grand mean. Its definition formula is 
2( )subject subject grandSS k X X , where 

k represents the number of repeated measures for each subject, subjectX  is the mean 
for each subject, and grandX  is the overall mean for all scores of all subjects. 

This term reflects variability due to individual differences. The number k in the 
expression for SSsubject reflects the fact that the deviation subject grandX X  is the 
same for all repeated measures, k, for any given subject.

 ■ SSerror equals the remaining variability after variability due to individual differ-
ences, SSsubject, has been subtracted from variability within groups, SSwithin. After 
being divided by its degrees of freedom, this reduced error term is used in the 
denominator of the F ratio.

Sum o f  Squa res  (SS ) :  Computa t ion  Fo rmu las

Totals replace means in the more efficient shaded computation formulas shown in 
Table 17.2. Notice the highly predictable computational pattern first described in Sec-
tion 16.4. Each entry in the numerator is squared, and each total, whether for a group, a 
subject, or the grand total, is then divided by its respective sample size. Among the two 
new formulas for repeated measures ANOVA, the first term in the formula for SSsubject,

 

2T subject
k

, requires that, after squaring the total score for each subject and dividing 

by the number of repeated measures (or levels of the independent variable), k, these 

quantities are summed across all subjects. The formula for SSerror specifies that SSsubject 

be subtracted from SSwithin. Although SSerror could be calculated directly, the current for-

mula serves as a reminder about the link between a smaller error term and the removal 

of variability due to differences between subjects.
Table 17.3 indicates how to use the computation formulas for the data from the 

sleep deprivation experiment with repeated measures.
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Table 17.2
WORD, DEFINITION, AND COMPUTATION FORMULAS FOR SS TERMS 

(REPEATED-MEASURES ANOVA)

For the total sums of squares,

2

2
2

the sum of squared deviations for scores about the grand mean

( )

, where is the grand total and is its sample size.

total

grand

SS

X X

X
N

N
G

G
total

SS

For the between sum of squares,

2

2 2

the sum of squared deviations for group means about the grand mean

( )

where is the group total and is its sample size,
(and also the number of subjects).

between

group grand

T

SS

n X X

T
N

n
G

n
betweenSS

For the within sum of squares,

2

2
2

the sum of squared deviations of scores about their respective
group means

( )

within

group

T
X

n

SS

X X

withinSS

For the subject sum of squares,

2

2 2

the sum of squared deviations of subject
means about the grand mean

( )

, where is the total for each subject and equals

the number of repeated measures (and also the n

s

subject

subject grand

subjec

ub

t

ject

SS

k X X

G

k N
T k

T
subjectSS

umber

of levels of the independent variable)

For the error sum of squares,

error within subjectSS SS SS

REMINDER:
X = score
T = group total
n = group sample size; number of subjects
G = grand total
N = grand (combined) sample size
Tsubject = subject total
k = number of repeated measures
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Table 17.3
CALCULATION OF SS TERMS (REPEATED-MEASURES ANOVA)

A. COMPUTATION SEQUENCE
Find each group total, T, each subject total, Tsubject, and the grand total, G, for all 
combined groups 1
Substitute numbers into computation formula  2  and solve for SSbetween.
Substitute numbers into computation formula  3  and solve for SSwithin.
Substitute numbers into computation formula  4  and solve for SSsubject.
Substitute numbers into computation formula  5  and solve for SSerror.
Substitute numbers into computation formula  6  and solve for SStotal.

B. DATA AND COMPUTATIONS
HOURS OF SLEEP DEPRIVATION SUBJECT TOTALS 

ZERO
TWENTY-

FOUR
FORTY-
EIGHT ( )SUBJECTT

0 3 6  9
4 6 8 18
2 6 10 18

 1   Group totals (T) = 6 15 24 Grand total (G) = 45

 2

 

2 2

2 2 2 2(6) (15) (24) (45) 202536 225 576
93 3 33 3 3 9

54

T G

n NbetweenSS

 3
 

22
wirhin

T
SS X

n

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

0 4 2 3 6 6 6 8 10
6

3

152 2 2 2 2 2 2 2 2
2 2

33

24

3

22

2( )

 4

 

2 2

2 2 2 2(9) (18) (18) (45) 202581 3

27  108  108

24 324
93 3 3

 – 225  243 –  225  1

9

8

3 3 3

T subject G

k NsubjectSS

 5

 22 –  18  4

error within subjectSS SS SS

 6

 
 

2
2 2 2 2 2 2 2 2 2 (45)

0 4 2 3 6 6 6 8 10 –
9

76

totalSS
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Degrees  o f  F reedom (d f )

The various formulas for degrees of freedom for repeated-measures ANOVA are 
listed in Table 17.4. The degrees of freedom for subjects, dfsubject = n – 1, reflect the loss 
of one degree of freedom when the means for the n subjects are expressed as devia-
tions about the grand mean. The degrees of freedom for the error term, dferror = dfwithin 

 dfsubject, are found by subtracting the degrees of freedom for subjects from the degrees 
of freedom for within groups. For the present repeated-measures experiment, which 
involves a total of nine scores (N = 9), with three repeated measures (k = 3) for each 
of three subjects (n = 3):

1 9 1 8

1 3 1 2

9 3 6

1 3 1 2

6 2 4

total

between

within

subject

error within subject

df N

df k

df N k

df n

df df df

Check  fo r  Accu racy

To establish that degrees of freedom have been assigned correctly to each of the 
above SS terms, substitute numbers into the following formula:

DEGREES OF FREEDOM (REPEATED MEASURES)

 total between subject errordf df df df  (17.2)

17 .5  DETA ILS :  MEAN  SQUARE  ( MS )  
AND  THE  F  RAT IO

Having calculated values for the various SS terms and their degrees of freedom, we can 
determine the mean squares for between groups and for error, and calculate the value of 
F as shown in Figure 17.1. The top part of Figure 17.1 shows the partitioning of SStotal 
into SSbetween and SSwithin for a one-factor ANOVA. The bottom part shows the partition-
ing of SSwithin into SSsubject and SSerror for repeated-measures ANOVA. Among the latter 
two SS terms, only SSerror is converted into a mean square, MSerror, to be entered into the 
denominator of the F ratio. Calculating MSsubject serves no useful purpose, since it usually 
would culminate in the trivial rejection of the null hypothesis for individual  differences.

Table 17.4
FORMULAS FOR df TERMS: REPEATED-MEASURES ANOVA

1, the number of all scores 1

1, the number of repeated measures (or levels of the independent variable) 1

, the number of all scores number of levels

1, the number of subjects 1

total

between

within

subject

erro

df N

df k

df N k

df n

df ( ) ( 1)r within subjectdf df N k n
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As suggested in Figure 17.1, the mean square for variability between groups, MSbetween, 
is given by the following expression:

MSbetween =
SSbetween

dfbetween

MSerror =

F =
MSbetween

MSerror

SSerror

dferror

One-factor
ANOVA

Repeated-
measures
ANOVA

SStotal

TOTAL

SSbetween

Between Groups

SSsubject

Between Subjects

SSerror

Error

SSwithin

Within Groups

FIGURE 17.1 

Sources of variability for one-factor and repeated-measures ANOVA.

MEAN SQUARE BETWEEN GROUPS (REPEATED MEASURES)

 

between
between

between

SS
MS

df  
(17.3)

MSbetween reflects the variability between treatment means, each of which is based on the 
repeated measures for all subjects.

For the sleep deprivation experiment with repeated measures,

54
27

2
between

between
between

SSMS
df

which has the same numerical value as MSbetween for the independent-measures experi-
ment in Chapter 16—as it should, since identical sets of numbers are being used to 
calculate these equivalent expressions in both examples.

The value of the mean square for error, MSerror, is given by the following expression:

MEAN SQUARE FOR ERROR (REPEATED MEASURES)

 

error
error

error

SSMS
df  

(17.4)
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where MSerror reflects the variability among scores of subjects within each treatment 
group, pooled across all treatments, after the removal of variability attributable to indi-
vidual differences.

For the sleep deprivation experiment with repeated measures,

4
1

4
error

error
error

SSMS
df

which, because of the removal of variability due to individual differences, is much 
smaller than the corresponding error term, MSwithin, of 3.67 for the independent- 
measures experiment in Chapter 16.

Finally, the F ratio is as follows:

Reminder: 

In repeated-measures ANOVA, the 

denominator term of the F ratio 

always equals MSerror, an estimate 

of random error from which vari-

ability due to individual differences 

has been eliminated.

F RATIO (REPEATED MEASURES)

 
between

error

MS

MS
F

 (17.5)

For the sleep deprivation experiment with repeated measures, the null hypothesis is 
very suspect because

27
27

1
between

error

MS

MS
F

17 .6  TABLE  FOR  F  D ISTR IBUT ION

As usual, a decision about the null hypothesis requires that the observed F be compared 
with a critical F. Critical F values for hypothesis tests at the .05 level (light numbers) 
and the .01 level (dark numbers) are listed in Table C in Appendix C. To read the F 
table, find the cell intersected by the column with degrees of freedom equal to those in 
the numerator of F, dfbetween, and by the row with degrees of freedom equal to those in the 
denominator of F, dferror. In the present case, the column with 2 degrees of freedom and 
the row with 4 degrees of freedom intersect a critical F of 6.94 (for the .05 level) and 
18.00 (for the .01 level). Given an observed F of 27, we can reject the null hypothesis at 
the .05 (or the .01) level of significance. There is dramatic evidence that, when subjects 
are measured repeatedly, the three levels of sleep deprivation affect aggression scores.

17 .7  ANOVA  SUMMARY  TABLES

ANOVA results can be summarized as shown in Table 17.5. Ordinarily, the shaded 
numbers in parentheses do not appear in ANOVA tables, but they show the origin of 
the two relevant MS terms and the F ratio.

Table 17.5
ANOVA TABLE: SLEEP DEPRIVATION EXPERIMENT  

(REPEATED MEASURES)

SOURCE SS df MS F

Between 54 2 54 
2  

27

4 
4

    1

27
1

  27*

Within 22 6
  Subject 18 2
  Error  4 4

Total 76 8

* Significant at the .01 level.
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Table  17.6 compares the ANOVA summary tables for the two sleep deprivation 
experiments. Since, to facilitate comparisons, exactly the same nine scores were used for 
both experiments, the two summary tables possess many similarities. Sums of squares 
and degrees of freedom are the same for between and total variability. The main dif-
ference appears in the denominator terms for the F ratios. The MSerror for the repeated-
measures ANOVA is about one-third as small as the MSwithin for the one-factor ANOVA.

Why  More  Power fu l?

In applications with real data, MSbetween also would tend to be smaller in repeated- 
measures ANOVA than in one-factor ANOVA because of the absence of individual dif-
ferences from variability between treatment groups. But then why can it be claimed that, 
if the null hypothesis is false, the repeated-measures F will tend to be larger? If the null 
hypothesis is false, the F ratio will tend to be greater than 1. Therefore, the subtraction 
of essentially the same amount of variability due to individual differences from both the 
numerator and denominator of the F ratio causes relatively more shrinkage in the smaller 
denominator term. To illustrate with a simple numerical example: Given any F greater than 
1, say a one-factor F = 8

4
 = 2, then, subtract from both numerator and denominator any 

constant (representing individual differences), say 2, to obtain a larger repeated-measures 

8  2 6
3

4  2 2
F

Progress Check *17.2 A school psychologist tests the effects of environmental noises 
on the reading comprehension scores of high school students who rotate, with the customary 
controls, through three different conditions: silence, white noise, and rock music. The reading 
comprehension scores for six subjects are as follows:

SUBJECT SILENCE WHITE NOISE ROCK TSUBJECT

A 6 4 2 12

B 11 3 0 14
C 5 4 1 10
D 7 6 2 15
E 4 6 4 14
F 10 7 5 22

T 43 30  14       ΣX = G = 87 ΣX 2 = 559

Summarize the results in an ANOVA table.

Answers on page 446.

Table 17.6
COMPARISON OF SUMMARY TABLES FOR ONE-FACTOR ANOVA  

AND REPEATED-MEASURE ANOVA

ANOVA TABLE: ORIGINAL SLEEP  
DEPRIVATION EXPERIMENT 

(ONE FACTOR)

ANOVA TABLE: SLEEP  
DEPRIVATION EXPERIMENT 

(REPEATED MEASURES)

SOURCE SS df MS F SOURCE SS df MS F

Between 54 2 27 7.36* Between 54 2 27 27**
Within 22 6  3.67  Within 22 6

  Subject 18 2
  Error  4 4  1

Total 76 8 Total 76 8

* Significant at the .05 level.    ** Significant at the .01 level.
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2

P  is referred to as a partial η2, or more technically as a partial squared curvilinear 
correlation, because the effects of individual differences have been eliminated from 
the reduced or partial total variance. This adjustment reflects the fact that, when mea-
sures are repeated, the value of η2 for the treatment variable can’t possibly account for 
that portion of total variability attributable to individual differences, that is, SSsubject.

Substituting in values for the SS terms from the ANOVA summary in Table 17.5, 
we have

2 54 54
.93

76  18 58p

When compared with guidelines for effect sizes in Table 17.7, this estimated effect size 
of .93 would be spectacularly large, indicating that .93, or 93 percent, of total variance 
in aggression scores (excluding variance due to individual differences) is explained 
by differences between 0, 24, and 48 hours of sleep deprivation, while the remain-
ing 7 percent of the variance in aggression scores is not explained by hours of sleep 
deprivation. This very large value for 2

p reflects a number of factors. Identical sets 
of fictitious data (used for both the independent-measures and the repeated-measures 
experiments) were selected to dramatize the effects of sleep deprivation. Furthermore, 
although based on the same data, the value of .93 for the repeated-measures estimate, 

2

p, exceeds that of .71 for the independent-measures estimate, η2, essentially because

of the smaller denominator term in 2

p.

Progress Check *17.3 Since the null hypothesis was rejected in Question 17.2, estimate 
effect size with 2

p.

Answer on page 446.

17 .9  MULT IPLE  COMPARISONS

Rejection of the overall null hypothesis indicates only that not all population means 
are equal. To pinpoint the one or more differences between pairs of population means 
that contribute to the rejection of the overall null hypothesis, use a multiple comparison 
test, such as Tukey’s HSD test. Tukey’s test supplies a single critical value, HSD, for 
evaluating the significance of each difference for every possible pair of means. The 
value of HSD can be calculated using the following formula:

17 .8  EST IMAT ING  EFFECT  S I ZE

Whenever F is statistically significant in a repeated-measures ANOVA, a variation 
on the squared curvilinear correlation coefficient, η2, can be used to estimate effect 
size. The formula for a repeated-measures η2 differs from that for an independent-
measures η2 (Formula 16.8 on page 309) because SStotal − SSsubject replaces SStotal in the 
denominator.

PROPORTION OF EXPLAINED VARIANCE (REPEATED MEASURES)

 

2

2

     

 

( )
between between

p
subject between subject error subjectt

between
p

between error

otal

SS SS
SS SS SS SS SS SS

SS
SS SS  

(17.6)

Partial Squared Curvilinear  

Correlation ( )2
p  

The proportion of explained 

variance in the dependent vari-

able after one or more sources 

have been eliminated from the 

total variance.

Table 17.7
GUIDELINES FOR  

( )2
p

( )2
p EFFECT

.01 Small

.09 Medium

.25 Large

TUKEY’S HSD TEST (REPEATED MEASURES)

 
e rrroMSHSD q n  

(17.7)
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where HSD is the positive critical value for any difference between two means; q is a 
value obtained from Table G in Appendix C; MSerror is the error term for the repeated-
measures ANOVA; and n is the sample size in each treatment group (which in repeated-
measures ANOVA is simply the number of subjects).

To obtain a value for q at the .05 level (light numbers) in Table G, find the cell inter-
sected by k, the number of repeated measures or treatment levels, and dferror, the degrees 
of freedom for the error term in the repeated-measures ANOVA. Given values of k = 3  
and dferror = 4 for the sleep deprivation experiment, the intersected cell shows a value 
of 5.04 for q at the .05 level. Substituting q = 5.04, MSerror = 1, and n = 3 in Equation 
17.7, we can solve for HSD as follows:

15.04 5.04 (.57) 2.87
3

errorMSHSD q n

I n te rp re ta t i on

Table  17.8 shows absolute differences of either 3, 6, or 3 for the three pairs of 
means in the repeated-measures experiment. (These absolute differences are the same 
as those for the three pairs of means for the one-factor ANOVA shown in Table 16.8 
on page 313.) In the case of the repeated-measures experiment, however, all three 
of the observed differences exceed the critical HSD value of 2.87. We can conclude, 
therefore, that the population mean aggression scores become progressively higher as 
the sleep deprivation period increases from 0 to 24 and then to 48 hours. Because of its 
smaller error term, the repeated-measures ANOVA resulted in significant differences 
for all three comparisons, while the one-factor ANOVA resulted in a significant differ-
ence for only the one most extreme comparison (between 0 and 48 hours of depriva-
tion). In practice, of course, there is no guarantee that the beneficial effects of repeated 
measures will always be as dramatic.

Es t imat ing  E f fec t  S i ze

The effect size for any significant difference between pairs of means can be esti-
mated with Cohen’s d, as adapted from Equation 14.5 on page 262, that is,

Table 17.8
ALL POSSIBLE ABSOLUTE DIFFERENCES 

BETWEEN PAIRS OF MEANS

SLEEP-DEPRIVATION EXPERIMENT:   
REPEATED MEASURES

0
2X

24
5X

48
8X

0
2X — 3* 6*

24
5X — 3*

48
8X —

* Significant at the .05 level.

STANDARDIZED EFFECT SIZE, COHEN’S d  
(ADAPTED FOR REPEATED-MEASURES ANOVA)

 

d X X

s

X X
MSp error

1 2

2

1 2

 
(17.8)
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where d is an estimate of the standardized effect size; 1
X  and 2

X  is the pair of signifi-

cantly different means; and errorMS , the square root of the error mean square for the 

repeated-measures ANOVA, represents the sample standard deviation.
To estimate the standardized effect size for the one significant difference of 6 

between means for 0 and 48 hours of sleep deprivation, enter 
48

X  − 
0

6X  and MSerror = 1  
in Equation 17.8 and solve for d:

48 0
, )

6
( 6

1
d X X

which is an extremely large effect, equivalent to six standard deviations. (According to 
Cohen’s guidelines for d, described on page 262, effect size is large if d is more than 
0.8.)

To estimate the standardized effect size for the two significant differences of 3 
between means for 0 and 24 hours, and between means for 24 and 48 hours of sleep 
deprivation, enter 3 and MSerror = 1 in Equation 17.8 and solve for d:

24 0 48 24
, ) ( , )

3
( 3

1
d X X d X X

which is a very large effect, equivalent to three standard deviations.
These three large values for d aren’t surprising, given the spectacularly large 

effect size of 
2
p

  = .93 for the proportion of explained variance attributable to dif-
ferences between all three groups in the sleep deprivation experiment with repeated 
measures.

Progress Check *17.4 (a) Since the null hypothesis was rejected in Question 17.2, use 
Tukey’s HSD test to identify which pairs of population means differ significantly at the .05 
level, given that the means for silence, white noise, and rock equal 7.17, 5.00, and 2.33, 
respectively.

(b) Use Cohen’s d to estimate the effect size for any statistically significant pairs of 
observed means.

(c) Interpret the results.

      Answers on page 446.

17 .10  REPORTS  IN  THE  L ITERATURE

Literature reports are usually limited to a review of relevant descriptive statistics, such 
as the group means, and one or more general conclusions. A parenthetical statement 
summarizes the statistical test and estimates effect size. Also reported are the results 
of any multiple comparison tests. An investigator might report the sleep deprivation 
experiment as follows:

Mean aggression scores of 2, 5, and 8 were obtained when the same subjects 
were exposed to 0, 24, and 48 hours of sleep deprivation, respectively. There 
is evidence that, on average, aggression scores increase with hours of sleep 
deprivation [F (2, 4) = 27, MSE = 1.0, p < .01, 

2
p = .93]. According to Tukey’s 

HSD test, all pairs of differences were significant (HSD = 2.87, p < .05 with  
3 ≤ d ≤ 6).

The test result has an approximate p-value of less than .01, since the observed F of 
27 is larger than the critical F of 18.00 for the .01 level of significance in Table C in 
Appendix C. The 2

p value of .93 is the estimated effect size expressed as a proportion 
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of total variance with individual differences excluded. All three pairs of means differ 
significantly, and the standardized estimate of effect size, d, equals between three and 
six standard deviations.

17 .11  ASSUMPT IONS

In addition to the usual ANOVA assumptions about normality and equal variances, 
repeated-measures ANOVA also assumes sphericity, the assumption of equality among 
all possible population correlation coefficients. For example, in the sleep deprivation 
experiment, it assumes equality among the three correlations for aggression scores 
between 0 and 24, between 0 and 48, and between 24 and 48 hours. Fortunately, the 
accuracy of the F test is not greatly affected unless this assumption is seriously vio-
lated. If you think it might be seriously violated—possibly because one or more levels 
of the independent variable appear to radically alter the typical ranking among the 
scores of individual subjects—refer to more advanced stat books.*

Summary

Repeated-measures ANOVA tests for differences between population means when 
measures for all populations are based on the same subjects. Because measures are 
repeated, an important source of variability caused by individual differences can be 
eliminated from the main analysis.

Two potential complications are associated with repeated measures. First, if perfor-
mance in one condition might be contaminated by the subject’s prior experience with 
other conditions, do not use repeated measures. Second, use an extension of counter-
balancing to eliminate any potential bias in favor of one condition merely because of 
the order in which it was experienced.

Whenever F is statistically significant, estimate effect size by calculating 2
p, where 

variability due to individual differences has been excluded from the total variance.
To pinpoint differences between specific pairs of population means that contribute  

to the rejection of the overall null hypothesis, use Tukey’s HSD test for multiple  
comparisons.

Whenever the HSD test is significant, use Cohen’s d to estimate effect size.
In addition to the customary ANOVA assumptions about normality and equal vari-

ances, repeated-measures ANOVA assumes sphericity, the assumption of equality 
among all possible correlations between populations. You need be concerned about 
these assumptions only in the unlikely event of serious violations.

Important Terms

Repeated-measures ANOVA

Partial squared curvilinear correlation ( )2
p

*For more information about alternative methods when the sphericity assumption is suspect, 

see Chapter 14 in Howell, D. C. (2013). Statistical Methods for Psychology (8th ed.). Belmont, 

CA: Wadsworth.
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Key Equations

F RATIO

F
MS

MS

MS
SS

df

SS SS

between

error

error
error

error

total bet

where

wween subject error

total between subject error

SS SS

df df df df

REV IEW QUEST IONS

 *17.5 Capitalizing on the additivity of SS and df terms, complete the following ANOVA 
 summary table, assuming repeated measures for 12 subjects across four levels of 
the independent variable and the .05 level of significance.

SOURCE SS df MS F
Between — — — —
Within 8800 —
  Subject 5500 —
  Error — — —
Total 10000 —

Answers on page 446.

 *17.6 Return to the study first described in Question 16.5 on page 308, where a psychologist 
tests whether shy college students initiate more eye contacts with strangers because 
of training sessions in assertive behavior. Use the same data, but now assume that 
eight subjects, coded as A, B, . . . G, H, are tested repeatedly after zero, one, two, and 
three training sessions. (Incidentally, since the psychologist is interested in any learn-
ing or sequential effect, it would not make sense—indeed, it’s impossible, given the 
sequential nature of the independent variable—to counterbalance the four sessions.) 
The results are expressed as the observed number of eye contacts:

WORKSHOP SESSIONS
SUBJECT ZERO ONE TWO THREE TSUBJECT

A 1 2 4 7 14
B 0 1 2 6 9
C 0 2 3 6 11
D 2 4 6 7 19
E 3 4 7 9 23
F 4 6 8 10 28
G 2 3 5 8 18
H 1 3 5 7  16

G = 138
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 (a) Summarize the results in an ANOVA table. If you did Review Question 16.11 and 
saved your results, you can use the known values for SSbetween, SSwithin, and SStotal to 
short-circuit computations.

 (b) If appropriate, estimate the effect sizes and use Tukey’s HSD test.

 17.8 While analyzing data, an investigator treats each score as if it were contributed by a 
different subject even though, in fact, scores were repeated measures. What effect, 
if any, would this mistake probably have on the F test if the null hypothesis were

 (a) true?

 (b) false?

 17.9 Typically, variability due to individual differences is appreciable. If the opposite were 
true, that is, if there were little or no variability due to individual differences, would it 
make sense to use repeated measures? Explain your answer.

 (a) Summarize the results with an ANOVA table. Short-circuit computational work by 
using the results in Question 16.5 for the SS terms, that is, SSbetween = 154.12,  
SSwithin = 132.75, and SStotal = 286.87.

 (b) Whenever appropriate, estimate effect sizes with p
2 and with d, and conduct Tukey’s 

HSD test.

 (c) Compare these results with repeated measures with those in Question 16.5 for inde-
pendent samples.

 Answers on page 447.

 17.7  Recall the experiment described in Review Question 16.11 on page 320, where 
errors on a driving simulator were obtained for subjects whose orange juice had 
been laced with controlled amounts of vodka. Now assume that repeated measures 
are taken across all five conditions for each of five subjects. (Assume that no linger-
ing effects occur because sufficient time elapses between successive tests, and no 
order bias appears because the orders of the five conditions are equalized across the 
five subjects.)

DRIVING ERRORS AS A FUNCTION OF ALCOHOL CONSUMPTION  
(OUNCES)

SUBJECT ZERO ONE TWO FOUR SIX TSUBJECT

A 1 4 6 15 20 46
B 1 3 1 6 25 36
C 3 1 2 9 10 25
D 6 7 10 17 10 50
E 4 5 7 9 9 34

T  15 20 26 56 74

ΣX = G = 191 ΣX  2 = 2371
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18
Analysis of Variance  
(Two Factors)

18.1 A TWO-FACTOR EXPERIMENT: RESPONSIBILITY IN CROWDS

18.2 THREE F TESTS

18.3 INTERACTION

18.4 DETAILS: VARIANCE ESTIMATES

18.5 DETAILS: MEAN SQUARES (MS ) AND F RATIOS

18.6 TABLE FOR THE F DISTRIBUTION

18.7 ESTIMATING EFFECT SIZE

18.8 MULTIPLE COMPARISONS

18.9 SIMPLE EFFECTS

18.10 OVERVIEW: FLOW CHART FOR TWO-FACTOR ANOVA

18.11 REPORTS IN THE LITERATURE

18.12 ASSUMPTIONS

18.13 OTHER TYPES OF ANOVA

Summary / Important Terms / Key Equations / Review Questions

Preview

Two-factor ANOVA is a most efficient design where you can analyze not only two 

factors, but also an important new source of variability caused by the interaction 

between the two factors. Interaction implies that two factors combine in an unexpected 

fashion, and if present, it can dominate the interpretation of the analysis. Everyday 

examples of interaction are the potentially fatal combination of tranquilizers and alcohol 

and, in a lighter vein, the taste clash between certain wines and cheeses.
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18 .1  A  TWO-FACTOR  EXPER IMENT:  
RESPONS IB I L ITY  IN  CROWDS

Often referred to as the “bystander effect,” do crowds affect our willingness to assume 
responsibility for the welfare of others and ourselves? For instance, does the presence 
of bystanders inhibit our reaction to potentially dangerous smoke seeping from a wall 
vent? Hoping to answer this question, a social psychologist measures any delay in a 
subject’s alarm reaction (the dependent variable) as smoke fills a waiting room occu-
pied only by the subject, plus “crowds” of either zero, two, or four associates of the 
experimenter—the first independent variable or factor—who act as regular subjects 
but, in fact, ignore the smoke.

As a second independent variable or factor, the social psychologist randomly assigns 
subjects to one of two “degrees of danger,” that is, the rate at which the smoke enters 
the room, either nondangerous (slow rate) or dangerous (rapid rate). Using this two-
factor ANOVA design, the psychologist can test not just two but three null hypotheses, 
namely, the effect on subjects’ reaction times of (1) crowd size, (2) degree of danger 
and, as a bonus, (3) the combination or interaction of crowd size and degree of danger.

For computational simplicity, assume that the social psychologist randomly assigns 
two subjects to be tested (one at a time) with crowds of either zero, two, or four people 
and either the nondangerous or dangerous conditions. The resulting six groups, each 
consisting of two subjects, represent all possible combinations of the two factors.*

Tab les  fo r  Ma in  E f fec ts  and  I n te rac t ion

Table 18.1 shows one set of possible outcomes for the two-factor study. Although, 
as indicated in Chapter 16, the actual computations in ANOVA usually are based on 
totals, preliminary interpretations can be based on either totals or means. In Table 18.1, 
the shaded numbers represent four different types of means:

1. The three column means (9, 12, 15) represent the mean reaction times for each 
crowd size when degree of danger is ignored. Any differences among these column 
means not attributable to chance are referred to as the main effect of crowd size on 
reaction time. In ANOVA, main effect always refers to the effect of a single factor, 
such as crowd size, when any other factor, such as degree of danger, is ignored.

Two-Factor ANOVA 

A more complex type of analysis 

that tests whether differences exist 

among population means catego-

rized by two factors or independent 

variables.

*The current example simulates some of the main findings from an extensive meta- analytic 

review by Fischer, P., et al. (2011). The Bystander Effect: A Meta-Analysis Review on Bystander 

Intervention in Dangerous and Non-Dangerous Emergencies. Psychological Bulletin, 137, 517–537.

Table 18.1
OUTCOME OF TWO-FACTOR EXPERIMENT 

(REACTION TIMES IN MINUTES)

CROWD SIZE

DEGREE OF DANGER ZERO TWO FOUR ROW MEAN
Dangerous 8 8 8 7 10 9 8

8 6 8
Nondangerous 9 10 15 17 24 21 16

11 19 18

Column mean  9 12 15 Grand mean = 12

Note: Shaded numbers  are means.

Main Effect 

The effect of a single factor when 

any other factor is ignored.
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2. The two row means (8, 16) represent the mean reaction times for degree of 
 danger when crowd size is ignored. Any difference between these row means 
not attributable to chance is referred to as the main effect of degree of danger on 
reaction time.

3. The mean of the reaction times for each group of two subjects yields the six 
means (8, 7, 9, 10, 17, 21) for each combination of the two factors. Often referred 
to as cell means or treatment-combination means, these means reflect not only 
the main effects for crowd size and degree of danger described earlier but, more 
importantly, any effect due to the interaction between crowd size and degree of 
danger, as described below.

4. Finally, the one mean for all three column means—or for both row means—
yields the overall or grand mean (12) for all subjects in the study.

Graphs  fo r  Ma in  E f fec ts

To preview the experimental outcomes, let’s look for obvious trends in a series of 
graphs based on Table 18.1. The slanted line in panel A of Figure 18.1 depicts the large 
differences between column means, that is, between mean reaction times for subjects, 
regardless of degree of danger, with crowds of zero, two, and four people. The rela-
tively steep slant of this line suggests that the null hypothesis for crowd size might be 
rejected. The steeper the slant is, the larger the observed differences between column 
means and the greater the suspected main effect of crowd size. On the other hand, a 
fairly level line in panel A of Figure 18.1 would have reflected the relative absence of 
any main effect due to crowd size.

The slanted line in panel B of Figure 18.1 depicts the large difference between row 
means, that is, between mean reaction times for dangerous and nondangerous condi-
tions, regardless of crowd size. The relatively steep slope of this line suggests that the 
null hypothesis for degree of danger also might be rejected; that is, there might be a 
main effect due to degree of danger.

Graph  fo r  I n te rac t ion

These preliminary conclusions about main effects must be qualified because of a 
complication due to the combined effect or interaction of crowd size and degree of 
danger on reaction time.

Interaction occurs whenever the effects of one factor on the dependent variable 
are not consistent for all values (or levels) of the second factor.

FIGURE18.1  

Graphs of outcomes of the two-factor experiment.
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Panel C of Figure 18.1 depicts the interaction between crowd size and degree of dan-
ger. The two nonparallel lines in panel C depict differences between the three cell 
means in the first row and the three cell means in the second row—that is, between the 
mean reaction times for the dangerous condition for different crowd sizes and the mean 
reaction times for the nondangerous condition for different crowd sizes. Although the 
line for the dangerous conditions remains fairly level, that for the nondangerous con-
ditions is slanted, suggesting that the reaction times for the nondangerous conditions, 
but not those for the dangerous conditions, are influenced by crowd size. Because 
the effect of crowd size is not consistent for the nondangerous and dangerous condi-
tions—portrayed by the apparent nonparallelism between the two lines in panel C of 
Figure 18.1—the null hypothesis (that there is no interaction between the two factors) 
might be rejected. Section 18.3 contains additional comments about interaction, as well 
as a more preferred definition of interaction.

Summary  o f  P re l im ina ry  I n te rp re ta t i ons

To summarize, a nonstatistical evaluation of the graphs of data for the two-factor 
experiment suggests a number of preliminary interpretations. Each of the three null 
hypotheses regarding the effects of crowd size, degree of danger, and the interaction 
of these factors might be rejected. Because of the suspected interaction, however, any 
generalizations about the main effects of one factor must be qualified in terms of spe-
cific levels of the second factor. Pending the outcome of the statistical analysis, you can 
speculate that the crowd size probably influences the reaction times for the nondanger-
ous but not the dangerous conditions. 

Progress Check *18.1 A college dietitian wishes to determine whether students prefer a 
particular pizza topping (either plain, vegetarian, salami, or everything) and one type of crust 
(either thick or thin). A total of 160 volunteers are randomly assigned to one of the eight cells in 
this two-factor experiment. After eating their assigned pizza, the 20 subjects in each cell rate 
their preference on a scale ranging from 0 (inedible) to 10 (the best). The results, in the form 
of means for cells, rows, and columns, are as follows:

MEAN PREFERENCE SCORES OR PIZZA AS A FUNCTION  
OF TOPPING AND CRUST 

TOPPING

CRUST PLAIN VEGETARIAN SALAMI EVERYTHING ROW

Thick 7.2 5.7 4.8 6.1 6.0
Thin 8.9 4.8 8.4 1.3 5.9

Column 8.1 5.3 6.6 3.7

Construct graphs for each of the three possible effects, and use this information to make pre-
liminary interpretations about pizza preferences. Ordinarily, of course, you would verify these 
speculations by performing an ANOVA—a task that cannot be performed for these data, since 
only means are supplied.

Answers on page 448.

18 .2  THREE  F  TESTS

As suggested in Figure 18.2, F ratios in both a one- and a two-factor ANOVA always 
consist of a numerator (shaded) that measures some aspect of variability between 
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FIGURE 18.2  

Sources of variability and F ratios in one- and two-factor ANOVAs.

Interaction
Between

rows
Between
columns

F =
Between groups

Within groups

Fcolumn =
Between columns

Within cells

Frow =
Between rows

Within cells

Finteraction =
Interaction

Within cells

Between cells Within cells

Total variability

Between
groups

Within
groups

Total variability

ONE-FACTOR ANOVA

TWO-FACTOR ANOVA

groups or cells and a denominator that measures variability within groups or cells. In a 
one-factor ANOVA, a single null hypothesis is tested with one F ratio.

In two-factor ANOVA, three different null hypotheses are tested, one at a time, 
with three F ratios: Fcolumn, Frow, and Finteraction.

The numerator of each of these three F ratios reflects a different aspect of variability 
between cells: variability between columns (crowd size), variability between rows 
(degree of danger), and interaction—any remaining variability between cells not 
attributable to either variability between columns (crowd size) or rows (degree of 
danger ).

The shaded numerator terms for the three F ratios in the bottom panel of Figure 18.2 
estimate random error and, if present, a treatment effect (for subjects treated differently 
by the investigator). The denominator term always estimates only random error (for 
subjects treated similarly in the same cell).

In practice, a sufficiently large F value is viewed as rare, given that the null hypoth-
esis is true, and therefore, it leads to the rejection of the null hypothesis. Otherwise, the 
null hypothesis is retained.
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Tes t  Resu l t s  f o r  Two-Fac to r  Expe r iment

As indicated in the boxed summary for the hypothesis test for a smoke alarm experi-
ment, test results agree with our preliminary interpretations based on graphs. Each of 
the three null hypotheses is rejected at the .05 level of significance. The significant main 
effects indicate that crowd size and degree of danger, in turn, influence the reaction 
times of subjects to smoke. The significant interaction, however, indicates that the effect 
of crowd size on reaction times differs for nondangerous and dangerous conditions.

18 .3  INTERACT ION

Interaction emerges as the most striking feature of a two-factor ANOVA. As noted 
previously, two factors interact if the effects of one factor on the dependent variable 
are not consistent for all of the levels of a second factor. More generally, when two 
factors are combined, something happens that represents more than a mere composite 
of their separate effects.

Supp l ies  Va luab le  I n fo rmat ion

Rather than being a complication to be avoided, an interaction often highlights per-
tinent issues for further study. For example, the interaction between crowd size and 
degree of danger might encourage the exploration, possibly by interviewing partici-
pants, about their reactions to various crowd sizes and degrees of danger. In the pro-
cess, much might be learned about why some people in groups assume or fail to assume 
social responsibility.

Othe r  Examp les

The combined effect of crowd size and degree of danger could have differed from 
that described in panel C of Figure  18.1. Examples of some other possible effects 
are shown in Figure 18.3. The two top panels in Figure 18.3 describe outcomes that, 
because of their consistency, would cause the retention of the null hypothesis for inter-
action. The two bottom panels in Figure 18.3 describe outcomes that, because of their 
inconsistency, probably would cause the rejection of the null hypothesis for interaction.

S imp le  E f fec ts

The notion of interaction can be clarified further by viewing each line in Figure 18.3 
as a simple effect. A simple effect represents the effect of one factor on the dependent 
variable at a single level of the second factor. Thus, in panel A, there are two simple 
effects of crowd size, one for nondangerous conditions and one for dangerous condi-
tions, and both simple effects are consistent, showing an increase in mean reaction 
times with larger crowd sizes. Accordingly, the main effect of crowd size can be inter-
preted without referring to its two simple effects.

I ncons i s ten t  S imp le  E f fec ts

In panel D, on the other hand, the two simple effects of crowd size, one for nondan-
gerous conditions and one for dangerous conditions, clearly are inconsistent; the simple 
effect of crowd size for dangerous conditions shows a decrease in mean reaction times 
with larger crowd sizes, while the simple effect of crowd size for nondangerous condi-
tions shows just the opposite—an increase in mean reaction times with larger crowd 
sizes. Accordingly, the main effect of crowd size—assuming one exists— cannot be 
interpreted without referring to its radically different simple effects.

Simple Effect 

The effect of one factor on the 

dependent variable at a single level 

of another factor.
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HYPOTHESIS TEST SUMMARY
Two-Factor ANOVA (Smoke Alarm Experiment)

Research Problem 

Do crowd size and degree of danger, as well as the interaction of these two 
factors, influence the subjects’ mean reaction times to potentially dangerous 
smoke?

Statistical Hypotheses 

0

0 2 4

0

0

1 0

1 0

: no main effect due to columns or crowd size

(or ).

: no main effect due to rows or degree of danger

(or ).

: no interaction.

: is not true.

(Same accommodates each .)

dangerous nondangerous

H

H

H

H H

H H

Decision Rule 

Reject H0 at the .05 level of significance if Fcolumn or Finteraction  ≥ 5.14 (from 
Table C in Appendix C, given 2 and 6 degrees of  freedom) and if Frow ≥ 5.99 
(given 1 and 6 degrees of freedom).

Calculations 

6.75

36.02

5.25

column

row

interaction

F

F

F

(See Tables 18.3 and 18.6 for more details.)

Decision 

Reject all three null hypotheses at the .05 level of significance because 
Fcolumn = 6.75 exceeds 5.14; Frow = 36.02 exceeds 5.99; and Finteraction = 5.25 
exceeds 5.14.

Interpretation 

Both crowd size and degree of danger influence the subjects’ mean  
reaction times to smoke. The interaction indicates that the influence of 
crowd size depends on the degree of danger.  It appears that the mean 
 reaction times increase with crowd size for nondangerous but not for 
 dangerous conditions.
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S imp le  E f fec ts  and  I n te rac t ion

In Figure 18.3, no interaction is present in panels A and B because their respective 
simple effects are consistent, as suggested by the parallel lines. Interactions could be 
present in panels C and D because their respective simple effects are inconsistent, as 
suggested by the diverging or crossed lines. Given the present perspective, interaction 
can be viewed as the product of inconsistent simple effects.

Progress Check *18.2 A recent example of interaction from the psychological literature 
is the tendency of college students, when assigning prison sentences on the basis of photos 
of “convicted defendants,” to judge attractive swindlers more harshly than unattractive swin-
dlers but to judge attractive robbers less harshly than unattractive robbers.

 (a) Construct a data (or line) graph showing this interaction. As is customary, identify 
the vertical axis with the dependent variable, the mean prison sentence assigned by 
students. For the sake of uniformity, identify the two points along the horizontal axis 
with swindlers and robbers, and identify the two lines inside the graph with attractive 
and unattractive defendants.

 (b) Assume that, in fact, there is no interaction. Instead, independently of their degree 
of attractiveness, swindlers are judged more harshly than robbers, and, indepen-
dently of their crime, unattractive defendants are judged more harshly than attrac-
tive defendants. Using the same identifications as in the previous question, construct 
a data graph that depicts this result.

Answers on page 448.

Interaction 

The product of inconsistent  

simple effects.

FIGURE 18.3  

Some possible outcomes (two-factor experiment).
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Desc r ib ing  I n te rac t ions

The original interaction between crowd size and degree of danger could have 
been described in two different ways. First, we could have portrayed the inconsistent 
simple effects of crowd size for nondangerous and dangerous conditions by showing 
panel A of Figure 18.4 (originally shown in panel C of Figure 18.1). Alternately, we 
could have portrayed the inconsistent simple effects of degree of danger for crowds 
of zero, two, and four people by showing panel B of Figure 18.4. Although different, 
the configurations in both panels A and B suggest essentially the same interpretation: 
Crowd size influences reaction times for nondangerous but not for dangerous condi-
tions.  In cases where one perspective seems to make as much sense as another, it’s 
customary to plot along the horizontal axis the factor with the larger number of levels, 
as in panel A.

18 .4  DETA ILS :  VAR IANCE  EST IMATES

Each of the three F ratios in a two-factor ANOVA is based on a ratio involving two 
variance estimates: a mean square in the numerator that reflects random error plus, if 
present, any specific treatment effect and a mean square in the denominator that reflects 
only random error. Before using these mean squares (or variance estimates), we must 
calculate their sums of squares and their degrees of freedom.

Sums  o f  Squa res  (De f in i t i on  Fo rmu las )

Ultimately, the total sum of squares, SStotal, will be divided among its various com-
ponent sums of squares, that is,

FIGURE 18.4  

Two versions of the same interaction.  
Note: Shaded numbers represent group means from Table 18.1.
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SUMS OF SQUARES (TWO FACTOR)

 total column row interaction withinSS SS SS SS SS  (18.1)
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The computation of the various SS terms can be viewed as a two-step effort.

1. The two factors and their interaction are ignored, and we calculate the first three 
sum of squares terms as if the data originated from a one-factor ANOVA where 
total variability is partitioned into two components: variability between cells and 
variability within cells, since

total between withinSS SS SS

 Variability within cells, SSwithin, which is often referred to as SSerror, will serve as 
the sum of squares portion of the error mean square in the denominator of each 
of the three F ratios.

 ■ As always, the total sum of squares, SStotal, equals the sum of squared devia-
tions of all scores, X, about the grand mean for all scores, ,grandX  that is, 

SS X Xtotal grand( ) .2

 ■ The between-cells (or treatment) sum of squares, SSbetween, equals the sum of 
squared deviations of all cell (or treatment) means, ,cellX  about the grand mean,

 grandX . Expressed symbolically, 
2

,celbet lween grandn X XSS  where n, the 

sample size in each cell, adjusts for the fact that the deviation cell grandX X  is 

the same for every score in its cell.

 ■ The within-cells (or error) sum of squares, SSwithin, equals the sum of squared 
deviations of all scores, X, about their respective cell means, ,cellX  that is,

 
2

within cellSS X X . Essentially, this expression requires that the sum of 

squares within each cell be added across all cells as the first step toward a 

pooled variance estimate of random error.

2. Variability between cells, SSbetween, is partitioned into three additional sums of 
squares—SScolumn, SSrow, and SSinteraction—that reflect identifiable sources of treat-
ment variability in the two-factor ANOVA, since

 between column row interactionSS SS SS SS

 ■ The between-columns sum of squares, SScolumn, equals the sum of squared  
deviations of column means, ,columnX  about the grand mean, grandX . Expressed 

 symbolically, 2( )columcolumn n grandX XSS rn , where r equals the number of 
rows, n equals the sample size in each cell, and rn equals the total sample size 
for each column. The product rn adjusts for the fact that the mean deviation, 

column grandX X , is the same for every score in its column.

 ■ The between-rows sum of squares, SSrow, equals the sum of squared deviations of 
row means, rowX , about the grand mean, grandX . Expressed symbolically, 

 
2( )rowrow grandSS c Xn X , where c equals the number of columns and cn 

equals the total sample size in each row. The product cn adjusts for the fact that 

the mean deviation, row grandX X , is the same for every score in its row.

 ■ The interaction sum of squares, SSinteraction, equals the variability between cells, 
SSbetween, after the removal of variability between columns, SScolumn, and variability 
between rows, SSrow, that is,

( )interaction between column rowSS SS SS SS

 Although SSinteraction could be expressed more directly by expanding these three SS 
terms, the result tends to be more cumbersome than enlightening.

Witte11e_c18.indd   348 11/18/2016   6:22:01 PM



 18.4 DETAILS:  VARIANCE ESTIMATES  349

Table 18.2
WORD, DEFINITION, AND COMPUTATION FORMULAS FOR SS TERMS 

(TWO-FACTOR ANOVA)

For the total sums of squares,
SStotal the sum of squared deviations for raw scores about the grand mmean

=

where is the grand total and

X X

GX
G

N

grand

2

2
2

SStotal , NN is its sample size

For the between-cells sum of squares,

2 2

2
the sum of squared deviations for cell means about the grand mean

, where is the cell total and is its sample sizeof each cell

between

cell grand

c l
cell

elT

SS

n X X

T n
G

n N
betweenSS

For the within-cells sum of squares,

2

2
2

the sum of squared deviations of raw scores about their respective cell means

, where is the cell total and is the sample sizeof each cell

within

cell

cell
cell

T
X

S

X

T n
n

S

X

withinSS

For the between-columns sum of squares,

2 2

2
the sum of squared column means about the grand mean

where is the column total, is the number
, of rows, and is th sample size of each column

column

column grand

column columnT G

SS

rn X X

T r
rnrn N

columnSS
 

For the between-rows sum of squares,

2

2 2

the sum of squared of raw means about the grand mean

where is the row total, is the number of,
columns, and is the sample size of each row

row

row gran

w

d

rowroT G

cn

SS

cn X X

T c
cnN

rowSS

For the interaction sum of squares,

( )between columns rowSS SS SSinteractionSS

Sums  o f  Squa res  (Computa t ion  Fo rmu las )

Table 18.2 shows the more efficient, computation formulas, where totals replace 
means. Notice the highly predictable computational pattern first described in  Section 
16.4. Each entry is squared, and each total, whether for a column, a row, a cell, or the 
grand total, is then divided by its respective sample size. Table  18.3 illustrates the 
application of these formulas to the data for the two-factor experiment.
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Table 18.3
CALCULATION OF SS TERMS (TWO-FACTOR ANOVA)

A. COMPUTATIONAL SEQUENCE
Find (and circle) each cell total (1).
Find each column and row total and also the grand total (2)
Substitute numbers into computational formula (3) and solve for SStotal

Substitute numbers into computational formula (4) and solve for SSbetween

Substitute numbers into computational formula (5) and solve for SSwithin

Substitute numbers into computational formula (6) and solve for SScolumn

Substitute numbers into computational formula (7) and solve for SSrow

Substitute numbers into formula (8) and solve for SSinteraction

B. DATA AND COMPUTATIONS
Crowd Size Degree of Danger

1 2
Row Totals

ZERO TWO FOUR
Dangerous 8 16  8 14 10  18

  8
48

8  6
Nondangerous 9 20 15 34 24  

42
96

11 19 18

2 Column Totals  36 48  60 2 Grand Total = 144

   

2
2

2
2 2 2 (144)

(8) (8) 24 (18) 2080 1728 352
12

total

G
SS X

N

   

2 2

2 2 2 2 2 2 2(16) (20) (14) (34) (18) (42) (144)
2048 1728 320

2 2 2 2 2 2 12

cell
between

T G
SS

n N

   

2
2 cell

within

T
SS X

n

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

8 8 18
16

2

20

2

14

2

34

2

182 2 2
2 2 2 2 2

22

42

2
2080 2048 32

2( )

   

2 2

2 2 2 2(36) (48) (60) (144)
1800 1728 72

4 4 4 12

column
column

T G
SS

rn N

   

2 2

2 2 2(48) (96) (144)
1920 1728 192

6 6 12

row
row

T G
SS

cn N

   

( )

320 (72 192) 56

interaction between column rowSS SS SS SS

3

4

5

6

7

8

Witte11e_c18.indd   350 11/18/2016   6:22:01 PM



 18.5 DETAILS:  MEAN SQUARES (MS)  AND F RATIOS  351

Degrees  o f  F reedom (d f )

The number of degrees of freedom must be determined for each SS term in a two-
factor ANOVA, and for convenience, the various df formulas are listed in Table 18.4. 
The (c − 1)(r − 1) degrees of freedom for dfinteraction reflect the fact that, from the per-
spective of degrees of freedom, the original matrix with (c)(r) cells shrinks to (c − 1)
(r − 1) cells for dfinteraction. One row and one column of cell totals in the original matrix 
are not free to vary because of the restriction that all cell totals in each column and all 
cell totals in each row must sum to fixed totals in the margins (associated with column 
and row factors.) The N − (c)(r) degrees of freedom for dfwithin reflect the fact that the N 
scores within all cells must sum to the fixed totals in their respective cells, causing one 
degree of freedom to be lost in each of the (c)(r) cells.

The df values for the present study are:

1 12 1 11

1 3 1 2

1 2 1 1

( 1)( 1) (3 1)(2 1) 2

( )( ) 12 (3)(2) 6

total

column

row

interaction

within

df N

df c

df r

df c r

df N c r

Check  fo r  Accu racy

Recall the general rule that the degrees of freedom for SStotal equal the combined 
degrees of freedom for all remaining SS terms, that is,

Table 18.4
FORMULAS FOR df TERMS: TWO-FACTOR ANOVA

1, that is, the number of all scores 1

1, that is, the number of columns 1

1, that is, the number of rows 1

( 1)( 1), that is, the product of and

total

column

row

interaction row column

wit

df N

df c

df r

df c r df df

df ( )( ), that is, the number of all scores the number of cellshin N c r

DEGREES OF FREEDOM (TWO FACTOR)

 total column row interaction withindf df df df df  (18.2)

This formula can be used to verify that the correct number of degrees of freedom has 
been assigned to each SS term.

18 .5  DETA ILS :  MEAN  SQUARES  ( MS )  AND  F  RAT IOS

Having found values for the various SS terms and their df, we can determine values for 
the corresponding MS terms and then calculate the three F ratios using the formulas 
in Table 18.5. Notice that MSwithin appears in the denominator of each of these three 
F ratios. MSwithin is based on the variability among scores of subjects who are treated 
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similarly within each cell, pooled across all cells. Regardless of whether any treatment 
effect is present, it measures only random error.

The ANOVA results for the two-factor study are summarized in Table 18.6. The 
shaded numbers (which ordinarily don’t appear in ANOVA summary tables) indicate 
the origin of each MS term and of each F.

Othe r  Labe l s

Other labels also might have appeared in Table 18.6. For instance, “Column” and 
“Row” might have been replaced by descriptions of the treatment variables, in this 
case, “Crowd Size” and “Degree of Danger.” Similarly, “Interaction” might have been 
replaced by “Crowd Size  Degree of Danger,” by “Crowd Size * Degree of Danger,” 
or by some abbreviation, such as “CS  DD,” and “Within” might have been replaced 
by “Error.”

Table 18.5
FORMULAS FOR MEAN SQUARES (MS ) AND F RATIOS

SOURCE MS F

Column colum
colum

n

column

n

SS

df
MS column

column

within

MS
F

MS

Row ro
r

w
ow

row

SS

df
MS row

within

row

MS

MS
F

Interaction interactio
interacti

n

inte

on

raction

SS

df
MS interaction

interacti

within

on

MS

MS
F

Within withi
withi

n

within

n

SS

df
MS

Table 18.6
ANOVA TABLE (TWO-FACTOR EXPERIMENT)

SOURCE SS df MS F

Column 72 2
72

2
36

36

5.33
6.75*

Row 192 1
192

1
192

192

5.33
36.02*

Interaction 56 2
56

2
28

28

5.33
5.25*

Within 32 6
32

6 5.33

Total 352 11

* Significant at the .05 level.
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18 .6  TABLE  FOR  THE  F  D ISTR IBUT ION

Each of the three F ratios in Table 18.6 exceeds its respective critical F ratio. To 
obtain critical F ratios from the F sampling distribution, refer to Table C in Appendix 
C. Follow the usual procedure, described in Section 16.6, to verify that when 2 and 
6 degrees of freedom are associated with Fcolumn and Finteraction, the critical F equals 
5.14, and that when 1 and 6 degrees of freedom are associated with Frow, the critical 
F equals 5.99.

Progress Check *18.3 A school psychologist wishes to determine the effect of TV vio-
lence on disruptive behavior of first graders in the classroom. Two first graders are randomly 
assigned to each of the various combinations of the two factors: the type of violent TV program 
(either cartoon or real life) and the amount of viewing time (either 0, 1, 2, or 3 hours). The sub-
jects are then observed in a controlled classroom setting and assigned a score, reflecting the 
total number of disruptive class behaviors displayed during the test period.

AGGRESSION SCORES OF FIRST GRADERS
VIEWING TIME (HOURS)

TYPE OF PROGRAM 0 1 2 3
Cartoon 0,1 1,0 3,5 6,9
Real life 0,0 1,1 6,2 6,10

 (a) Test the various null hypotheses at the .05 level of significance.

 (b) Summarize the results with an ANOVA table. Save the ANOVA summary table for use 
in subsequent questions.

 Answers on page 448.

18 .7  EST IMAT ING  EFFECT  S I ZE

In the previous chapter, a version of the squared curvilinear correlation, p
2, was used 

to estimate effect size after variance due to individual differences had been removed. 
Essentially the same type of analysis can be conducted for each significant F in a two-
factor ANOVA. Each p

2 estimates the proportion of the total variance attributable to 
either one of the two factors or to the interaction—after excluding from the total known 
amounts of variance attributable to the remaining treatment components.

In each case, p
2 is calculated by dividing the appropriate sum of squares (either 

SScolumn, SSrow, or SSinteraction) by the appropriately reduced total sum of squares, that is,

PROPORTION OF EXPLAINED VARIANCE (TWO-FACTOR ANOVA)

 

2

2

2

(column)

(row)

(interaction)

column column
p

total row interaction column within

row
p

row within

interaction
p

interaction within

SS SS

SS SS SS SS SS

SS

SS SS

SS

SS SS  

(18.3)

Witte11e_c18.indd   353 11/18/2016   6:22:01 PM



354 ANALYSIS OF VARIANCE (TWO FACTORS) 

where each p
2 is referred to as a partial η2 for that component because the effects of 

the other two treatment components have been eliminated from the reduced or partial 
total variance.

Substituting values for the SS terms from Table 18.6, we have

2

2

2

72
(column) .69

72 32

192
(row) .86

192 32

56
(interaction) .64

56 32

p

p

p

All three of these estimates would be considered spectacularly large since, according to 

guidelines derived from Cohen, the estimated effect for any factor or interaction is small 

if p
2 approximates .01; medium if p

2 approximates .09; and large if p
2 approximates .25 

or more. For instance, the value of .86 for p
2(row) indicates that .86, or 86 percent, of total 

variance in reaction times (excluding variance due to crowd size and the interaction) is 

explained by differences between nondangerous and dangerous conditions, while only the 

remaining 14 percent of the variance in reaction times is not explained by degree of danger.

Progress Check *18.4 Referring to the ANOVA summary table in your answer to Question 
18.3, estimate the effect size for any significant F with p

2.

Answer on page 449.

18 .8  MULT IPLE  COMPARISONS

Tukey’s HSD test for multiple comparisons can be used to pinpoint important differ-
ences between pairs of column or row means whenever the corresponding main effects 
are statistically significant and interpretations of these main effects are not compro-
mised by any inconsistencies associated with a statistically significant interaction.

To determine HSD, use the following expression:

TUKEY’S HSD TEST (TWO-FACTOR ANOVA)

 

withinMS
HSD q

n  
(18.4)

where HSD is the positive critical value for any difference between two column or row 
means; q is a value obtained from Table G in Appendix C; MSwithin is the mean square 
for within-cells variability in the two-factor ANOVA; and, if pairs of column means 
are being compared, n is rn, the sample size for the entire column, or if pairs of row 
means are being compared, n is cn, the sample size for an entire row. To determine the 
value of q at the .05 or .01 level (light or dark numbers, respectively) in Table G, find 
the cell intersected by c or r (depending on whether column or row means are being 
compared) and by dfwithin. The dfwithin is the number of degrees of freedom for within-
group variability, N  (c) (r), which equals the total number of scores in the two-factor 
ANOVA, N, minus the total number of cells, (c) (r).

In the smoke alarm experiment, Tukey’s HSD test isn’t conducted for the one sig-
nificant main effect, crowd size, with more than two group means because of the pres-
ence of a significant interaction that compromises any interpretation of the main effect.
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Progress Check *18.5 In Question 18.3, the F for the interaction isn’t significant, but F for 
one of the main effects, Viewing Time, is significant. Using the .05 level, calculate the critical 
value for Tukey’s HSD ; evaluate the significance of each possible mean difference for Viewing 
Time; and interpret the results.

Answers on page 449.

18 .9  S IMPLE  EFFECTS

Whenever the interaction is statistically significant, as in the two-factor smoke alarm 
experiment, we can conduct new Fse tests, where the se subscript stands for “simple 
effect,” to identify the inconsistencies among simple effects that produce the interac-
tion. These new tests require that, by ignoring the second factor, the original two-factor 
ANOVA be transformed into several one-factor or simple-effect ANOVAs. Essentially, 
the Fse test for simple effects tests the effect of one factor on the dependent variable at a 
single level of another factor. Table 18.7 shows how the totals for the original two-factor 
experiment can be viewed as two simple effects for crowd size (corresponding to each 
one of the two rows in the original two-factor matrix) and three simple effects for degree 
of danger (corresponding to each of the three columns). Inconsistencies among a set of 
simple effects usually are associated with a mixture of both significant and nonsignificant 
Fse tests for that set of simple effects. Among the two simple (row) effects for crowd size, 
the Fse test is nonsignificant (ns) for the dangerous condition but significant (p < .01) for 
the nondangerous condition, suggesting that reaction times increase with larger crowd 
sizes for nondangerous but not for dangerous conditions. Essentially the same conclu-
sion is suggested by the other set of three simple effects. Among these simple (column) 
effects for degree of danger, the Fse test for crowd sizes of zero is nonsignificant (ns), 
but it is significant (p < .01) for crowd sizes of two and four, suggesting that the reac-
tion times for nondangerous conditions exceed those for dangerous conditions for crowd 
sizes of two and four but not for crowd sizes of zero. Ordinarily, you needn’t test both 
sets of simple effects, as was done above for the sake of completeness. Instead, test only 
one set, preferably the one that seems to describe best the significant interaction.

Fse Test for Simple Effects 

A test of the effect of one factor on 

the dependent variable at a single 

level of another factor.

Table 18.7
SIMPLE EFFECTS FOR SMOKE ALARM EXPERIMENT (TOTALS)

TWO-FACTOR EXPERIMENT

DEGREE OF  
DANGER 

CROWD SIZE ROW
SIMPLE EFFECT OF  

CROWD SIZE AT

ZERO TWO FOUR TOTAL      DANGEROUS

Dangerous 16 14 18   48  16 14 18  48   (ns )
     NONDANGEROUS

Nondangerous  20 34 42   96  20 34 42  96 (p < .01)

Column Total 36 48 60

Simple Effect of Degree of Danger

 at

Zero Two Four

16 14 18

20 34 42

36 48 60

   (ns) (p < .01)   (p < .01)
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F s e Tes t  f o r  S imp le  E f fec ts

The new Fse test for any simple effect is very similar to the F test for the correspond-
ing main effect in a two-factor ANOVA. The degrees of freedom term is the same, as 
is the term in the denominator, MSwithin. Only the term in the numerator, MSse, must be 
adjusted to estimate the variability associated with just one row or one column. The 
ratio for any simple effect, Fse reads:

Fse RATIO (SIMPLE EFFECT)

 

se
se

within

MS
F

MS  (18.5)

where MSse represents the mean square for the variation of every cell mean in a single 
row (or a single column) about the overall or grand mean for that entire row (or col-
umn) and MSwithin represents the mean square for the variation of all scores about their 
cell means for the entire two-factor matrix. (Being based on all scores, MSwithin serves in 
the denominator term as the best estimate of random error.)

The degrees of freedom for the numerator of the simple-effect Fse ratio is the same as 
that for the corresponding main-effect F ratio, namely, dfbetween, which equals either c – 1 or 
r – 1, the number of groups (that is, the number of columns or of rows) in the simple effect 
minus one. The degrees of freedom for the denominator of the simple-effect Fse ratio is the 
same as that for any two-factor F ratio, namely, dfwithin, which equals N − (c)(r): the total 
number of scores, N, minus the total number of cells, (c)(r), in the two-factor ANOVA.

Ca lcu la t i ng  F se

Let’s calculate Fse for the simple effect of crowd size for the nondangerous condi-
tion (that is, for the second row in Table 18.7). Since MSwithin already has been calcu-
lated and, as shown in Table 18.6, equals 5.33, we can concentrate on calculating SSse, 
which, when divided by its degrees of freedom, gives a value for MSse. The computa-
tional formula for SSse reads:

SUM OF SQUARES (SIMPLE EFFECT)

 

2 2
se se

se
se

T G
SS

n N  (18.6)

where SSse now signifies the sum of squares for the simple effect; T2
se represents the 

squared total for each cell in a single row (or a single column); G2
se represents the grand 

total for all cells in the entire row (or column); n equals the sample size for each cell; 
and Nse equals the total sample size for the entire row (or column).

When totals from the second row in Table 18.7 are substituted into Equation 18.6, 
it reads:

2 2 2 2(20) (34) (42) (96)
( ) 124

2 2 2 6
seSS crowd size at nondangerous

  

Given that the degrees of freedom for MSse (crowd size at nondangerous) equals the 
number of columns minus one, that is, c – 1 = 3 − 1 = 2, then

( ) 124
( ) 62

2
se

se
column

SS crowd size at nondangerous
MS crowd size at nondangerous

df
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and

( ) 62
( ) 11.63

5.33
se

se
within

MS crowd sizeat nondangerous
F crowd sizeat nondangerous

MS  

which is significant (p < .01) since 11.63 exceeds the value of 10.92 in Table  C 
in Appendix C for the .01 level of significance, given 2 and 6 degrees of freedom. 
Using essentially the same procedure, we also can establish that the simple effect of 
crowd size at dangerous (that is, the first row in Table 18.7), is nonsignificant (ns) 
since Fse (crowd size at dangerous) = 0.38, again with 2 and 6 degrees of freedom. 
The different test results—one significant, the other nonsignificant—provide statisti-
cal support for an important result of the smoke alarm study, namely, that the reac-
tion times tend to increase with crowd size for nondangerous but not for dangerous 
conditions.

Tukey ’ s  HSD  Tes t  f o r  Mu l t i p le  Compar i sons

If a simple effect is significant and involves more than two groups, Tukey’s HSD 
test, as defined in Equation 18.4, can be used to identify pairs of cell means that differ 
significantly. When using Equation 18.4, the n in the denominator always refers to the sam-
ple size of the means being compared, that is, in the case of a simple effect, the sample 
size for each cell mean. Otherwise, all substitutions are the same whether you’re testing 
a simple effect or a main effect.

Since the simple effect for crowd size at nondangerous is significant and involves 
more than two groups, Tukey’s HSD test can be used. Consult Table G in Appendix 
C, given c (or k) = 3 for the three cells in the simple effect and dfwithin = 6, to find the 
value of q for the .01 level. Substituting values for q = 6.33, MSwithin = 5.33, and n = 2 
into Equation 18.4:

5.33
6.33 6.33 1.63 10.32

2
withinMS

HSD q
n

Given values of 10, 17, and 21 for the mean reaction times for the nondangerous 
condition with crowds of zero, two, and four people, respectively, a significant dif-
ference (p < .01) occurs between the mean reaction times in the nondangerous con-
dition for crowds of zero and four people because the observed mean difference, 
21 − 10 = 11, exceeds the HSD value of 10.32. A “borderline” significant difference 
(within a rounding margin of p < .05) occurs between the mean reaction times in the 
nondangerous condition for crowds of zero and two people because the observed 
mean difference, 17 − 10 = 7, is only slightly less than the HSD value of 7.07. (This 
value is obtained from the HSD equation above, given q = 4.34 from the .05 level of 
Table G.)

Es t imat ing  E f fec t  S i ze

As we have seen, a significant simple effect with more than two groups can be ana-
lyzed further with Tukey’s HSD test. A significant difference between pairs of means 
can, in turn, have its effect size estimated with Cohen’s d, as defined in Equation 16.10 
on page 313, that is,

d
X X

MSwithin

1 2

where d is an estimate of the standardized effect size; 1X  and 2X  are the pair of signifi-
cantly different means; and withinMS , the square root of the within-group mean square 
for the two-factor ANOVA, represents the sample standard deviation.
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To estimate the standardized effect size for the significant difference between means 
for the nondangerous condition with crowd sizes of zero and four, enter 4 0 11X X  
and MSwithin = 5.33 in the above equation and solve for d:

4 0

11 11
, 4.76

2.315.33
d X X

which is a very large effect, equivalent to almost five standard deviations. To esti-
mate the standardized effect size for the significant difference between means for the 
nondangerous condition with crowds of zero and two people, enter  2 0 7X X  and 
MSwithin = 5.33 in the above equation and solve for d:

2 0

7 7
, 3.03

2.315.33
d X X

 

which also is a very large effect, equivalent to three standard deviations. Ordinarily, such 
large values of d, as well as the large values for p

2 in the current example, wouldn’t 
be obtained with real data. The fictitious data for the smoke alarm experiment were 
selected to dramatize various effects in two-factor ANOVA, including an interaction 
with a significant simple effect, using very small sample sizes.

Progress Check *18.6 Using the data in Table 18.7 for the smoke alarm experiment, 
conduct Fse tests for the three simple effects of degree of danger  at crowd sizes of zero, two, 
or four. Whenever appropriate, estimate effect sizes using Cohen’s d. (Tukey’s HSD test can 
be ignored since each simple effect involves only a difference between a single pair of means.) 
Interpret your findings.

Answers on page 449.

18 .10  OVERV IEW:  FLOW CHART  
FOR  TWO-FACTOR  ANOVA

Figure 18.5 shows the steps to be taken when you are analyzing data for a two-factor 
ANOVA. Once an ANOVA summary table has been obtained, focus on the left-hand 
panel of Figure 18.5 for the interaction. If the interaction is significant, estimate its 
effect size with p

2 and conduct Fse tests for at least one set of simple effects. Ordinar-
ily, the significant interaction will translate into a mix of significant and nonsignificant 
simple effects. Further, analyze any significant simple effect with HSD tests and any 
significant HSD test with an estimate of its effect size, d.

Next, focus on the right-hand panel for the main effects. Proceed with additional 
estimates for p

2 and d, and with the HSD test, only if the interpretation of the significant 
main effect isn’t compromised by a significant interaction.

18 .11  REPORTS  IN  THE  L ITERATURE

Test results for the smoke alarm experiment might be reported as follows:

The following table shows the mean reaction times to smoke for subjects as a 
function of crowd size (zero, two, and four people) and degree of danger (non-
dangerous and dangerous):
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ZERO TWO FOUR
DEGREE OF 
DANGER 

Dangerous 8 7 9 8
Nondangerous 10 17 21 16

Crowd Size 9 12 15 12

Mean reaction times increase with crowd size [F(2, 6) = 6.75, MSE = 5.33,  
p < .05, p

2 = .69]; they are larger for nondangerous than for dangerous condi-
tions  [F((1, 6) = 36.02, p < .01, p

2
 = .86]; but these findings must be qualified 

because of the significant interaction [F(2, 6) = 5.25, p < .05, p

2 = .64]. An 
analysis of simple effects for crowd size confirms that reaction times increase 
with crowd size for nondangerous conditions [Fse (2, 6) = 11.63, p < .01] but 
not for dangerous conditions  [Fse (2, 6) = 0.38, ns]. Furthermore, compared 
with the mean reaction time of 10 in the nondangerous condition with zero 
people, the mean reaction time of 17 in the nondangerous condition with two 
people is significantly longer (HSD = 7.07, p = .05, d = 3.03), and the mean 
reaction time of 21 in the nondangerous condition with four people also is sig-
nificantly longer (HSD = 10.32, p < .01, d = 4.76). To summarize, the mean 
reaction times increase in the presence of crowds of two or four people in non-
dangerous but not in dangerous conditions.

FIGURE 18.5 

Flow chart for two-factor ANOVA.

Nonsignificant F(ns)

Nonsignificant Fse(ns)

Nonsignificant

Mean difference (ns)

Significant F(p < .05)

Significant Fse(p < .05)

Significant

Mean difference (p < .05)

INTERACTION

Nonsignificant F(ns) Significant F(p < .05)

(Not compromised by

significant interaction)

MAIN EFFECTS

TEST

SIMPLE EFFECTS

ESTIMATE

EFFECT SIZE (d)

TEST

MULTIPLE COMPARISONS

(HSD)

Nonsignificant

Mean difference (ns)

Significant

Mean difference (p < .05)

ESTIMATE

EFFECT SIZE (d)

TEST

MULTIPLE COMPARISONS

(HSD)

ESTIMATE

EFFECT SIZE (    )p
2

ESTIMATE

EFFECT SIZE (    )p
2
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This report reflects the prevalent use of approximate p-values rather than a fixed 
level of significance. The error (or within-group) mean square, MSE = 5.33, appears 
only for the initial F test since it’s the same for all remaining F tests. The expression  
p = .05 (rather than p < .05) reflects the previously mentioned borderline significance 
of 2 0 7X X , given a critical value of HSD = 7.07.

18 .12  ASSUMPT IONS

The assumptions for F tests in a two-factor ANOVA are similar to those for a one-
factor ANOVA. All underlying populations (for each treatment combination or cell) 
are assumed to be normally distributed, with equal variances. As with the one-factor 
ANOVA, you need not be too concerned about violations of these assumptions, par-
ticularly if all cell sizes are equal and each cell is fairly large (greater than about 10). 
Otherwise, in the unlikely event that you encounter conspicuous departures from nor-
mality or equality of variances, consult a more advanced statistics book.*

Impo r tan ce  o f  Equa l  Samp le  S i zes

As far as possible, all cells in two-factor studies should have equal sample sizes. 
Otherwise, to the degree that sample sizes are unequal and the resulting design lacks 
balance, not only are any violations of assumptions more serious, but problems of 
interpretation can occur. If you must analyze data based on unequal sample sizes— 
possibly because of missing subjects, equipment breakdowns, or recording errors 
—consult a more advanced statistics book.*

18 .13  OTHER  TYPES  OF  ANOVA

One- and two-factor studies do not exhaust the possibilities for ANOVA. For instance, 
you could use ANOVA to analyze the results of a three-factor study with three inde-
pendent variables, three 2-way interactions, and one 3-way interaction. Furthermore, 
regardless of the number of factors, each subject might be measured repeatedly along 
all levels of one or more factors. Although the basic concepts described in this book 
transfer almost intact to a wide assortment of more intricate research designs, compu-
tational procedures grow more complex, and the interpretation of results often is more 
difficult. Intricate research designs, requiring the use of complex types of ANOVA, 
provide the skilled investigator with powerful tools for evaluating complicated situa-
tions. Under no circumstances, however, should a study be valued simply because of 
the complexity of its design and statistical analysis. Use the least complex design and 
analysis that will answer your research questions.

Summary

Before any statistical analysis, and particularly before complex analyses such as a 
two-factor ANOVA, it is often helpful to form preliminary impressions by constructing 
graphs of the various possible effects.

In a two-factor ANOVA, three null hypotheses are tested with three different F 
ratios. The numerator of each F ratio measures a different aspect of variability between 
cells: variability between columns, variability between rows, and any remaining 
variability between cells due to interaction. The numerator of each F ratio measures 

*See, for instance,  Keppel, G., & Wickens, T. (2004). Design and Analysis: A Researcher’s 
Handbook (4th ed.). Upper Saddle River, NJ: Prentice-Hall.

Witte11e_c18.indd   360 11/18/2016   6:22:02 PM



 REVIEW QUESTIONS  361

some component of between variability and reflects random error plus any associated 
 treatment effect. The denominator of each F ratio measures the variability within cells 
and always reflects only random error.

Two factors interact if their simple effects are inconsistent. Interaction emerges as 
the most striking feature of a two-factor ANOVA.

Whenever F is statistically significant, calculate the partial eta-squared, p
2, to esti-

mate the effect size.
Given a significant main effect—not compromised by a significant interaction—

Tukey’s HSD test can be used to pinpoint differences between specific pairs of column 
means or pairs of row means.

Given a significant interaction, Fse tests can be used to identify significant and 
nonsignificant simple effects. Significant simple effects can be analyzed further with 
Tukey’s HSD test for multiple comparisons.

The effect size for any significant comparison involving two means can be esti-
mated with Cohen’s d.

The assumptions for F tests in a two-factor ANOVA are the same as those for one-
factor ANOVA. As far as possible, all cells in two-factor studies should have equal 
sample sizes.

Important Terms

Two-factor ANOVA Interaction 

Main effect Fse test for simple effects

Simple effect

Key Equations

F RATIOS

column
column

within

row
row

within

MS
F

MS

MS
F

MS

total column row interaction wit

interaction
interaction

wi

hin

total column row interaction within

thin

SS SS SS SS SS

df df df df df

MS
F

MS

REV IEW QUEST IONS

 *18 . 7 A psychologist randomly assigns ten lab rats to each cell in a two-factor experi-
ment designed to determine the effect of food deprivation (either 0 or 24 hours) 
and reward amount (either 1 or 2 food pellets) on their rate of bar pressing under a 
schedule of intermittent rewards.

 (a) Construct an ANOVA summary table, specifying the various sources of variability and 
degrees of freedom.
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 (b) One possible outcome is that there is a main effect for food deprivation, no main 
effect for reward amount, and no interaction. Viewed in this fashion, there are seven 
other possible outcomes for this experiment. Counting the stated outcome as one 
possibility, list all eight possibilities by indicating with a Y(es) or N(o) whether or not 
a given effect is present.

 (c) Among the eight possible outcomes specified in (b), which outcome would be least 
preferred by the psychologist?

 Answers on page 450.

 *18 . 8 For the two-factor experiment described in the previous question, assume that, as 
shown, mean bar press rates of either 4 or 8 are identified with three of the four cells 
in the 2 × 2 table of outcomes.

FOOD
DEPRIVATION (Hrs.)

0 24

Reward 1 8
Amount 2 4 8
(Pellets)

Furthermore, just for the sake of this question, ignore sampling variability and 

assume that effects occur whenever any numerical differences correspond to either 

food deprivation, reward amount, or the interaction. Indicate whether or not effects 

occur for each of these three components if the empty cell in the 2  2 table is 

occupied by a mean of

 (a) 12

 (b) 8

 (c) 4

 Answers on page 450.

 18 . 9 Each of the following (incomplete) ANOVA tables represents some experiment. Deter-
mine the number of levels for each factor; the total number of groups; and, on the 
assumption that all groups have equal numbers of subjects, the number of subjects 
in each group. Then, using the .05 level of significance for all hypothesis tests, com-
plete the ANOVA summary table.

(a) SOURCE SS df MS F

Column 790 1
Row 326 2
Interaction 1887
Within 14702 60
Total

(b) SOURCE SS df MS F

Treatment A 142 2
Treatment B 480 2
A × B 209
Error 5030 81
Total
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 (c) For each significant F in (a) or (b), estimate the effect size.

 *18 . 10 A health educator suspects that the “days of discomfort” caused by common colds 
can be reduced by ingesting large doses of vitamin C and visiting a sauna every 
day. Using a two-factor design, subjects with new colds are randomly assigned 
to one of four different daily dosages of vitamin C (either 0, 500, 1000, or 1500 
 milligrams) and to one of three different daily exposures to a sauna (either 0, 1/2,  
or 1 hour).

NUMBER OF DAYS OF DISCOMFORT DUE TO COLDS
SAUNA 
EXPOSURE 
(HOURS)

VITAMIN C DOSAGE (MILLIGRAMS)
0 500 1000 1500 Trow T 

2

row

6 5 4 2

42 17640 4 3 2 3
5 3 3 2

5 4 3 2

36 1296
1/2 4 3 2 1

5 2 3 2

4 4 3 1

31 9611 3 2 2 2
4 3 2 1

ΣX 2 = 385 Tcolumn 40 29 24 16 G = 109

T 2column 1600 841 576 256 G 2 = 11881

 (a) After converting individual scores to cell means and margin totals to margin means, 
use appropriate sets of means to graph the various possible effects and tentatively 
interpret the experimental outcomes.

 (b) Summarize the results with an ANOVA table.

 (c) Whenever appropriate, estimate effect sizes with p
2 and d and use the HSD test.

 (d) Interpret these results.

 Answers on page 450.

 18 . 11 In what sense does a two-factor ANOVA use observations more efficiently than a 
one-factor ANOVA does?

 18 . 12 A psychologist employs a two-factor experiment to study the combined effect of 
sleep deprivation and alcohol consumption on the performance of automobile driv-
ers. Before the driving test, the subjects go without sleep for various time periods 
and then drink a glass of orange juice laced with controlled amounts of vodka. Their 
performance is measured by the number of errors made on a driving simulator. Two 
subjects are randomly assigned to each cell, that is, each possible combination of 
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sleep deprivation (either 0, 24, 48, or 72 hours) and alcohol consumption (either 0, 1, 
2, or 3 ounces), yielding the following results:

NUMBER OF DRIVING ERRORS
ALCOHOL 

CONSUMPTION 
(OUNCES)

SLEEP DEPRIVATION 
(HOURS)

0 24 48 72 Trow T 2row

   0 0 2 5 5
29 841

3 4 4 6

   1 1 3 6 5
36 1296

3 3 7 8

2 3 2 8 7
53 2809

5 5 11 12

      3 4 4 10 9
68 4624

6 7 13 15

ΣX 2 = 1466 Tcolumn 25 30 64 67 G = 186

T 2column 625 900 4096 4489 G 2 = 34596

 (a) Summarize the results with an ANOVA table.

 (b) If appropriate, conduct additional F tests, estimate effect sizes, and use Tukey’s HSD test.

 18 . 13 Does the type of instruction in a college sociology class (either lecture or self-paced) 
and its grading policy (either letter or pass/fail) influence the performance of stu-
dents, as measured by the number of quizzes successfully completed during the 
semester? Six students are randomly assigned to each of the four possible cells, 
yielding the following results:

NUMBER OF QUIZZES SUCCESSFULLY COMPLETED
GRADING
POLICY

TYPE OF INSTRUCTION

Trow T 2rowLECTURE SELF-PACED

Letter grades

4 7

72 5184

3 8
5 6
2 4
6 10
5 12

Pass/fail

8 4

68 4624

9 1
4 3
5 2
8 6

10 8

ΣX 2 = 1004 Tcolumn 69 71 G = 140

T 2column 4761 5041 G 2 = 19600

 (a) Summarize the results with an ANOVA table.

 (b) If appropriate, conduct additional F tests, estimate effect sizes, and use Tukey’s HSD test.

 18 . 14 In this chapter, all examples of two-factor studies involve at least two observations 
per cell. Would it be possible to perform an ANOVA for a two-factor study having only 
one observation per cell?
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Preview

When data are qualitative with nominal measurement, statistical analyses are based on 

observed frequencies. The chi-square (  χ 2) test focuses on any discrepancies between 

these observed frequencies and the corresponding set of expected frequencies, which 

are derived from the null hypothesis. Each of two tests is described. When data are 

distributed along a single qualitative variable, the one-variable χ 2 test evaluates these 

discrepancies as a test for “goodness of fit.” When data are cross-classified along two 

qualitative variables, the two-variable χ 2 test evaluates these discrepancies as a “test of 

independence” or a lack of predictability between the two qualitative variables.
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366 CHI-SQUARE (χ 2)  TEST FOR QUALITATIVE (NOMINAL)  DATA

ONE-VAR IABLE  χ 2 TEST

19 .1  SURVEY  OF  BLOOD  TYPES

Your blood belongs to one of four genetically determined types: O, A, B, or AB. A bul-
letin issued by a large blood bank claims that these four blood types are distributed in the 
U.S. population according to the following proportions: .44 are type 0, .41 are type A,  
.10 are type B, and .05 are type AB. Let’s treat this claim as a null hypothesis to be tested 
with a random sample of 100 students from a large university.

A  Tes t  f o r  Qua l i t a t i ve  (Nomina l )  Da ta

When observations are merely classified into various categories—for example, as 
blood types: O, A, B, and AB; as political affiliations: Republican, Democrat, and 
independent; as ethnic backgrounds: African-American, Asian-American, European-
American, etc., the data are qualitative and measurement is nominal, as discussed in 
Chapter 1. Hypothesis tests for qualitative data require the use of a new test known as 
the chi-square test (symbolized as χ2 and pronounced “ki square”). 

One-Va r iab le  ve rsus  Two-Va r iab le

When observations are classified in only one way, that is, classified along a single 
qualitative variable, as with the four blood types, the test is a one-variable χ 2 test. 
Designed to evaluate the adequacy with which observed frequencies are described 
by hypothesized or expected frequencies, a one-variable χ2 test is also referred to as 
a goodness-of-fit test. Later, when observations are classified in two ways, that is, 
 cross-classified according to two qualitative variables, the test is a two-variable χ2.

19 .2  STAT IST ICAL  HYPOTHESES

Nu l l  Hypo thes i s

For the one-variable χ2 test, the null hypothesis makes a statement about two or more 
population proportions whose values, in turn, generate the hypothesized or expected 
frequencies for the statistical test. Sometimes these population proportions are speci-
fied directly, as in the survey of blood types:

0 O A B AB: .44; .41; .10; .05H P P P P

where PO refers to the hypothesized proportion of students with type O blood in the pop-
ulation from which the sample was taken, and so forth. Notice that the values of popula-
tion proportions always must sum to 1.00.

Othe r  Examp les

At other times, you will have to infer the values of population proportions from 
verbal statements. For example, the null hypothesis that artists are equally likely to be 
left-handed or right-handed translates into

0: .50 (or 1 / 2)left rightH P P

where Pleft represents the hypothesized proportion of left-handers in the population of 
artists.

One-Variable χ 2 Test 

Evaluates whether observed 

 frequencies for a single qualitative 

variable are adequately described 

by hypothesized or expected 

 frequencies.
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The hypothesis that voters are equally likely to prefer any one of four different 
 candidates (coded 1, 2, 3, and 4) translates into

0 1 2 3 4: .25 (or 1 / 4)H P P P P

where P1 represents the hypothesized proportion of voters who prefer candidate 1 in the 
population of voters, and so forth.

Al te rna t i ve  Hypo thes i s

Because the null hypothesis will be false if population proportions deviate in 
any direction from that hypothesized, the alternative or research hypothesis can be 
described simply as

1 0: is falseH H

As usual, the alternative hypothesis indicates that, relative to the null hypothesis, 
something special is happening in the underlying population, such as, for instance, a 
tendency for artists to be left-handed or for voters to prefer one or two candidates.

Progress Check *19.1 Specify the null hypothesis for each of the following situations. 
(Remember, the null hypothesis usually represents a negation of the researcher’s hunch or 
hypothesis.)

(a) A political scientist wants to determine whether voters prefer candidate A more than can-
didate B for president.

(b) A biologist suspects that, upon being released 10 miles south of their home roost, migra-
tory birds are more likely to fly toward home (north) rather than in any of the three remain-
ing directions (east, south, or west).

(c) A sociologist believes that crimes are not committed with equal likelihood on each of the 
seven days of the week.

(d) Another sociologist suspects that proportionately more crimes are committed during the 
two days of the weekend (Saturday and Sunday) than during the five other days of the 
week. Hint: There are just two (unequal) proportions: one representing the two weekend 
days and the other representing the five weekdays.

Answers on page 452.

19 .3  DETA ILS :  CALCULAT ING  χ 2
If the null hypothesis is true, then, except for chance, hypothetical or expected fre-
quencies (generated from the hypothetical proportions) should describe the observed 
frequencies in the sample. For example, when testing the blood bank’s claim with a 
sample of 100 students, 44 students should have type O (from the product of .44 and 
100); 41 should have type A; 10 should have type B; and only 5 should have type 
AB. In Table 19.1, each of these numbers is referred to as an expected frequency, 
fe, that is, the hypothesized frequency for each category of the qualitative variable 
if, in fact, the null hypothesis is true. An expected frequency is compared with its 
observed  frequency, fo, that is, the frequency actually obtained in the sample for 
each category.

Expected Frequency (fe)  

The hypothesized frequency for 

each category, given that the null 

hypothesis is true.

Observed Frequency (fo) 

The obtained frequency for each 

category.
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368 CHI-SQUARE (χ 2)  TEST FOR QUALITATIVE (NOMINAL)  DATA

Table 19.1
OBSERVED AND EXPECTED FREQUENCIES:  

BLOOD TYPES OF 100 STUDENTS

BLOOD TYPE

FREQUENCY O A B AB TOTAL
Observed (fo ) 38 38 20 4 100
Expected (fe ) 44 41 10 5 100

To find the expected frequency for any category, multiply the hypothesized or 
expected proportion for that category by the total sample size, namely,

EXPECTED FREQUENCY (ONE-VARIABLE χ 2 TEST)

 ( )( )ef expected proportion total sample size  (19.1)

where fe represents the expected frequency.

Eva lua t ing  D i sc repanc ies

It’s most unlikely that a random sample—because of its inevitable variability—will 
exactly reflect the characteristics of its population. Even though the null hypothesis is true, 
discrepancies will appear between observed and expected frequencies, as in Table 19.1.

The crucial question is whether the discrepancies between observed  
and expected frequencies are small enough to be regarded as a common 
outcome, given that the null hypothesis is true. If so, the null hypothesis is 
retained. Otherwise, if the discrepancies are large enough to qualify as a rare 
outcome, the null hypothesis is rejected.

Comput ing  χ 2

To determine whether discrepancies between observed and expected frequencies 
qualify as a common or rare outcome, a value is calculated for χ 2 and compared with 
its hypothesized sampling distribution. To calculate χ 2, use the following expression:

χ 2 RATIO

 
2

2 ( )o e

e

f f

f
 (19.2)

where fo denotes the observed frequency and fe denotes the expected frequency for each 
category of the qualitative variable. Table 19.2 illustrates how to use Formula 19.2 to 
calculate χ 2 for the present example.

Some  P rope r t i es  o f  χ 2

Notice several features of Formula 19.2. The larger the discrepancies are between 
the observed and expected frequencies, fo − fe, the larger the value of χ 2 and, therefore, 
as will be seen, the more suspect the null hypothesis will be. Because of the squaring 
of each discrepancy, negative discrepancies become positive, and the value of χ 2 never 
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can be negative. Division by fe indicates that discrepancies must be evaluated not in 
isolation, but relative to the size of expected frequencies. For example, a discrepancy 
of 5 looms more importantly (and translates into a larger value of χ 2) relative to an 
expected frequency of 10 than relative to an expected frequency of 100.

19 .4  TABLE  FOR  THE  χ 2  D I STR IBUT ION

Like t and F, χ  2 has not one but a family of distributions. Table D in Appendix C 
 supplies critical values from various χ  2 distributions for hypothesis tests at the .10, .05, 
.01, and .001 levels of significance.

To locate the appropriate row in Table D, first identify the correct number of degrees 
of freedom. For the one-variable test, the degrees of freedom for χ  2 can be obtained 
from the following expression:

DEGREES OF FREEDOM (ONE-VARIABLE χ 2 TEST)

 1df c  (19.3)

where c refers to the total number of categories of the qualitative variable.

Table 19.2 
CALCULATION OF χ 2 (ONE-VARIABLE TEST)

A. COMPUTATIONAL SEQUENCE
Find an expected frequency for each expected proportion  1.
List observed and expected frequencies  2 .
Substitute numbers in formula  3  and solve for χ 2.

B. DATA AND COMPUTATIONS
 1     fe = (expected proportion)(sample size)

 fe(O) = (.44)(100) = 44
  fe(A) = (.41)(100) = 41
  fe(B) = (.10)(100) = 10
fe(AB) = (.05)(100) = 5

 2  Frequency O A B AB Total

   fo 38 38 20 4 100
   fe 44 41 10 5 100

 3

 2
2

2 2 2 2

2 2 2 2

( )

(38 44) (38 41) (20 10) (4 5)

44 41 10 5

( 6) ( 3) (10) ( 1)

44 41 10 5

36 9 100 1

44 41 10 5

.82 .22 10.00 .20

11.24

o e

e

f f

f
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370 CHI-SQUARE (χ 2)  TEST FOR QUALITATIVE (NOMINAL)  DATA

Lose  One  Deg ree  o f  F reedom

To understand Formula 19.3, focus on the set of observed frequencies for 100 stu-
dents in Table 19.1. In practice, of course, the observed frequencies for the four (c) 
categories have equal status, and any combination of four frequencies that sums to 
100 is possible. From the more abstract perspective of degrees of freedom, however, 
only three (c – 1) of these frequencies are free to vary because of the mathematical 
restriction that, when calculating χ 2 for the present data, all observed (or expected) 
frequencies must sum to 100. Although the observed frequencies of any three of the 
four categories are free to vary, the frequency of the fourth category must be some 
number that, when combined with the other three frequencies, will yield a sum of 
100. Similarly, if there had been five categories, the frequencies of any four categories 
would have been free to vary, but not that of the fifth category. For the one-variable 
test, the number of degrees of freedom always equals one less than the total number of 
 categories (c), as indicated in Formula 19.3.

In the present example, in which the categories consist of the four blood types,

4 1 3df

To find the critical χ 2 for a hypothesis test at the .05 level of significance, locate the 
cell in Table D, Appendix C, intersected by the row for 3 degrees of freedom and the 
column for the .05 level of significance. This cell lists a value of 7.81 for the critical χ 2.

19 .5  χ 2 TEST

Following the usual procedure, assume the null hypothesis to be true and view the 
observed χ 2 within the context of its hypothesized distribution shown in Figure 19.1. 
If, because the discrepancies between observed and expected frequencies are relatively 
small, the observed χ 2 appears to emerge from the dense concentration of possible 
χ 2 values smaller than the critical χ 2, the observed outcome would be viewed as a 
 common occurrence, on the assumption that the null hypothesis is true. Therefore, 
the null hypothesis would be retained. On the other hand, if, because the discrepan-
cies between observed and expected frequencies are relatively large, the observed χ 2 
appears to emerge from the sparse concentration of possible values equal to or greater 
than the critical χ 2, the observed outcome would be viewed as a rare occurrence, and 
the null hypothesis would be rejected.

In fact, because the observed χ 2 of 11.24 is larger than the critical χ 2 of 7.81, the null 
hypothesis should be rejected: There is evidence that the distribution of blood types in 
the student population differs from that claimed for the U.S. population.

FIGURE 19.1 

Hypothesized sampling distribution of χ2 (3 degrees of freedom).
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As can be seen in Table 19.1, the present survey contains an unexpectedly large 
number of students with type B blood. A subsequent investigation revealed that the 
sample included a large number of Asian-American students, a group that has an estab-
lished high incidence of type B blood. This might explain why the hypothesized dis-
tribution of blood types fails to describe that for the population of students from which 
the random sample was taken. Certainly, a random sample should be taken from a 
much broader spectrum of the general population before questioning the blood bank’s 
claim about the distribution of blood types in the U.S. population.

Progress Check *19.2 A random sample of 90 college students indicates whether they 
most desire love, wealth, power, health, fame, or family happiness.

(a) Using the .05 level of significance and the following results, test the null hypothesis that, 
in the underlying population, the various desires are equally popular.

(b) Specify the approximate p-value for this test result.

DESIRES OF COLLEGE STUDENTS

FREQUENCY LOVE WEALTH POWER HEALTH FAME FAMILY HAP. TOTAL
Observed (f0) 25 10 5 25 10 15 90

Answers on page 452.

HYPOTHESIS TEST SUMMARY
ONE-VARIABLE χ 2 TEST  
(Survey of Blood Types)

Research Problem
Does the distribution of blood types in a population of college students com-
ply with that described in a blood bank bulletin for the U.S. population?

Statistical Hypotheses

0 O A B AB: .44; .41; .10; .05H P P P P

(where PO is the proportion of type O blood in the population, etc.)

1 0: is falseH H

Decision Rule
Reject H0 at the .05 level of significance if χ2 ≥ 7.81 (from Table D in 
 Appendix C, given df = c – 1 = 4 – 1 = 3).

Calculations
2 11.24 (see Table 19.2.)

Decision
Reject H0 at the .05 level of significance because χ2 = 11.24 exceeds 7.81.

Interpretation
The distribution of blood types in a student population differs from that 
claimed for the U.S. population.

Witte11e_c19.indd   371 11/18/2016   6:23:03 PM



372 CHI-SQUARE (χ 2)  TEST FOR QUALITATIVE (NOMINAL)  DATA

χ 2 Tes t  I s  Nond i rec t iona l

The χ 2 test is nondirectional, as all discrepancies between observed and expected 
frequencies are squared. All squared discrepancies have a cumulative positive effect 
on the value of the observed χ 2 and thereby ensure that χ 2 is a nondirectional test, even 
though, as illustrated in Figure 19.1, only the upper tail of its distribution contains the 
rejection region.

TWO-VAR IABLE  χ 2 TEST

So far, we have considered the case where observations are classified in terms of 
only one qualitative variable. Now let’s deal with the case where observations are 
 cross-classified in terms of two qualitative (nominal) variables.

19 .6  LOST  LETTER  STUDY

Viewing the return rate of lost letters as a measure of social responsibility in neighbor-
hoods, a social psychologist intentionally “loses” self-addressed, stamped envelopes 
near mailboxes.* Furthermore, to determine whether social responsibility, as inferred 
from the mailed return rates, varies with the type of neighborhood, lost letters are 
 scattered throughout three different neighborhoods: downtown, suburbia, and a college 
campus.

Letters are “lost” in each of the three types of neighborhoods according to proce-
dures that control for possible contaminating factors, such as the density of pedestrian 
traffic and mailbox accessibility. (Ordinarily, the social psychologist would probably 
scatter equal numbers of letters among the three neighborhoods, but to maximize the 
generality of the current example, we will assume that a total of 200 letters were scat-
tered as follows: 60 downtown, 70 in suburbia, and 70 on campus.) Each letter is cross-
classified on the basis of the type of neighborhood where it was lost and whether or not 
it was returned, as shown in Table 19.3. For instance, of the 60 letters lost downtown, 
39 were returned, while of the 70 letters lost in suburbia, 30 were returned. When 
observations are cross-classified according to two qualitative variables, as with the lost 
letter study, the test is a two-variable χ2 test.

*This study is a variation on the classic study by Milgram et al., described in Review 

 Exercise 19.15.

Two-Variable χ2 Test 

Evaluates whether observed fre-

quencies reflect the independence 

of two qualitative variables.

Table 19.3
OBSERVED FREQUENCIES OF RETURNED LETTERS

NEIGHBORHOOD

RETURNED LETTERS DOWNTOWN SUBURBIA CAMPUS TOTAL
Yes 39 30 51 120
No 21 40 19 80

Total 60 70 70 200
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19 .7  STAT IST ICAL  HYPOTHESES

Nu l l  Hypo thes i s

For the two-variable χ 2 test, the null hypothesis always makes a statement about the 
lack of relationship between two qualitative variables in the underlying population. 
In the present case, it states that there is no relationship—that is, no predictability—
between type of neighborhood and whether or not letters are returned. This is the same 
as claiming that the proportions of returned letters are the same for all three types of 
neighborhoods. Accordingly, the two-variable χ 2 test often is referred to as a test of 
independence for the two qualitative variables.

Although symbolic statements of the null hypothesis are possible, it is much easier 
to use word descriptions such as

0: Type of neighborhood and return rate of lost letters are independent.H

or as another example,

0: Gender and political preference are independentH

If these null hypotheses are true, then among the population of lost letters, the type 
of neighborhood should not change the probability that a randomly selected lost letter 
is returned, and among the population of voters, gender should not change the prob-
ability that a randomly selected voter prefers the Democrats. Otherwise, if these null 
hypotheses are false, type of neighborhood should change the probability that a ran-
domly selected lost letter is returned, and gender should change the probability that a 
randomly selected voter prefers the Democrats.

Al te rna t i ve  Hypo thes i s

The alternative or research hypothesis always takes the form

1 0: is falseH H

Progress Check *19.3 Specify the null hypothesis for each of the following situations:

(a) A political scientist suspects that there is a relationship between the educational level of 
adults (grade school, high school, college) and whether or not they favor right-to-abortion 
legislation.

(b) A marital therapist believes that groups of clients and nonclients are distinguishable on the 
basis of whether or not their parents are divorced.

(c) An organizational psychologist wonders whether employees’ annual evaluations, as either 
satisfactory or unsatisfactory, tend to reflect whether they have fixed or flexible work 
schedules.

Answers on page 452.

19 .8  DETA ILS :  CALCULAT ING  χ 2 
As in the one-variable χ 2 test, expected frequencies are calculated on the assumption 
that the null hypothesis is true, and, depending on the size of the discrepancies between 
observed and expected frequencies, the null hypothesis is either retained or rejected.
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F ind ing  Expec ted  F requenc ies  f rom  P ropo r t i ons

According to the present null hypothesis, type of neighborhood and return rates 
are independent. Except for chance, the same proportion of returned letters should be 
observed for each of the three neighborhoods. Referring to the totals in Table 19.3, 
you will notice that when all three types of neighborhoods are considered together, 
120 of the 200 lost letters were returned. Therefore, if the null hypothesis is true, 
120/200, or .60, should describe the proportion of returned letters from each of the 
three neighborhoods. More specifically, among the total of 60 letters lost downtown, 
.60 of this total, that is (.60)(60), or 36 letters, should be returned, and 36 is the 
expected frequency of returned letters from downtown, as indicated in Table 19.4. 
By the same token, among the total of 70 letters lost in suburbia (or on campus), .60 
of this total, that is, (.60)(70), or 42, is the expected frequency of returned letters 
from suburbia (or from the campus).

Table 19.4
OBSERVED AND EXPECTED FREQUENCIES OF RETURNED LETTERS

NEIGHBORHOOD

RETURNED LETTERS DOWNTOWN SUBURBIA CAMPUS TOTAL
     Yes     fo

               fe

39
36

30
42

51
42 120

     No      fo

                fe

21
24

40
28

19
28

80

Total 60 70 70 200

As can be verified in Table 19.4, the expected frequencies for nonreturned letters 
can be calculated in the same way, after establishing that when all three neighbor-
hoods are considered together, only 80 of the 200 lost letters were not returned. Now, 
if the null hypothesis is true, 80/200, or .40, should describe the proportion of letters 
not returned from each of the three neighborhoods. For example, among the total of 
60 letters lost downtown, .40 of this total, or 24, will be the expected frequency of 
letters not returned from downtown.

F ind ing  Expec ted  F requenc ies  f rom  To ta l s

Expected frequencies have been derived from expected proportions in order to spot-
light the reasoning behind the test. In the long run, it is more efficient to calculate the 
expected frequencies directly from the various marginal totals, according to the fol-
lowing formula:

EXPECTED FREQUENCY (TWO-VARIABLE χ2 TEST)

 ( )( )
e

row total column total
f

grand total

 (19.4)

where fe refers to the expected frequency for any cell in the cross-classification table; 
row total refers to the total frequency for the row occupied by that cell; column total 
refers to the total frequency for the column occupied by that cell; and grand total refers 
to the total for all rows (or all columns).
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Using the marginal totals in Table 19.4, we may verify that Formula 19.4 yields 
the expected frequencies shown in that table. For example, the expected frequency of 
returned letters from downtown is

(120)(60) 7200
36

200 200
ef

and the expected frequency of returned letters from suburbia is

(120)(70) 8400
42

200 200
ef

Having determined the set of expected frequencies, you may use Formula 19.2 to 
calculate the value of χ 2, as described in Table 19.5. Incidentally, for computational 
convenience, all of the fictitious totals in the margins of Table 19.5 were selected to be 
multiples of 10. In actual practice, the marginal totals are unlikely to be multiples of 10, 
and consequently, expected frequencies will not always be whole numbers.

Table 19.5

CALCULATION OF χ 2  (TWO-VARIABLE TEST)

A. COMPUTATIONAL SEQUENCE
Use formula  1  to obtain all expected frequencies from table of observed frequencies.
Construct a table of observed and expected frequencies.  2 
Substitute numbers in formula  3  and solve for χ 2.

B. DATA AND COMPUTATIONS

 1  (column total)(row total)

grand total

(60)(120)
(yes, downtown) 36

200
(70)(120)

(yes, suburbia) 42
200

(70)(120)
(yes, campus) 42

200
(60)(80)

(no, downtown) 24
200

(70)(80)
(no, suburbia) 28

200

e

e

e

e

e

e

e

f

f

f

f

f

f

f
(70)(80)

(no, campus) 28
200

 2  Downtown Suburbia Campus Total

Yes
fo

fe

39 30 51 120
36 42 42

No
fo 21 40 19 80
fe 24 28 28

Total 60 70 70 200

 3
 2

2

2 2 2 2 2 2

( )

(39 36) (30 42) (51 42) (21 24) (40 28) (19 28)

36 42 42 24 28 28
0.25 3.43 1.93 0.38 5.14 2.89

14.02

o e

e

f f

f
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19 .9  TABLE  FOR  THE  χ 2 D ISTR IBUT ION

Locating a critical χ 2 value in Table D, Appendix C, requires that you know the correct 
number of degrees of freedom. For the two-variable test, degrees of freedom for χ 2 can 
be obtained from the following expression:

DEGREES OF FREEDOM (TWO-VARIABLE χ 2 TEST)

 ( 1)( 1)df c r  (19.5)

where c equals the number of categories for the column variable and r equals the num-
ber of categories for the row variable. In the present example, which has three columns 
(downtown, suburbia, and campus) and two rows (returned and not returned),

(3 1)(2 1) (2)(1) 2df

To find the critical χ 2 for a test at the .05 level of significance, locate the cell in Table D 
intersected by the row for 2 degrees of freedom and the column for the .05 level. In this 
case, the value of the critical χ 2 equals 5.99.

Exp lana t ion  fo r  Deg rees  o f  F reedom

To understand Formula 19.5, focus on the set of observed frequencies in Table 19.3. In 
practice, of course, the observed frequencies for the six cells (within the table) have equal 
status, and any combination of six frequencies that sum to the various marginal totals is 
possible. However, only two of these frequencies are free to vary. One row and one col-
umn of cell frequencies in the original matrix are not free to vary because of the restric-
tion that all cell frequencies in each column and in each row must sum to fixed totals 
in the margins. From the more abstract perspective of degrees of freedom, the original 
matrix with c × r or 3 × 2 cells shrinks to (c − 1)(r − 1) or (3 − 1)(2 − 1) cells and df = 2.

19 .10  χ 2 TEST

Because the calculated χ 2 of 14.02 exceeds the critical χ 2 of 5.99, the null hypothesis 
should be rejected: There is evidence that the type of neighborhood is not independent 
of the return rate of lost letters. Knowledge about the type of neighborhood supplies 
extra information about the likelihood that lost letters will be returned. A comparison 
of observed and expected frequencies in Table 19.5 suggests that lost letters are more 
likely to be returned from either downtown or the campus than from suburbia.

Progress Check *19.4 An investigator suspects that there might be a relationship, pos-
sibly based on genetic factors, between hair color and susceptibility to poison oak. Three 
hundred volunteer subjects are exposed to a small amount of poison oak and then classified 
according to their susceptibility (rash or no rash) and their hair color (red, blond, brown, or 
black), yielding the following frequencies:

HAIR COLOR AND SUSCEPTIBILITY TO POISON OAK
HAIR COLOR

SUSCEPTIBILITY RED BLOND BROWN BLACK TOTAL
Rash 10 30 60 80 180
No rash 20 30 30 40 120

Total 30 60 90 120 300
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(a) Test the null hypothesis at the .01 level of significance.

(b) Specify the approximate p-value for this test result.

Answers on page 452.

19 .11  EST IMAT ING  EFFECT  S I ZE

One way to check the importance of a statistically significant two-variable χ2 is to use 
a measure analogous to the squared curvilinear correlation coefficient, η2, known as 
the squared Cramer’s phi coefficient and symbolized as c

2. Being independent of 
sample size (unlike χ 2), c

2 very roughly estimates the proportion of explained variance 
(or predictability) between two qualitative variables.

Squa red  C ramer ’ s  Ph i  Coe f f i c ien t  ( ϕ2

C
)

Solve for the squared Cramer’s phi coefficient using the following formula:

PROPORTION OF EXPLAINED VARIANCE (TWO-VARIABLE χ 2)

 
2

2

( 1)
c n k

 (19.6)

Squared Cramer’s 

Phi Coefficient ( 
c

2) 

A very rough estimate of the 

proportion of explained variance 

(or predictability) between two 

qualitative variables.

HYPOTHESIS TEST SUMMARY
TWO-VARIABLE χ 2 TEST  

(Lost Letter Study)

Research Problem
Is there a relationship between the type of neighborhood and the return rate 
of lost letters?

Statistical Hypotheses

0

1 0

: Type of neighborhood and return rates of lost letters are independent.

: is false.

H

H H

DECISION RULE
Reject H0 at the .05 level of significance if χ 2 ≥ 5.99 [from Table D, 
Appendix C, given that df = (c – 1)(r – 1) = (3 – 1)(2 – 1) = 2].

Calculations

2 14.02 (See Table 19.5.)

Decision
Reject H0 at the .05 level of significance because χ 2 = 14.02 exceeds 5.99.

Interpretation
Type of neighborhood and return rate of lost letters are not independent.
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where χ 2 is the obtained value of the statistically significant two-variable test, n is the 
sample size (total observed frequency), and k is the smaller of either the c columns or 
the r rows (or the value of either if they are the same).

For the lost letter study, given a significant χ 2 of 14.02, n = 200, and k = 2 (from 
r = 2), we can calculate

2 14.02
.07

200(2 1)
c

One guideline, suggested by Cohen for correlations and listed in Table 19.6, is that 
the strength of the relationship between the two variables is small if 2

c  approximates 
.01, medium if 2

c  approximates .09, and large if 2
c  approximates or exceeds .25.* 

Using these guidelines, the estimated strength of the relationship between type of 
neighborhood and return rate is medium, since 2

c  = .07.
Consider calculating 2

c  whenever a statistically significant two-variable χ 2 has been 
obtained. However, do not apply these guidelines about the strength of a relationship 
without regard to special circumstances that could give considerable importance to 
even a very weak relationship, as suggested in the next section.

Progress Check *19.5 Given the significant χ 2 in Exercise 19.4, use Formula 19.6 to esti-
mate whether the strength of the relationship between hair color and susceptibility to poison 
oak is small, medium, or large.

Answer on page 453.

19 .12  ODDS  RAT IOS

A widely publicized report in The New England Journal of Medicine (January 28, 
1988) described the incidence of heart attacks (the dependent variable) among over 
22,000 physicians who took either an aspirin or a placebo (the independent variable) 
every other day for the duration of the study. Although a statistical analysis of the 
results, shown in panel B of Table 19.7, yields a highly significant chi square [χ 2 (1,  
n = 22,071) = 25.01, p < .001, 2

c  = .001], the strength of the relationship between 
these two qualitative variables is very weak, as indicated by the minuscule value of 
only .001 for Cramer’s phi coefficient, 2

c . (Verify, if you wish, using Formula 19.6.) 
Sometimes the importance of a seemingly weak relationship can be appreciated more 
fully by calculating an odds ratio. An odds ratio (OR) indicates the relative occur-
rence of one value of the dependent variable (occurrence of heart attacks) across the 
two categories of the independent variable (aspirin or a placebo).

Ca lcu la t i ng  the  Odds  Ra t io

First, find the odds (defined as the ratio of frequencies of occurrence to non- 
occurrence) of the dependent variable for each value of the independent variable. 
Referring to the data in Table 19.7, find the odds of a heart attack among physicians 
in the placebo group by dividing frequencies of their occurrence (189) by their nonoc-
currence (10,845) to obtain odds of .0174 to 1 (or, after multiplying by one thousand, 
17.4 to 1,000.) Likewise, find the odds of a heart attack among physicians in the aspi-
rin group by dividing frequencies of their occurrence (104) by their nonoccurrence 
(10,933) to obtain odds of .0095 to 1.

Next, calculate the ratio of these two odds. Divide .0174 by .0095 to obtain an 
odds ratio of 1.83. A physician in the placebo group is 1.83 times more likely, or 

Table 19.6

GUIDELINES FOR 
c

2

c

2 EFFECT

.01 Small

.09 Medium

.25 Large

*  See footnote at the bottom of 
this page.

*This is the recommended rule of thumb if x2 is based on tables with either two columns 

or two rows (or both), as often is the case. Otherwise, the values for small, medium, and large 

(.01, .09, and .25) probably should be adjusted downward. See pp. 224–227 in Cohen, J. (1988). 

 Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Erlbaum.

Odds Ratio (OR) 

Indicates the relative occur-

rence of one value of the 

dependent variable across 

the two categories of the inde-

pendent variable.
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almost twice as likely(!), to have a heart attack as a physician in the aspirin group. 
(Conversely, if the division of odds is reversed, the odds ratio of .55 signifies that a 
physician in the aspirin group is .55 times less likely, or about only half as likely, to 
have a heart attack as a physician in the placebo group.) Given the seriousness of even 
one heart attack, especially if it happens to you or to someone you know, odds ratios 
reaffirm the importance of these findings in spite of the very small value of .001 for 

2
c . Subsequently, the investigators discontinued this study and recommended aspirin 

therapy for all high-risk individuals in the population.
Consider calculating an odds ratio to clarify further the importance of a significant 

χ 2. A 95 percent confidence interval for an odds ratio also can be constructed by using 
procedures, such as Minitab’s Binary Logistic Regression, not discussed in this book.

Progress Check *19.6 Odds ratios can be calculated for larger cross-classification tables, 
and one way of doing this is by reconfiguring into a smaller 2 × 2 table. The 2 × 3 table for 
the lost letter study, Table 19.4, could be reconfigured into a 2 × 2 table if, for example, the 
investigator is primarily interested in comparing return rates of lost letters only for campus and 
off-campus locations (both suburbia and downtown), that is,

NEIGHBORHOOD
RETURNED LETTERS OFF-CAMPUS CAMPUS TOTAL
YES 69 51 120
NO 61 19 80

TOTAL 130 70 200

(a) Given χ2(1, n = 200) = 7.42, p < .01, 
2
c  = .037 for these data, calculate and interpret  

the odds ratio for a returned letter from campus.

(b) Calculate and interpret the odds ratio for a returned letter from off-campus.

Answers on page 453.

Table 19.7
CALCULATING THE ODDS RATIO

A. COMPUTATIONAL SEQUENCE
Enter data in 2 × 2 table.  1 
Calculate odds for each group by dividing the frequency of occurrence by the 
 frequency of nonoccurrence.  2 
Calculate the odds ratio by dividing odds for the two groups.  3 
Interpret the odds ratio.  4 

B. DATA AND COMPUTATIONS
 1 

Effect of Aspirin on Heart Attacks

Heart No Heart  2  3 
Attack Attack Odds Odds Ratio

 Placebo 189 10,845 189/10,845 = .0174 (to 1) .0174

.0095

 = 1.83
 Aspirin 104 10,933 104/10,933 = .0095 (to 1)

 4   A physician in the placebo group is 1.83 times more likely to have a heart attack 
than one in the aspirin group.

Source: Rosenthal, R. (1990). How are we doing in soft psychology? American Psychologist, 
45, 775–777.
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19 .13  REPORTS  IN  THE  L ITERATURE

A report of the original lost letter study might be limited to an interpretative comment, plus 
a parenthetical statement that summarizes the statistical analysis and includes a p-value 
and an estimate of effect size. For example, an investigator might report the following:

There is evidence that the return rate of lost letters is related to the type of 
neighborhood [ χ 2(2, n = 200) = 14.02, p < .001, c

2
 = .07].

The parenthetical statement indicates that a χ2 based on 2 degrees of freedom and a 
sample size, n, of 200 was found to equal 14.02. The test result has an approximate 
p-value less than .001 because, as can be seen in Table D, Appendix C, the observed χ2 
of 14.02 is larger than the critical χ2 of 13.82 for the .001 level of significance. Further-
more, since a p-value of less than .001 is a very rare event, given that the null hypothe-
sis is true, it supports the research hypothesis, as implied in the interpretative statement. 
Finally, a value of .07 for 2

c  indicates that approximately 7 percent of the variance in 
returned letters is attributable to differences among the three neighborhoods.

Progress Check *19.7 How might the results of the hair color/poison oak study from 
Progress Check 19.4 be reported in the literature?

Answer on page 453.

19 .14  SOME  PRECAUT IONS

Avo id  Dependen t  Obse rva t ions

The valid use of χ2 requires that observations be independent of one another. One 
observation should have no influence on another. For instance, when tossing a pair of 
dice, the appearance of a six spot on one die has no influence on the number of spots 
displayed on the other die. A violation of independence occurs whenever a single sub-
ject contributes more than one observation (or in the two-variable case, more than one 
pair of observations). For example, it would have occurred in a preference test for four 
brands of soda if each subject’s preference had been counted more than once, possi-
bly because of a series of taste trials. When considering the use of χ2, the total for all 
observed frequencies never should exceed the total number of subjects.

Avo id  Sma l l  Expec ted  F requenc ies

The valid use of χ2 also requires that expected frequencies not be too small. A con-
servative rule specifies that all expected frequencies be 5 or more. Small expected 
frequencies need not necessarily lead to a statistical dead end; sometimes it is possible 
to create a larger expected frequency from the combination of smaller expected fre-
quencies (see Review Question 19.16). Otherwise, avoid small expected frequencies 
by using a larger sample size.

Avo id  Ex t reme  Samp le  S i zes

As discussed in previous chapters, avoid either very small or very large samples. 
An unduly small sample size produces a test that tends to miss even a seriously false 
null hypothesis. (By avoiding small expected frequencies, you will automatically pro-
tect the χ2 test from the more severe cases of small sample size.) An excessively large 
sample size produces a test that tends to detect small, unimportant departures from 
null hypothesized values. A power analysis, similar to that described in Section 11.11, 
could be used—with the aid of software, such as G*Power at http://www.gpower.hhu 
.de/—to identify a sample size with a reasonable detection rate for the smallest impor-
tant departure from the null hypothesis. 
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19 .15  COMPUTER  OUTPUT

Table 19.8 shows an SAS output for the return rates of lost letters in the three neighbor-
hoods. Compare these results—both observed frequencies and the value of χ2 —with 
those shown in Table 19.5.

Progress Check *19.8 Referring to the SAS output, identify

(a) the observed frequency of returned letters in suburbia.

(b) the set of three percents (inside the 2 × 3 box) that can be most meaningfully compared 
with the three total percents of 30.00, 35.00, and 35.00, for downtown, suburbia, and 
campus, respectively.

(c) the value of Cramer’s squared phi, 2
c  (Be careful!)

Answers on page 453.

Table 19.8
SAS OUTPUT: TWO-VARIABLE χ2 TEST FOR LOST LETTER DATA

Comment:
1 This is Cramer’s phi coefficient, ϕc, which, when squared, serves as an estimate  
of effect size.

THE SAS SYSTEM 
12:45 TUESDAY, JANUARY 5, 2016 

TABLE OF RETURNED BY NEIGHBORHOOD

RETURNED     
Frequency Percent
Row Pct Col Pct

NEIGHBORHOOD

Downtown Suburbia Campus Total

Yes 39 30 51 120
19.50 15.00 25.50 60.00
32.50 25.00 42.50
65.00 42.86 72.86

No 21 40 19 80
10.50 20.00 9.50 40.00
26.25 50.00 23.75
35.00 57.14 27.14

Total 60 70 70 200

30.00 35.00 35.00 100.00

STATISTICS FOR TABLE OF RETURNED BY NGHBRHD

Statistic DF Value Prob

  Chi-Square 2 14.018 0.0009
  Likelihood Ratio Chi-Square 2 14.049 0.0009
  Mantel-Haenszel Chi-Square 1 13.059 0.0003
  Phi Coefficient 0.265
  Contingency Coefficient 0.256
1 Cramer’s V 0.265
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Summary

The χ2 test is designed to test the null hypothesis for qualitative or nominal data, 
expressed as frequencies. For the one-variable χ2 test, the null hypothesis claims that 
the population distribution complies with a set of hypothesized proportions. For the 
two-variable χ2 test, the null hypothesis claims that the two qualitative variables are 
independent. In either case, the null hypothesis is used to generate a set of expected 
frequencies that is compared to a corresponding set of observed frequencies.

Essentially, χ2 reflects the size of the discrepancies between observed and expected 
frequencies, expressed relative to their expected frequencies, and the larger the value 
of χ2 is, the more suspect the null hypothesis will be.

To obtain critical values for χ2, Table D, Appendix C, must be consulted, with the 
appropriate number of degrees of freedom for the one- and two-variable tests.

Whenever χ2 is statistically significant, use Cramer’s phi coefficient, 2
c , to estimate 

the strength of the relationship.
Sometimes the importance of a relationship, even a weak relationship, can be appre-

ciated more fully by calculating an odds ratio.
Use of the χ2 test requires that observations be independent and that expected fre-

quencies be sufficiently large. Unduly small or excessively large sample sizes should 
be avoided.

Important Terms

One-variable χ2 test Two-variable χ2 test

Expected frequency (fe)   Squared Cramer’s phi coefficient ( 2

c )

Observed frequency (fo)  Odds ratio (OR)

Key Equations

χ2 RATIO

2
2 0( )e

e

f f

f

2

2

where ( )( ) for the one-variable

( )( )
for the two-variableand

e

e

f expected proportion total sample size
row total column total

f
grand total

REV IEW QUEST IONS

  19.9 Randomly selected records of 140 convicted criminals reveal that their crimes were 
committed on the following days of the week:

DAYS WHEN CRIMES WERE COMMITTED

FREQUENCY MON. TUE. WED. THU. FRI. SAT. SUN. TOTAL

Observed (fo) 17 21 22 18 23 24 15 140
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 (a) Using the .01 level of significance, test the null hypothesis that in the underlying 
population, crimes are equally likely to be committed on any day of the week.

 (b) Specify the approximate p-value for this test result.

 (c) How might this result be reported in the literature?

 *19.10 A number of investigators have reported a tendency for more people to die (from nat-
ural causes, such as cancer and strokes) after, rather than before, a major holiday. 
This post-holiday death peak has been attributed to a number of factors, including 
the willful postponement of death until after the holiday, as well as holiday stress and 
post-holiday depression. Writing in the Journal of the American Medical Association 
(April 11, 1990), Phillips and Smith report that among a total of 103 elderly  California 
women of Chinese descent who died of natural causes within one week of the Har-
vest Moon Festival, only 33 died the week before, while 70 died the week after.

 (a) Using the .05 level of significance, test the null hypothesis that, in the underlying 
population, people are equally likely to die either the week before or the week after this 
holiday.

 (b) Specify the approximate p-value for this test result.

 (c) How might this result be reported in the literature?

 Answers on page 453.

 19.11 While playing a coin-tossing game in which you are to guess whether heads or tails 
will appear, you observe 30 heads in a string of 50 coin tosses.

 (a) Test the null hypothesis that this coin is unbiased, that is, that heads and tails are 
equally likely to appear in the long run.

 (b) Specify the approximate p-value for this test result.

 19.12 In Chapter 1, Table 1.1 lists the weights of 53 male statistics students. Although 
students were asked to report their weights to the nearest pound, inspection of 
Table 1.1 reveals that a disproportionately large number (27) reported weights end-
ing in either a 0 or a 5. This suggests that many students probably reported their 
weights rounded to the nearest 5 or 10 pounds rather than to the nearest pound. 
Using the .05 level of significance, test the null hypothesis that in the underlying 
population, weights are rounded to the nearest pound. (Hint: If the null hypothesis is 
true, only two-tenths of all weights should end in either a 0 or a 5, and the remain-
ing eight-tenths of all weights should end in a 1, 2, 3, 4, 6, 7, 8, or 9. Therefore, the 
situation requires a one-variable test with only two categories, and df = 1.)

 *19.13 Students are classified according to religious preference (Buddhist, Jewish, 
 Protestant, Roman Catholic, or Other) and political affiliation (Democrat, Republican, 
Independent, or Other).

RELIGIOUS PREFERENCE AND POLITICAL AFFILIATION

RELIGIOUS PREFERENCE

POLITICAL  
AFFILIATION BUDDHIST JEWISH PROTESTANT ROM. CATH. OTHER TOTAL
Democrat 30 30 40 60  40 200
Republican 10 10 40 20  20 100
Independent 10 10 20 20  40 100
Other  0  0  0  0 100 100

Total 50 50 100 100 200 500
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 (a)  Is anything suspicious about these observed frequencies?

 (b)  Using the .05 level of significance, test the null hypothesis that these two variables 
are independent.

 (c) If appropriate, estimate the effect size.

 Answers on page 454.

 *19.14 In 1912 over 800 passengers perished after the oceanliner Titanic collided with an 
iceberg and sank. The following table compares the survival frequencies of cabin 
and steerage passengers.

ACCOMMODATIONS ON THE TITANIC

SURVIVED CABIN STEERAGE TOTAL
Yes 299 186 485
No 280 526 806

Total 579 712 1291

Source: MacG. Dawson, R. J. (1995). The “unusual” episode  
data revisited. Journal of Statistical Education, 3, no. 3.

 (a) Using the .05 level of significance, test the null hypothesis that survival rates are 
independent of the passengers’ accommodations (cabin or steerage).

 (b) Assuming a significant χ2, estimate the strength of the relationship.

 (c) To more fully appreciate the importance of this relationship, calculate an odds ratio 
to determine how much more likely a cabin passenger is to have survived than a 
steerage passenger.

 Answers on page 454.

 19.15 In a classic study, Milgram et al. “lost” stamped envelopes with fictitious addresses 
(Medical Research Association, Personal Address, Friends of Communist Party, and 
Friends of Nazi Party).* One hundred letters with each address were distributed 
among four locations (shops, cars, streets, and phone booths) in New Haven 
 Connecticut, with the following results:

ADDRESS RETURNED NOT RETURNED TOTAL

Medical Research Association 72 28 100
Personal Address 71 29 100
Friends of Communist Party 25 75 100
Friends of Nazi Party 25 75 100

Total 193 207 400

 (a) Using the .05 level of significance, test the null hypothesis that address does not 
matter in the underlying population.

 (b) Specify the approximate p-value for this result.

 (c) Assuming χ2 is significant, estimate the strength of this relationship.

 (d) How might these results be reported in the literature? 

* Milgram, S., Mann, L., & Harter, L. (1965). The Lost Letter Technique: A Tool of Social 

Research. Public Opinion Quarterly, 29, 437–438.
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 (e) Collapse the original 4 × 2 table to a 2 × 2 table by combining the results for the two 
neutral addresses and for the two inflammatory addresses. Calculate the odds ratio 
for returned letters.

 19.16 Test the null hypothesis at the .01 level of significance that the distribution of blood 
types for college students complies with the proportions described in the blood bank 
bulletin, namely, .44 for O, .41 for A, .10 for B, and .05 for AB. Now, however, assume 
that the results are available for a random sample of only 60 students. The results 
are as follows: 27 for O, 26 for A, 4 for B, and 3 for AB.

  NOTE: The expected frequency for AB, (.05)(60) = 3, is less than 5, the smallest 
permissible expected frequency. Create a sufficiently large expected frequency by 
combining B and AB blood types.

 19.17 A social scientist cross-classifies the responses of 100 randomly selected people on 
the basis of gender and whether or not they favor strong gun control laws to obtain 
the following:

GENDER AND ATTITUDE TOWARD STRONG GUN CONTROL 
ATTITUDE TOWARD GUN CONTROL

GENDER FAVOR OPPOSE TOTAL
Male 40 20 60
Female 30 10 40

Total 70 30 100

 (a) Using the .05 level of significance, test the null hypothesis for gender and attitude 
toward gun control.

 (b) Specify the approximate p-value for the test result.
 (c) How might these results be reported in the literature?

 19.18 To appreciate the impact of large sample size on the value of χ2, multiply each of the 
observed frequencies in the previous question by 10 to obtain the following:

GENDER AND ATTITUDE TOWARD STRONG GUN CONTROL 
ATTITUDE TOWARD GUN CONTROL

GENDER FAVOR OPPOSE TOTAL
Male 400 200 600
Female 300 100 400

Total 700 300 1000

  NOTE: Even though the sample size has increased by a factor of 10, the proportion 
of males (and females) who favor gun control remains the same as in the previous 
question. In both questions, gun control is favored by .67 of all males (from 40/60 = 

400/600 = .67) and by .75 of all females (from 30/40 = 300/400 = .75).

 (a) Using the .05 level of significance, again test the null hypothesis for gender and 
attitude toward gun control.

 (b) Specify the approximate p-value for this test result.

 (c) Given a significant χ2 for the current analysis, estimate the effect size.
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CHAPTER

20
Tests for Ranked (Ordinal) Data

20.1 USE ONLY WHEN APPROPRIATE

20.2 A NOTE ON TERMINOLOGY

20.3 MANN–WHITNEY U TEST (TWO INDEPENDENT SAMPLES)

20.4 WILCOXON T TEST (TWO RELATED SAMPLES)

20.5 KRUSKAL–WALLIS H TEST (THREE OR MORE INDEPENDENT SAMPLES)

20.6 GENERAL COMMENT: TIES

Summary / Important Terms / Review Questions

Preview

If data are ranked with ordinal measurement or if quantitative data seem to violate the 

assumptions of the t and F tests, use the more assumption-free tests described in this 

chapter. However, do not adopt one of these tests merely as a matter of computational 

convenience since they are less likely to detect a false null hypothesis than do the 

corresponding t or F tests.
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20 .1  USE  ONLY  WHEN  APPROPR IATE

Use the Mann–Whitney U, Wilcoxon T, and Kruskal–Wallis H tests described 
in this chapter only under appropriate circumstances, that is, (1) when the 
original data are ranked (ordinal) or (2) when the original data are quantita-
tive but do not appear to originate from normally distributed populations with 
equal variances.

In the latter case, beware of non-normality when the sample sizes are small (less than 
about 10), and beware of unequal variances when the sample sizes are small and 
unequal.

When the original data are quantitative and the populations appear to be nor-
mally distributed, with equal variances, use the t and F tests.

Under these circumstances, the t and F tests are more powerful, that is, they are more 
likely to detect a false null hypothesis because they minimize the probability of a 
type II error.

20 .2  A  NOTE  ON  TERMINOLOGY

Nonparamet r i c  Tes ts

The U, T, and H tests for ranked data described in this chapter, as well as the χ 2 
test for qualitative (nominal) data discussed in the previous chapter, are often referred 
to as nonparametric tests. Parameter refers to any descriptive measure of a popula-
tion, such as the population mean. Nonparametric tests, such as U, T, and H, evaluate 
hypotheses for entire population distributions, whereas parametric tests, such as the 
t and F tests discussed in Chapters 13 through 18, evaluate hypotheses for a specific 
parameter, usually the population mean.

Dis t r i bu t ion -F ree  Tes ts

Nonparametric tests also are referred to as distribution-free tests. This name high-
lights the fact that these tests require no assumptions about the precise form of the 
population distribution. As will be noted, the U, T, and H tests can be conducted with-
out assumptions about the underlying population distributions. In contrast, the t and F 
tests require populations to be normally distributed, with equal variances.

Labe l s  Can  Be  Mis lead ing

Although widely used, these labels can be misleading. If the two population distri-
butions are assumed to have roughly similar variabilities and shapes, as in the exam-
ples for the U and T tests in the next two sections, we sacrifice the distribution-free 
status of these tests to gain a more precise parametric test of any differences in central 
tendency. Consequently, depending on the perspective of the investigator, the U, T, or 
H tests might qualify as neither nonparametric nor distribution-free.

20 .3  MANN–WHITNEY  U  TEST  
( TWO  INDEPENDENT  SAMPLES )

If high school students are asked to estimate the number of hours they spend watch-
ing TV each week, are their anonymous replies influenced by whether TV viewing 
is depicted favorably or unfavorably? More specifically, one-half of the members of 

Nonparametric Tests  

Tests, such as U, T, and H, that 

evaluate entire population distribu-

tions rather than specific popula-

tion characteristics.

Distribution-Free Tests  

Tests, such as U, T, and H, that 

make no assumptions about the 

form of the population distribution.
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a social studies class are selected at random to receive questionnaires that depict TV 
viewing favorably (as the preferred activity of better students), and the other half of the 
class receive questionnaires that depict TV viewing unfavorably (as the preferred activ-
ity of worse students). After discarding the replies of several students who responded 
not with numbers but with words such as “a lot” and “hardly at all,” the results were 
listed in Table 20.1.

Why  No t  a  t  Tes t?

When taken at face value, it might appear that the estimates in Table 20.1 could 
be tested with the customary t test for two independent samples. However, closer 
inspection reveals a complication. Each group of estimates includes one or two very 
large values, suggesting that the underlying populations are positively skewed rather 
than normal. When the sample sizes are small, as in the present experiment, viola-
tions of the normality assumption could seriously impair the accuracy of the t test by 
causing the probability of a type I error to differ considerably from that specified in 
the level of significance.

One remedy is to convert all of the estimates in Table 20.1 into ranks and to analyze 
the newly ranked data with the Mann–Whitney U test for two independent samples. 
As is true of all tests for ranked data, the U test is immune to violations of assumptions 
about normality and equal variances.

S ta t i s t i ca l  Hypo theses  fo r  U

For the TV-viewing study, the statistical hypotheses take the form

0

1

: population distribution 1 = population distribution 2

: population distribution 1 population distribution 2

H
H

in which TV viewing is depicted as the preferred activity of better students in popula-
tion 1 and of worse students in population 2.

Unspec i f i ed  D i f fe rences

Notice that the null hypothesis equates two entire population distributions. Any 
type of inequality between population distributions, whether caused by differences in 
central tendency, variability, or shape, could contribute to the rejection of H0. Strictly 
speaking, the rejection of H0 signifies only that the two populations differ because of 
some unspecified inequality, or combination of inequalities, between the original popu-
lation distributions.

Spec i f i ed  D i f fe rences

More precise conclusions are possible if both population distributions are assumed 
to have about equal variabilities and roughly similar shapes, that is, for instance, if 
both population distributions are symmetrical or if both are similarly skewed. Under 
these circumstances, the rejection of H0 signifies that the two population distributions 
occupy different locations and, therefore, possess different central tendencies that can 
be interpreted as a difference between population medians.

Ca lcu la t i on  o f  U

Table 20.2 indicates how to convert the estimates in Table 20.1 into ranks. Before 
assigning numerical ranks to the two groups, coded as groups 1 and 2, list all observa-
tions from smallest to largest for the combined groups. Beginning with the smallest 
estimate, assign the consecutive numerical ranks 1, 2, 3, and so forth, until all the 
 estimates have been converted to ranks. When two or more estimates are the same, 

Table 20.1
ESTIMATES OF 

WEEKLY 
TV-VIEWING TIME 

(HOURS)

TV 
FAVOR-

ABLE

TV 
UNFAVOR-

ABLE
12 43

4 14
5 42

20 1
5 2
5 0

20 1
10 0
49 0
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Table 20.2
CALCULATION OF U

A. COMPUTATIONAL SEQUENCE
Identify the sample sizes of group 1, n1, group 2, n2, and the combined groups, n 1.
List observations from smallest to largest for the combined groups  2 .
Assign numerical ranks to the ordered observations for the combined groups  3 .
Sum the ranks for group 1  4  and for group 2  5 .
Substitute numbers in formula  6  and verify that ranks have been assigned and added 
correctly.
Substitute numbers in formula  7  and solve for U1.
Substitute numbers in formula  8  and solve for U2.
Set U equal to whichever is smaller—U1 or U2  9 .

B. DATA AND COMPUTATIONS
 1  n1 = 8; n2 = 7; n = 8 + 7 = 15

 2 
Observations

 3 
Ranks

(1)
TV Favorable

(2)
TV Unfavorable

(1) 
TV Favorable

(2)
TV Unfavorable

0 1.5
0 1.5
1 3
2 4

4 5
5 7
5 7
5 7

10 9
12 10

14 11
20 12

42 13
43 14

49  4   R1 = 
15

72
 5     R2 = 48

 6  Computational Check:

1 2

( 1)

2

15(15 1)
72 48

2

120 120

n n
R R

  7  
1 1

1 1 2 1

( 1)

2

8(8 1)
(8)(7) 72

2

56 36 72

20

n n
U n n R

 8   2 2
2 1 2 2

( 1)

2

7(7 1)
(8)(7) 48

2

56 28 48

36

n n
U n n R  9  U =  whichever is smaller— 

U1 or U2 

 = 20
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390 TESTS FOR RANKED (ORDINAL)  DATA

assign the median of the numerical ranks that would have been assigned if the esti-
mates had been different. For example, each of the two estimates of 0 hours receives 
a rank of 1.5 (the median of ranks 1 and 2), and each of the three estimates of 5 hours 
receives a rank of 7 (the median of ranks 6, 7, and 8).

Progress Check *20.1 Beginning with a rank of 1 for the smallest observation, rank each 
of the following sets of observations:

(a) 4, 6, 9, 10, 10, 12, 15, 23, 23, 23, 31

(b) 103, 104, 104, 105, 105, 109, 112, 118, 119, 124

(c) 51, 54, 54, 54, 54, 59, 60, 71, 71, 79

Answers on page 455.

Pre l im ina ry  I n te rp re ta t i on

Differences in ranks between groups 1 and 2 are not mentioned in Table 20.2, 
but it is wise to pause at this point and to form a preliminary impression of any of 
these differences. The more one group tends to outrank the other, the larger the dif-
ference between the median ranks for the two groups and the more suspect the null 
hypothesis. Since, in Table 20.2, the median rank for group 1 equals 8 (midway 
between 7 and 9) and the median rank for group 2 equals 4, there is a tendency for 
group 1 to outrank group 2, that is, there is a tendency for the TV-favorable group 
to rank higher in their estimates of hours spent viewing TV. It remains to be seen 
whether, once variability is estimated, this result will cause the null hypothesis to 
be rejected.

After all of the observations have been ranked, find the sum of ranks for group 1, R1, 
and the sum of the ranks for group 2, R2. To verify that ranks have been assigned and 
added correctly, perform the computational check shown in Table 20.2. Finally, calcu-
late values for both U1 and U2 and set the smaller of these two values equal to U, that is, 
in which n1 and n2 represent the sample sizes of groups 1 and 2 and R1 and R2 represent 
the sum of ranks for groups 1 and 2. The value of U equals 20 for the present study.

MANN–WHITNEY U TEST (TWO INDEPENDENT SAMPLES)

 1 1
1 1 2 1

2 2
2 1 2 2

1 2

( 1)

2
( 1)

2
 smaller  U   U

n n
U n n R

n n
U n n R

U the of or

 

(20.1)

Mann–Whitney U Test 

A test for ranked data when there 

are two independent groups.

Tab le   fo r  U  D i s t r i bu t ion

Critical values of U are supplied for values of n1 and n2 (no larger than 20 each) in 
Table E, Appendix C.  Notice that there are two sets of tables, one for non-directional 
tests and one for directional tests. Both tables supply critical values of U for hypoth-
esis tests at the .05 level (light numbers) and the .01 level (dark numbers).

To find the correct critical U, identify the entry in the cell intersected by n1 and n2, 
the sample sizes of groups 1 and 2. For the present study, given a non-directional test 
at the .05 level of significance with an n1 of 8 and an n2 of 7, the value of the critical 
U equals 10.
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Dec is ion  Ru le

An unusual feature of hypothesis tests involving U (and T, described later) is that 
the null hypothesis will be rejected only if the observed U is less than or equal to the 
critical U. Otherwise, if the observed U exceeds the critical U, the null hypothesis will 
be retained.

Exp lana t ion  o f  Topsy -Tu rvy  Ru le

To appreciate this topsy-turvy decision rule for the U test, look more closely at U. 
Although not apparent in Formula 20.1, U represents the number of times that indi-
vidual ranks in the lower-ranking group exceed individual ranks in the higher-ranking 
group. When a maximum difference separates two groups—because no rank in the 
lower-ranking group exceeds any rank in the higher-ranking group—U equals 0. At the 
other extreme, when a minimum difference separates two groups—because, as often as 
not, individual ranks in the lower-ranking group exceed individual ranks in the higher-
ranking group—U equals a large number given by the expression

1 2

2

n n

which is 28 for the present study.

HYPOTHESIS TEST SUMMARY
MANN–WHITNEY U TEST (TWO INDEPENDENT SAMPLES) 

(Estimates of TV Viewing)

Research Problem

Are high school students’ estimates of their weekly TV-viewing time influ-
enced by depicting TV viewing as the preferred activity of either better (1) or 
worse (2) students?

Statistical Hypotheses

0

1

: population distribution 1= population distribution 2

: population distribution 1 population distribution 2

H

H

Decision Rule

Reject H0 at the .05 level of significance if U ≤10 (from Table E in Appendix C, 
given n1 = 8 and n2 = 7).

Calculations

20 (See Table 20.2 for computations.)U

Decision

Retain H0 at the .05 level of significance because U = 20 exceeds 10.

Interpretation

There is no evidence that depicting TV viewing as the preferred activity of 
either better or worse students influences high school students’ estimates of 
their weekly TV-viewing times.
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392 TESTS FOR RANKED (ORDINAL)  DATA

Ordinarily, the difference in ranks between groups is neither maximum nor mini-
mum, and U equals some intermediate value that, to be interpreted, must be compared 
with the appropriate critical U value. In the present study, since the observed U of 
20 exceeds the critical U of 10, only a moderate difference separates the two groups, 
and the null hypothesis is retained.

Progress Check *20.2 Does it matter whether leaders of therapy groups adopt either 
a directive or nondirective role to facilitate growth among group members? Six randomly 
selected graduate trainees are taught to be directive, and six other trainees are taught to be 
nondirective. Subsequently, each trainee is randomly assigned to lead a small therapy group. 
Without being aware of the nature of the experiment, an experienced group leader ranks each 
of the 12 groups from least (1) to most (12) growth promoting, based on anonymous diaries 
submitted by all members of each group. The results are as follows:

GROWTH-PROMOTING RANKS FOR PATIENTS   
WITH DIFFERENT LEADERS

DIRECTIVE LEADER NONDIRECTIVE LEADER
1 9

2 6
4.5 12

11 10
3 7
4.5 8

(a) Use U to test the null hypothesis at the .05 level of significance.

(b) Specify the approximate p-value for this test result.

Answers on page 455.

20 .4  WILCOXON  T  TEST  ( TWO  RELATED  SAMPLES )

The previous experiment failed to support the investigator’s hunch that estimates of 
TV-viewing time could be influenced by depicting it as a preferred activity of either 
better or worse students. Noting the large differences among the estimates of students 
within the same group, the investigator might attempt to reduce this variability—and 
improve the precision of the analysis—by matching students with the aid of some rel-
evant variable (see Section 15.1). For instance, some of the variability among estimates 
might be due to differences in home environment. The investigator could match for 
home environment by using pairs of students who are siblings. One member of each 
pair is randomly assigned to one group, and the other sibling is assigned automatically 
to the second group. As in the previous experiment, the questionnaires depict TV view-
ing as the preferred activity of either better or worse students. The results for the eight 
pairs of students are listed in the middle portion of Table 20.3.

Why  No t  a  t  Tes t?

It might appear that the eight difference scores in Table 20.3 could be tested with 
the t test for two matched samples. But once again, there is a complication. The set of 
difference scores appears to be symmetrical but somewhat non-normal, with no obvi-
ous cluster of scores in the middle range. When sample sizes are small, as in the present 
experiment, violations of the normality assumption can seriously impair the accuracy 
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of the t test for two related samples. One remedy is to rank all difference scores and to 
analyze the resulting ranked data with the Wilcoxon T test.

S ta t i s t i ca l  Hypo theses  fo r  T

For the present study, the statistical hypotheses take the form

0

1

: population distribution 1 = population distribution 2

: population distribution 1 population distribution 2

H
H

where TV viewing is depicted as the preferred activity of better students in popula-
tion 1 and of worse students in population 2.

Table 20.3
CALCULATION OF T

A. COMPUTATIONAL SEQUENCE
For each pair of observations, subtract the second observation from the first observation to obtain a difference score 1.
Ignore difference scores of zero, and without regard to sign, list the remaining difference scores from smallest to 
 largest  2 .
Assign numerical ranks to the ordered difference scores (still without regard to sign)  3 .
List the ranks for positive difference scores in the plus ranks column  4  and list the ranks for negative difference scores 
in the minus ranks column  5 .
Sum the ranks for positive differences, R+  6 , and sum the ranks for negative differences, R–  7.
Determine n, the number of nonzero difference scores  8 .
Substitute numbers in formula  9  to verify that ranks have been assigned and added correctly.
Set T equal to whichever is smaller—R+ or R–  10 .

B. DATA AND COMPUTATIONS
Observations Ranks

(1) (2) 1 2 3 4 5
Pairs of TV TV Difference Ordered Plus Minus
Students Favorable Unfavorable Scores Scores Ranks Ranks Ranks

A 2 0 2 2 1.5 1.5
B 11 5 6 –2 1.5 1.5
C 10 12 –2 3 3 3
D 6 6 0 5 4 4
E 7 2 5 6 5 5
F 43 33 10 8 6 6
G 33 25 8 10 7   7         

H 5 2 3 6  R+ = 26.5   7  R– = 1.5

 8  n = 7
 9  Computational check:

 

( 1)

2

7(7 1)
26.5 1.5

2

28 28

n n
R R

 10  T = whichever is smaller—R+ or R–

   T = 1.5
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394 TESTS FOR RANKED (ORDINAL)  DATA

where R+ and R– represent the sum of the ranks for positive and negative difference 
scores. The value of T equals 1.5 for the present study.

Tab le   fo r  t he  T  D i s t r i bu t ion

Critical values of T are supplied for values of n up to 50 in Table F, Appendix C. There 
are two sets of tables, one for nondirectional tests and one for directional tests. Both tables 
supply critical values of T for hypothesis tests at the .05 and .01 levels of significance.

To find the correct critical T value, locate the cell intersected by n, the number of 
nonzero difference scores, and the desired level of significance, given either a nondi-
rectional or a directional test. In the present example, in which n equals 7, the critical T 
equals 2 for a nondirectional test at the .05 level of significance.

Dec is ion  Ru le

As with U, the null hypothesis will be rejected only if the observed T is less than 
or equal to the critical T. Otherwise, if the observed T exceeds the critical T, the null 
hypothesis will be retained. The properties of T are similar to those of U. The greater 
the discrepancy is in ranks between positive and negative difference scores, the smaller 
the value of T will be. In effect, T represents the sum of the ranks for the lower-ranking 
set of difference scores. For example, when the lower-ranking set of difference scores 
fails to appear in the rankings, because all difference scores have the same sign, the 

As with the null hypothesis for U, that for T equates two entire population distribu-
tions. Strictly speaking, the rejection of H0 signifies only that the two populations differ 
because of some unspecified inequality, or combination of inequalities, between the 
original population distributions. More precise conclusions about central tendencies 
are possible only if it can be assumed that both population distributions have roughly 
similar variabilities and shapes.

Ca lcu la t i on  o f  T

Table 20.3 shows how to calculate T. When ordering difference scores from small-
est to largest, ignore all difference scores of zero and temporarily treat all negative 
difference scores as though they were positive. Beginning with the smallest difference 
score, assign the consecutive numerical ranks, 1, 2, 3, and so forth, until all nonzero 
difference scores have been ranked. When two or more difference scores are the same 
(regardless of sign), assign them the median of the numerical ranks that would have 
been assigned if the scores had been different. For example, each of the two difference 
scores 2 and –2 receives a rank of 1.5, the median of ranks 1 and 2.

Once numerical ranks have been assigned, those ranks associated with positive dif-
ference scores should be listed in the plus ranks column, and those associated with 
negative difference scores should be listed in the minus ranks column. Next, find the 
sum of all ranks for positive difference scores, R+, and the sum of all ranks for negative 
difference scores, R–. (Notice that the more one group of difference scores  outranks 
the other, the larger the discrepancy between the two sums of ranks, R+ and R–, and the 
more suspect the null hypothesis will be.) To verify that the ranks have been assigned 
and added correctly, perform the computational check in Table 20.3. Finally, the value 
of T equals the smaller value, either R+ or R–, that is,

WILCOXON T TEST (TWO RELATED SAMPLES)

 the smaller of orT R R  (20.2)

Wilcoxon T Test  

A test for ranked data when there 

are two related groups.

Reminder:  

H0 should be rejected only if the 

observed T (or U) is less than or 

equal to the critical T (or U).

Witte11e_c20.indd   394 11/18/2016   6:23:42 PM



value of T equals zero, and the null hypothesis is suspect. In the present study, as the 
calculated T of 1.5 is less positive than the critical T of 2, the null hypothesis is rejected.

Repor t s  i n  t he  L i te ra tu re

For the current study, a report might read as follows:

Given that students have been matched for home environment, estimates of 
TV-viewing time tend to be larger when TV viewing is depicted as the preferred 
activity of better rather than worse students [T (n = 7) = 1.5, p < .05].

Progress Check *20.3 Does a quit-smoking workshop cause a decline in cigarette smok-
ing? The daily consumption of cigarettes is estimated for a random sample of nine smokers 

HYPOTHESIS TEST SUMMARY
WILCOXON t TEST (TWO RELATED SAMPLES)  

(ESTIMATE OF TV VIEWING)

Research Problem

If high school students are matched for home environment, will depicting TV 
viewing as the preferred activity of better students (1) or poorer students 
(2) influence their estimates of weekly TV-viewing time?

Statistical Hypotheses

0

1

: population distribution 1= population distribution 2

: population distribution 1 population distribution 2

H

H

Decision Rule

Reject H0 at the .05 level if T ≤ 2 (from Table F in Appendix C, given n = 7).

Calculation
1.5 (See Table 20.3 for computations.)T

Decision

Reject H0 at the .05 level of significance because T = 1.5 is less than 2.

Interpretation

If high school students are matched for home environment, depicting TV 
viewing as the preferred activity of either better or worse students will influ-
ence their estimates of TV-viewing time. Their estimates of TV-viewing time 
tend to be larger when TV viewing is depicted as the preferred activity of 
better students.
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396 TESTS FOR RANKED (ORDINAL)  DATA

during each month before (1) and after (2) their attendance at a quit-smoking workshop con-
sisting of several hours of films, lectures, and testimonials. The results are as follows:

DAILY CIGARETTE CONSUMPTION
SMOKER BEFORE (1) AFTER (2)

A 22 14
B 15 7
C 10 0
D 21 22
E 14 10
F 3 3
G 11 10
H 8 7
I 15 12

(a) Why might the Wilcoxon T test be preferred to the customary t test for these data?

(b) Use T to test the null hypothesis at the .05 level of significance.

(c) Specify the approximate p-value for this test result.

(d) How might this result be reported in the literature?

Answers on page 455.

20 .5  KRUSKAL–WALL IS  H  TEST  ( THREE  
OR  MORE  INDEPENDENT  SAMPLES )

Some parents are concerned about the amount of violence in children’s TV cartoons. 
During five consecutive Saturday mornings, 10-minute cartoon sequences were ran-
domly selected and videotaped from the offerings of each of three TV cartoon chan-
nels, coded as A, B, and C. A child psychologist, who cannot identify the source of 
each cartoon, ranked the 15 videotapes from least violent (1) to most violent (15). 
Based on these ranks, as shown in Table 20.4, can it be concluded that the underly-
ing populations of cartoons for the three TV channels rank differently in terms of 
violence?

Why  No t  an  F  Tes t?

An inspection of the numerical ranks in Table 20.4 might suggest an F test for 
three independent samples within the context of a one-way ANOVA. However, when 
original observations are numerical ranks, as in the present example, there is no basis 
for speculating about whether the underlying populations are normally distributed 
with equal variances, as assumed in ANOVA. It is advisable to use a test, such as the 
Kruskal–Wallis H test, that retains its accuracy, even though these assumptions might 
be violated.

S ta t i s t i ca l  Hypo theses  fo r  H

For the TV cartoon study, the statistical hypotheses take the form

0

1 0

: population A = population B = population C

: is .

 

false

H
H H

where A, B, and C represent the three TV cartoon channels.
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This null hypothesis equates three entire population distributions. Unless the popu-
lation distributions can be assumed to have roughly similar variabilities and shapes, 
the rejection of H0 will signify only that two or more of the populations differ in some 
unspecified manner because of differences in central tendency, variability, shape, or 
some combination of these factors. When the original observations consist of numeri-
cal ranks, as in the present example, there is no obvious basis for speculating that the 
population distributions have similar shapes. Therefore, if H0 is rejected, it will be 
impossible to pinpoint the precise differences among populations.

TABLE 20.4 
CALCULATION OF H

A. COMPUTATIONAL SEQUENCE
Find the sum of ranks for each group  1.
Identify the sizes of group 1, n1, group 2, n2, group 3, n3, and the combined groups, n  2.

Substitute numbers in formula  3  and verify that ranks have been added correctly.
Substitute numbers in formula  4  and solve for H.

B. DATA AND COMPUTATIONS

Ranks

(1) (2) (3)

A B C

8 4.5 10

4.5 14 15

2 12 6

13 7 1

10 3 10

 1  R1 = 37.5          R2 = 40.5   R3 = 42

 2  n1 = 5          n2 = 5   n3 = 5  n = 5 + 5 + 5 = 15

 3  Computational check:

R R R
n n

1 2 3

1

2

37 5 40 5 42
15 15 1

2

120 120

( )

. .
( )

4   H
n n

R

n

R

n

R

n
n

12

1
3 1

12

15 15 1

37 5

1
2

1

2
2

2

3
2

3( )
( )

( )

( . )) ( . ) ( )
( )

.

.

2 2 2

5

40 5

5

42

5
3 15 1

12

240

4810 5

5
48

005 962 1 48

48 11 48 0 11

[ . ]

. .
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398 TESTS FOR RANKED (ORDINAL)  DATA

Ca lcu la t i ng  H

Table 20.4 shows how to calculate H. (If the original data had been quantitative 
rather than ranked, then the first step would have been to assign numerical ranks—
beginning with 1 for the smallest, and so forth—for the combined three groups. Essen-
tially the same ranking procedure is followed for H as for U in Section 20.3.) When ties 
occur between ranks, assign a median rank. In Table 20.4, two cartoons are assigned 
ranks of 4.5, the median of ranks 4 and 5.

Find the sums of ranks for groups 1, 2, and 3, that is, R1, R2, and R3. (Notice that 
when the sample sizes are equal, the larger the differences are between these three 
sums, the more the three groups differ from each other, and the more suspect is the 
null hypothesis. Otherwise, to gain a preliminary impression when the sample sizes 
are unequal, compare the median ranks of the various groups.) Use the computational 
check in Table 20.4 to verify that the ranks have been added correctly. Finally, the 
value of H can be determined from the following formula:

KRUSKAL–WALLIS H TEST (THREE OR MORE INDEPENDENT SAMPLES)

 

2
12

3( 1)
( 1)

i

i

R
H n

n n n
 

(20.3)
Kruskal–Wallis H Test  

A test for ranked data when there 

are more than two independent 

groups.

where n equals the combined sample size of all groups; Ri represents the sum of ranks 
of the ith group; and ni represents the sample size of the ith group. Each sum of ranks, 
Ri, is squared and divided by its sample size. The value of H equals 0.11 for the present 
study.

Tab le   fo r  t he  χ 2 D i s t r i bu t ion

When the sample sizes are very small, the critical values of H must be obtained from 
special tables. When each sample consists of at least four observations, as is ordinar-
ily the case, relatively accurate critical values can be obtained from the χ 2 distribution 
(Table D in Appendix C). As usual, the value of the critical χ 2 appears in the cell inter-
sected by the desired level of significance and the number of degrees of freedom. The 
number of degrees of freedom, df, can be determined from

DEGREES OF FREEDOM H  TEST

 1df number of groups  (20.4)

Dec is ion  Ru le

In contrast with the decision rules for U and T, the null hypothesis will be rejected 
only if the observed H is equal to or more positive than the critical χ 2. The larger the 
differences are in ranks among groups, the larger the value of H and the more suspect 
will be the null hypothesis. In the present study, since the observed H of 0.11 is less 
positive than the critical χ 2 of 5.99, the null hypothesis is retained.

H  Tes t  I s  Nond i rec t iona l

Because the sum of ranks for the ith group, Ri, is squared in Formula 20.3, the H 
test—like the F test and χ 2 test—is always nondirectional.
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HYPOTHESIS TEST SUMMARY
KRUSKAL–WALLIS H TEST (THREE INDEPENDENT SAMPLES)  

(VIOLENCE IN TV CARTOONS)

Research Problem

Does violence in cartoon programming, as judged by a child psychologist, 
differ for three TV cartoon channels, coded as A, B, and C?

Statistical Hypotheses

0

1 0

: population A population B population C

: is false.

H

H H

Decision Rule

Reject H0 at the .05 level of significance if H  ≥ 5.99 (from Table D, 
Appendix C, given df  = 2).

Calculations
0.11(See Table 20.4 for calculations.)H

Decision

Retain H0 at .05 level of significance because H = 0.11 is less than 5.99.

Interpretation

There is no evidence that violence in cartoon programming differs for the three TV 
cartoon channels.

Progress Check *20.4 A consumers’ group wishes to determine whether motion picture 
ratings are, in any sense, associated with the number of violent or sexually explicit scenes in 
films. Five films are randomly selected from among each of the five ratings (NC-17: No One 17 
and Under Admitted; R: Restricted; PG-13: Parents Strongly Cautioned; PG: Parental Guidance 
Suggested; and G: General Audiences), and a trained observer counts the number of violent or 
sexually explicit incidents in each film to obtain the following results:

NUMBER OF VIOLENT OR SEXUALLY EXPLICIT INCIDENTS
NC-17 R PG-13 PG G

15 8 12 7 6
20 16 7 11 0
19 14 13 6 4
17 10 8 4 0
23 7 9 9 2

(a) Why might the H test be preferred to the F test for these data?

(b) Use H to test the null hypothesis at the .05 level of significance.

(c) Specify the approximate p-value for this test result.

Answers on page 456.
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20 .6  GENERAL  COMMENT:  T IES

In addition to the customary assumption about random sampling, all tests in this 
chapter assume that the underlying distributions are continuous, as discussed in 
 Section 1.6. Therefore, since no two observations or ranks should be exactly the same, 
there should not be any ties in ranks. Refer to more advanced statistics books for a 
corrected version of the test if (1) the observed value of U, T, or H is in the vicinity of 
its critical value but is not statistically significant and (2) there are more than a  
few ties.*

Summary

This chapter describes three different tests of the null hypothesis, using ranked data 
for two independent samples (Mann–Whitney U test), two related samples (Wilcoxon T 
test), and three or more independent samples (Kruskal–Wallis H test). Being relatively 
free of assumptions, these tests can replace the t and F tests whenever populations can-
not be assumed to be normally distributed, with equal variances.

Once observations have been expressed as ranks, each test prescribes its own spe-
cial measure of the difference in ranks between groups, as well as tables of critical 
values for evaluating significance.

Strictly speaking, U, T, and H test the null hypothesis that entire population distri-
butions are equal. The rejection of H0 signifies merely that populations differ in some 
unspecified manner. If populations are assumed to have roughly similar variabilities 
and shapes, then the rejection of H0 will signify that the populations differ in their 
central tendencies.

Although the U, T, and H tests assume that there are no ties in ranks, the occurrence 
of ties can be ignored except in those cases where a test just fails to reach statistical 
significance and more than a few ties occur.

Important Terms

Nonparametric tests Distribution-free tests

Mann–Whitney U test Wilcoxon T test

Kruskal–Wallis H test

REV IEW QUEST IONS

 20.5 A group of high-risk automobile drivers (with three moving violations in one year) 
are required, according to random assignment, either to attend a traffic school or to 
perform supervised volunteer work. During the subsequent five-year period, these 
same drivers were cited for the following number of moving violations:

*In the unlikely event that you will be using this test with sample sizes larger than 20 each, 

use the large sample approximation discussed in, for example, Conover, W. (1999). Practical 
Nonparametric Statistics New York, NY: Wiley.
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NUMBER OF MOVING VIOLATIONS
TRAFFIC SCHOOL VOLUNTEER WORK

0 26
0 7

15 4
9 1
7 1
0 14
2 6

23 10
7
8

 (a) Why might the Mann–Whitney U test be preferred to the t test for these data?

 (b) Use U to test the null hypothesis at the .05 level of significance.

 (c) Specify the approximate p-value for this test result.

 20.6 A social psychologist wishes to test the assertion that our attitude toward other peo-
ple tends to reflect our perception of their attitude toward us. A randomly selected 
member of each of 12 couples who live together is told (in private) that his or her 
partner has rated that person at the high end of a 0 to 100 scale of trustworthi-
ness. The other member is told (also in private) that his or her partner has rated 
that person at the low end of the trustworthiness scale. Each person is then asked 
to estimate, in turn, the trustworthiness of his or her partner, yielding the following 
results. (According to the original assertion, the people in the trustworthy condition 
should give higher ratings than should their partners in the untrustworthy condition.)

TRUSTWORTHINESS RATINGS
COUPLE TRUSTWORTHY (1) UNTRUSTWORTHY (2)

A 75 60
B 35 30
C 50 55
D 93 20
E 74 12
F 47 34
G 95 22
H 63 63
I 44 43
J 88 79
K 56 33
L 86 72

 (a) Use T to test the null hypothesis at the .01 level.

 (b) Specify the approximate p-value for this test result.
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 20.7 Does background music influence the scores of college students on a read-
ing  comprehension test? Sets of 10 randomly selected students take a reading 
 comprehension test with rock, country-western, or classical music in the back-
ground. The results are as follows (higher scores reflect better comprehension):

READING COMPREHENSION SCORES
ROCK (1) COUNTRY-WESTERN (2) CLASSICAL (3)

90 99 52
11 94 75
82 95 91
67 23 94
98 72 97
93 81 31
73 79 83
90 28 85
87 94 100
84 77 69

 (a) Why might the H test be preferred to the F test for these data?

 (b) Use H to test the null hypothesis at the .05 level of significance.

 20.8 Use U rather than t to test the results in Review Question 14.11 on page 270.

 20.9 Use T rather than t to test the effects of physical exercise described in Review 
 Question 15.7 on page 288.

 20.10 Use H rather than F to test the weight change data recorded in Review Question 
16.13 on page 321.

 20.11 Noting that the calculations for the H test tend to be much easier than those for the 
F test, one person always uses the H test. Any objection?
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CHAPTER

21
Postscript: Which Test?

21.1 DESCRIPTIVE OR INFERENTIAL STATISTICS?

21.2 HYPOTHESIS TESTS OR CONFIDENCE INTERVALS?

21.3 QUANTITATIVE OR QUALITATIVE DATA?

21.4 DISTINGUISHING BETWEEN THE TWO TYPES OF DATA

21.5 ONE, TWO, OR MORE GROUPS?

21.6 CONCLUDING COMMENTS

Review Questions

Preview

Congratulations! You have reached the final chapter. This chapter summarizes when 

it is appropriate to use the various statistical tests described in the book, and it should 

serve you well whenever you are doing simple statistical analyses. Furthermore, it can 

be a point of departure for more complex types of statistical analysis—if you consult 

someone more knowledgeable in statistics, or refer to a more advanced statistics book, 

or surf the many statistics websites on the Internet.
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Although by no means exhaustive, the statistical tests in this book represent those 
most frequently encountered in straightforward investigations, including many reported 
in the research literature. If you initiate a test, there is a good chance that it also will 
be selected from among these tests. It is worthwhile, therefore, to review briefly the 
main themes of this book, particularly from the standpoint of selecting the appropriate 
statistical test for a given problem.

21 .1  DESCR IPT IVE  OR  INFERENT IAL  STAT IST ICS?

Desc r ip t i ve  S ta t i s t i cs

Is your intent descriptive because you wish merely to summarize existing data, or 
is your intent inferential because you wish to generalize beyond existing data? For 
instance, a data-oriented marriage counselor, who works with clients in groups, might 
suspect that some of the marital stress of current clients is attributable to the length, 
in years, of their marital relationships. Accordingly, during an orientation session for 
the group, the marriage counselor describes the mean number of years—or if there are 
outliers, the median number of years—of the marital relationships. Wishing merely to 
summarize this information for current clients, the counselor’s intent is  descriptive, 
and it is appropriate to use any tools—tables, graphs, means, standard deviations, 
 correlations—that enhance communication.

I n fe ren t ia l  S ta t i s t i cs

On the other hand, assuming that the current group is representative of a much 
broader spectrum of clients, the counselor might use the same mean to estimate, pos-
sibly with a confidence interval, the mean years of marital relationships among all 
couples who seek professional help. Wishing to generalize beyond current clients, the 
counselor’s intent is inferential, and it is appropriate to use confidence intervals and 
hypothesis tests as aids to generalizations.

21 .2  HYPOTHES IS  TESTS  OR  CONF IDENCE  INTERVALS?

Traditionally, in the behavioral sciences, hypothesis tests have been preferred to con-
fidence intervals, and that preference probably would be expressed by the counselor 
if he or she chooses to conduct an investigation rather than a survey. For example, 
suspecting that the early years of marriage are both more stressful and more likely 
to produce clients for marital therapy, the counselor might use a t test to determine 
whether the mean number of years of marital relationships for a randomly selected 
group of clients is significantly less than that for a randomly selected group of 
 nonclients.

The present review, as summarized in Figure 21.1, also reflects this preference for 
hypothesis tests, even though, if the null hypothesis is rejected, you should consider 
estimating the possible size of an effect or true difference with a confidence interval or 
other estimates of effect size, such as d, η2, or c

2.

21 .3  QUANT ITAT IVE  OR  QUAL ITAT IVE  DATA?

When attempting to identify the appropriate hypothesis test for a given situation,  
first decide whether observations are quantitative or qualitative. More specifically, first  
decide whether the observations are quantitative because they are numbers that reflect 
an amount or a count (with an interval/ratio level of measurement) or qualitative 

Witte11e_c21.indd   404 11/1/2016   8:22:27 PM



 21.3 QUANTITATIVE OR QUALITATIVE DATA?  405

because they are words or codes that reflect classes or categories (with a nominal or 
ordinal level of measurement).

Quant i ta t i ve  Da ta

Being numbers that reflect a count, years of marital relationships are quantitative 
observations with interval/ratio measurement. When observations are quantitative, the 
appropriate statistical test should be selected from the various t or F tests or from their 
nonparametric counterparts, as described later.

FIGURE 21.1 

Guidelines for selecting the appropriate hypothesis test.

Wilcoxon

T Test

(Ch. 20)

Mann-Whitney

U Test

(Ch. 20)

t for two

related samples

(Ch. 15)

t for two

independent

samples

(Ch. 14)

t for a

correlation

coefficient

(Ch. 15)

NO
(DIFFERENCE)

NO

INDEPENDENT

SAMPLES

YES

RELATED

SAMPLES

t for one

sample

(Ch. 13)

YES
(RELATIONSHIP)

[If any assumption is seriously violated

or original observations  are ranks . . .]

[Are paired observations

evaluated for a relationship?]

TWO GROUPS

[Are quantitative observations paired?]

NO YES

[Are observations cross-classified?]

TYPE OF DATA

[Are observations numbers?]

One-Factor

F Test

(Ch. 16)

Two-Factor

F Test

(Ch. 18)

NO

F for ANOVA

[Are quantitative

observations classified

for two factors?]

NUMBER OF GROUPS

YES

Two-Variable

χ2 Test

(Ch. 19)
Repeated-

measures

F Test

(Ch. 17)

ONE THREE NO YESTWO

YES

QUANTITATIVE

NO

QUALITATIVE

[Are multiple observations

made for same subject?]

Kruskal-Wallis

H Test

(Ch. 20)

One-Variable

χ2 Test

(Ch. 19)

Witte11e_c21.indd   405 11/1/2016   8:22:27 PM



406 POSTSCRIPT:  WHICH TEST?

Qua l i ta t i ve  Da ta

To illustrate the other possibility, when observations are qualitative and measure-
ment is nominal, assume that the counselor wishes to test the prevalent notion that 
females are more likely than males to seek professional help. Now, clients are merely 
designated as either female or male, and because these observations reflect classes, 
they are qualitative. When observations are qualitative, the appropriate test is either a 
one- or two-variable χ2 test, as suggested in Figure 21.1.

One-  o r  Two-Va r iab le  χ2 Tes t?

If qualitative observations are categorized in terms of only one variable, as in the 
present case, the one-variable χ2 test is appropriate. If, however, qualitative obser-
vations are cross-classified in terms of two variables, the two-variable χ2 test is 
appropriate. For example, clients could be cross-classified in terms of both gender 
(female or male) and the marital status of their parents (married or separated) in 
order to test for any relationship between clients’ gender and the marital status of 
their parents.

21 .4  D IST INGU ISH ING  BETWEEN  
THE  TWO  TYPES  OF  DATA

The distinction between quantitative and qualitative observations is crucial, and it is 
usually fairly easy, as suggested earlier. First, always make the distinction between 
quantitative and qualitative data. In those cases where you feel uncomfortable about 
making this distinction, consider the following guidelines:

Focus ing  on  a  S ing le  Obse rva t ion

When you have access to the original observations, focus on any single observa-
tion. If an observation represents an amount or a count, expressed numerically, it is 
quantitative; if it represents a class or category, described by a word or a code, it 
is qualitative.

Focus ing  on  Numer ica l  Summar ies

When you do not have access to the original observations, focus on any numerical 
summaries specified for the data. If means and standard deviations are specified, the 
data are quantitative; if only frequencies are specified, the data are qualitative.

Focus ing  on  Key  Words

When, as in the case of the questions at the end of this chapter, you have neither 
access to the original observations nor numerical summaries of data, read the descrip-
tion of the study very carefully, attending to key words, such as scores or means, 
which, if present, typify quantitative data or, if absent, typify qualitative data.

I f  A l l  E l se  Fa i l s

If all else fails, try visualizing the value of a single observation, whether a mean-
ingful number (quantitative) or a word or numerical code (qualitative), based on any 
 information given. A careful evaluation, combined with an occasional speculation, 
usually reveals whether data are quantitative or qualitative.
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21 .5  ONE,  TWO,  OR  MORE  GROUPS?

Given that observations such as the years of marital relationships are quantitative, 
either t or F tests are appropriate, assuming that no assumption is seriously violated. 
Now, the key issue is whether there are one, two, or more groups.

One  G roup

If only one group is involved, then a t test for a single population mean is appropri-
ate. For example, the counselor determines whether, among the population of clients, 
the mean number of years of their marital relationships differs from a specific number, 
such as seven years, to evaluate the popularly acclaimed “seven-year itch” as a source 
of marital stress.

Two  G roups

If, as suggested previously, the counselor wishes to determine whether the mean 
number of years of marital relationships for clients is significantly less than that for a 
group of nonclients, two groups are involved and a t test is appropriate. In the absence 
of any pairing, the two samples are independent, and the appropriate t test is for two 
population means (with independent samples).

Mean  D i f fe rence  o r  Co r re la t i on?

If observations are paired, the appropriate t test depends on the intent of the 
 investigator—whether there is a concern about a mean difference or a correlation. If 
the paired observations are evaluated for a significant mean difference, the appropriate 
t test is for two population means (with related samples). This would be the case if, for 
example, each client is paired or matched with a particular nonclient, possibly based on 
their chronological age and income, and then a t test is based on the mean difference in 
marital years between clients and nonclients.

If, on the other hand, the paired observations are being evaluated for a significant 
correlation, the appropriate t test is for a population correlation coefficient. This would 
be the case if the correlation between years of courtship and years of marriage for 
clients were tested, possibly to determine whether, for instance, there’s a tendency for 
short courtships to be associated with early marital difficulties.

More  Than  Two  G roups  w i th  Repea ted  Measu res

If the counselor wishes to determine whether scores on an anxiety test change for 
the same group of clients at three different times (the initial group meeting, the final 
group meeting, and six months after the final group meeting), the F test for repeated-
measures ANOVA would be appropriate.

More  Than  Two  G roups  w i th  One  o r  Two  Fac to rs

If the counselor wishes to determine whether significant differences exist among 
the mean years of marital relationships for three randomly selected groups of  clients  
with different ethnic backgrounds—African-American, Asian-American, and 
 Hispanic—three population means along a single factor are involved, and the F test 
for one-factor ANOVA is appropriate. If, however, the mean years of marital relation-
ships are evaluated according to the levels of two factors—for instance, according 
to both ethnic background and gender—then the F test for two-factor ANOVA is 
appropriate.
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21 .6  CONCLUD ING  COMMENTS

Nonparamet r i c  Tes ts

Figure 21.1 also includes the various nonparametric counterparts for selected t and F  
tests. Since these nonparametric tests are less likely to detect any effect, they are to be 
used only in those rare instances when some assumption is seriously violated or when 
the original observations are ranked.

Use  F igu re  21 .1

This chapter concludes with a series of questions that require you to identify the 
appropriate statistical test from among those discussed in this book. Figure 21.1 should 
serve as a helpful guide when you’re answering these questions. For ease of reference, 
Figure 21.1 also appears inside the back book cover.

REV IEW QUEST IONS

Note : Decide first whether data are quantitative or qualitative. Unless mentioned otherwise, 
no assumption has been seriously violated, and, therefore, the appropriate test should be 
selected from among t, F, or χ2 tests. Specify the precise form of the test. For example, 
specify that the t test is for two population means with related samples, or that the χ2 test is 
for two variables, or that the F test is for repeated measures.

 *21.1 A political scientist wishes to determine whether males and females differ with 
respect to their attitudes toward the funding of energy conservation programs by 
the federal government. She randomly selects equal numbers of males and females 
and asks each person if he or she thinks that the current level of federal funding of 
energy conservation should be increased, remain the same, or be decreased.

 *21.2 Another political scientist also wishes to determine, in more detail, whether males 
or females differ with respect to their attitudes toward the funding of energy con-
servation programs by the federal government. He randomly selects equal numbers 
of males and females. After being informed about the current budget for these pro-
grams, each person is asked to estimate, to the nearest $100 million, an appropriate 
level of spending.

 *21.3 To determine whether speed reading influences reading comprehension, a researcher 
obtains two reading comprehension scores for each student in a group of high school 
students, once before and once after training in speed reading.

 Answers on page 456.

 21.4 Another investigator criticizes the design of the previous study, saying that high 
school students should have been randomly assigned to either the special training 
condition or a control condition and tested just once at the end of the study. Subse-
quently, she conducts this study.

 *21.5 An educator wishes to determine whether chance can reasonably account for the 
fact that 40 of the top 100 students come from the northern district (rather than the 
eastern, southern, or western districts) of a large metropolitan school district.
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 *21.6 To determine whether a new sleeping pill has an effect that varies with dosage,  
a researcher randomly assigns adult insomniacs, in equal numbers, to receive either 
0, 4, or 8 grams of the sleeping pill. The amount of sleeping time is measured for 
each subject during an 8-hour period after the administration of the dosage.

 Answers on page 456.

 21.7 An investigator wishes to test whether creative artists are equally likely to be born 
under each of the 12 astrological signs.

 21.8 To determine whether there is a relationship between the sexual codes of primitive 
tribes and their behavior toward neighboring tribes, an anthropologist consults avail-
able records, classifying each tribe on the basis of its sexual codes (permissive or 
repressive) and its behavior toward neighboring tribes (friendly or hostile).

 *21.9 In a study of group problem solving, a researcher randomly assigns college students 
either to unstructured groups of 2, 3, or 4 students (without a designated leader) or 
to structured groups of 2, 3, or 4 students (with a designated leader) and measures 
the amount of time required to solve a complex puzzle.

 *21.10 A school psychologist compares the reading comprehension scores of migrant chil-
dren who, as a result of random assignment, are enrolled in either a special bilingual 
reading program or a traditional reading program.

 *21.11 Another school psychologist wishes to determine whether reading comprehension 
scores are associated with the number of months of formal education, as reported 
on school transcripts, for a group of 12-year-old migrant children.

 Answers on page 456.

 21.12 Over a century ago, the British surgeon Joseph Lister investigated the relationship 
between the operating room environment (presence or absence of disinfectant) and 
the fate of about 100 emergency amputees (survived or failed to survive).

 21.13 A comparative psychologist suspects that chemicals in the urine of male rats trigger 
an increase in the activity of other rats. To check this hunch, she randomly assigns 
rats, in equal numbers, to either a sterile cage, a cage sprayed with a trace of the 
chemicals, or a cage sprayed thoroughly with the chemicals. Furthermore, to check 
out the possibility that reactions might be sex-linked, equal numbers of female and 
male rats are assigned to the three cage conditions. An activity score is recorded for 
each rat during a 5-minute observation period in the specified cage.

 21.14 A psychologist wishes to evaluate the effectiveness of relaxation training on the 
subsequent performance of college students in a public speaking class. After being 
matched on the basis of the quality of their initial speeches, students are randomly 
assigned either to receive relaxation training or to serve in a control group. Evalu-
ation is based on scores awarded to students for their speeches at the end of the 
class.

 21.15 An investigator wishes to determine whether, for a random sample of drug addicts, 
the mean score on the depression scale of a personality test differs from that which, 
according to the test documentation, represents the mean score for the general 
population.
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 21.16 Another investigator wishes to determine whether, for a random sample of drug 
addicts, the mean score on the depression scale of a personality test differs from the 
corresponding mean score for a random sample of nonaddicted people.

 21.17 To determine whether cramming can increase GRE scores, a researcher randomly 
assigns college students to either a specialized GRE test-taking workshop, a gen-
eral test-taking workshop, or a control (non-test-taking) workshop. Furthermore, to 
check the effect of scheduling, students are randomly assigned, in equal numbers, 
to attend their workshop either during a marathon weekend or during a series of 
weekly sessions.

 21.18 A criminologist suspects that there is a relationship between the degree of structure 
provided for paroled ex-convicts (a supervised or unsupervised “rehab” house) and 
whether or not there is a violation of parole during the first 6 months of freedom.

 21.19 A psychologist uses chimpanzees to test the notion that more crowded living condi-
tions cause aggressive behavior. The same chimps live in a succession of cages 
containing either one, several, or many other chimps. After several days in each 
cage, chimps are assigned scores on the basis of their aggressive behavior toward 
a chimplike stuffed doll in an observation cage.

 21.20 In an extrasensory perception experiment involving a deck of special playing cards, 
each of 30 subjects attempts to predict the one correct pattern (on each play-
ing card) from among five possible patterns during each of 100 trials. The mean 
 number of correct predictions for all 30 subjects is compared with 20, the number of 
 correct predictions per 100 trials on the assumption that subjects lack extrasensory 
 perception.

 21.21 A social scientist wishes to determine whether there is a relationship between the 
attractiveness scores (on a 100-point scale) assigned to college students by a panel 
of peers and their scores on a paper-and-pencil test of anxiety.
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This appendix summarizes many of the basic math symbols and operations used in this 
book. Little, if any, of this material will be entirely new, but—possibly because of 
years of little or no use—much may seem only slightly familiar. In any event, it’s 
important that you master this material.

First, take the pretest in Section A.1, comparing your answers with those in Section 
A.9. Whenever errors occur, study the review section indicated for that set of answers. 
Then, after browsing through all review sections, take the posttest in Section A.8, again 
checking your answers with those in Section A.9. If you’re still making lots of errors, 
repeat the entire process, spending even more time studying the various review sec-
tions. If errors persist, consult your instructor for additional guidance.

A.1  PRETEST

Questions 1–6 Are the following statements true or false?

 1. (5)(4) = 20 2. 4 > 6 3. 7 ≤ 10 4. |– 5| = 5

 5. (8)2 = 56 6. 9 3

Questions 7–30 Find the answers.

 7. 
5 3

2 1
  8. 5 4 7   9. 3(4 + 3) =

10. 
10

16
25

 11. (3)2(10) – 4 = 12. [32 + 22]2 =

13. 
22(3) 2

5 3
 14. 

2 2(8 6) (5 3)

2

15. 2 + 4 + (–1) = 16. 5 – (3) = 17. 2 + 7 + (–8) + (–3) =

18. 5 – (– 1) = 19. (–4)(–3) = 20. (–5)(6) =

21. 
10

2  22. 
4 1

5 5  23. 
1 2

4 5

24. 

2 2 22 3 2

4 3 8  25. 
2 6

3 7  26. 16 9

27. (4)(9)  28. 4 9  29. 

25

100  30. 

25

100

Questions 31–35 Round to the nearest hundredth.

31. 98.769 32. 3.274 33. 23.765 34. 5476.375003

35. 54.1499
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A .2  COMMON SYMBOLS

SYMBOL MEANING EXAMPLE

≠ doesn’t equal 4 ≠ 2
± plus and minus 4 ± 2 = 4 + 2 and 4 – 2
( )( ) times (multiplication)* (3)(2) = 3(2) = 6
 /, ( )/( ) divided by (division) 6/2 = 3, (8)/(2) = 4
> greater than 4 > 3
< less than 5 < 8
≥ equal or greater than z ≥ 2
≤ equal or less than t≤ 4

the square root of** 9 3
( )2 the square of (4)2 = (4)(4) = 16
| | the absolute (positive) value of |4| = 4, |–4| = 4
… continuing the pattern 1, 2, 3,…, 8

translates as: 1, 2, 3, 4, 5, 6, 7, 8

*When multiplication involves symbols, parentheses can be dropped. For instance, (X)(Y) = 
X(Y) = XY.
**The square root of a number is that number which, when multiplied by itself, yields the  
original number.

A.3  ORDER  OF  OPERAT IONS

Expressions should be treated as single numbers when they appear in parentheses, 
square root signs, or in the top (or bottom) of fractions.

If all expressions contain single numbers, the order for performing operations is as 
follows:

1. square or square root

2. multiplication or division

3. addition or subtraction

EXAMPLES

2(4 – 1) = 2(3) = 6

12 8 4 2

8 4 4
1

2 2 4
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When expressions are nested, one within the other, work outward from the inside.

A.4  POS IT IVE  AND  NEGAT IVE  NUMBERS

In the absence of any sign, a number is understood to be positive.

To add numbers with unlike signs,

1. find two separate sums, one for all positive numbers and the other for all negative 
numbers

2. find the difference between these two sums

3. attach the sign of the larger sum

To subtract one number from another,

1. change the sign of the  number to be subtracted

2. proceed as in addition

EXAMPLES

2

6 6
10 10 10 3 13

24

(3)(2) 1 (3)(4) 1 12 1 11

EXAMPLES

2 2 2 2

2

(6 3) (5 2) (3) (3) 9 9 18
9 3

2 2 2 2

3(4) (2) 12 4 8
4 2

4 2 2 2

EXAMPLE

8 = +8

EXAMPLE

2 + 3 + (–4) + (–3) = 5 + (–7) = –2
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To multiply (or divide) two signed numbers,

1. obtain the numerical result

2. attach a positive sign if the two original numbers have like signs or a negative 
sign if the two original numbers have unlike signs

A.5  FRACT IONS

A fraction consists of an upper part, the numerator, and a lower part, the denominator.
To add (or subtract) fractions, their denominators must be the same.

1. If denominators are the same, merely add (or subtract) numbers in the numera-
tors and leave the number in the denominator unchanged.

2. If denominators are different, first find a common denominator. To obtain a com-
mon denominator, multiply both parts of each fraction by the denominators of all 
remaining fractions. Then proceed as in (1) above.

EXAMPLES

4 – (3) = 4 + (–3) = 1

4 – (–3) = 4 + 3 = 7

EXAMPLES

(–4)(–2) = 8; (4)(–2) = –8

4 4
2; 2

2 2

EXAMPLES

3 1 3 1 4

5 5 5 5

7 3 7 ( 3) 4

10 10 10 10

EXAMPLES

2 1 (4)2 (3)1 8 3 11

3 4 (4)3 (3)4 12 12 12

4 2 (5)4 (6)2 20 12 32

6 5 (5)6 (6)5 30 30 30
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To add (or subtract) fractions, sometimes it’s more efficient to follow a different 
procedure. First, express each fraction as a decimal number—by dividing the denomi-
nator into the numerator—and then merely add (or subtract) the resulting decimal  
numbers.

To multiply fractions, multiply all numerators to obtain the new numerator, and 
multiply all denominators to obtain the new denominator.

A.6  SQUARE  ROOT  RAD ICALS  ( ) 

The square root of a sum doesn’t equal the sum of the square roots.

The square root of a product equals the product of the square roots.

The square root of a fraction equals the square root of the numerator divided by the 
square root of the denominator.

EXAMPLES

3 1
.75 .25 .50

4 4

3 2 1
.30 .33 .20 .83

10 6 5

EXAMPLES

2 3 6

3 5 15

2 3 6

4 4 16

EXAMPLES

16 9 9

5

EXAMPLE

(4)(9) 4 9 (2)(3) 6

EXAMPLE

4 4 2

16 416
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 A.9 ANSWERS (WITH RELEVANT REVIEW SECTIONS)  417

A .7  ROUND ING  NUMBERS

When the first term of the number to be dropped is 5 or more, increase the remaining 
number by one unit. Otherwise, leave the remaining number unchanged. In this book, 
for purposes of standardization, numbers are usually rounded to the nearest hundredth.

A.8  POSTTEST

Questions 101–112 Find the answers.

101. 36  102. |24| = 103. (7)2 = 104. 5 ± 3 =

105. 
23 8 (2)  106. 

2 2 2

2 2

1 4 5

4 3  107. 18 – (–3) =

108. (–10)(–8) 109. 
3 2

5 8  110. 

2 2(2 3) (6 4)

2 3

111. 9 9 9 9  112. 25 4

Questions 113–114 Round to the nearest hundredth.

113. 107.455 114. 3.2499

A.9  ANSWERS  (WITH  RELEVANT  REV IEW SECT IONS )

Pre tes t

 1. True
 2. False
 3. True
 4. True Review Section A.2
 5. False
 6. True

 7. 2
 8. 16 4 

Review Section A.3
 9. 21
10. 14

11. 86
12. (13)2 = 169
13. 1 1 Review Section A.3

14. 4 2

EXAMPLES

When rounding to the nearest hundredth:

  21.866 rounds to 21.87

  37.364 rounds to 37.36

  102.645332 rounds to 102.65

  87.98497 rounds to 87.98

  52.105000 rounds to 52.11
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418 MATH REVIEW

15. 5
16. 2
17. –2
18. 6  Review Section A.4
19. 12
20. –30
21. –5

22. 
3

5
 or .60

23. 
13

20
 or .65

24. 
84

24 or 3.5 

Review Section A.5

25. 
12

21
  

26. 5
27. 6
28. 6 

Review Section A.6
29. 

1

2

30. 
1

2

31. 98.77
32. 3.27
33. 23.77 Review Section A.7
34. 5476.38
35. 54.15

Pos t tes t

101. 6
102. 24 

Review Section A.2103. 49  
104. 8 and 2

105. 6
106. 6 Review Section A.3

107. 21
108. 80 Review Section A.4

109. 
34

40 or .85

110. 
11

6  or 1.83 

Review Section A.5

111. 6
112. 10 

Review Section A.6

113. 107.46
114. 3.25 

Review Section A.7
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420 ANSWERS TO SELECTED QUESTIONS

Chapte r  1

1.1 (a)  descriptive statistics (c)  descriptive statistics
(b)  inferential statistics (d)  inferential statistics

1.2 (a)  E (c)  S (e)  E (g)  E
(b)  S             (d)  E     (f)  S      (h)  E

1.3 (a)  qualitative (e)  qualitative (i)  qualitative
(b)  quantitative (f)   quantitative (j)  quantitative
(c)  quantitative (g)  quantitative
(d)  qualitative (h)  ranked

1.4 (a)  interval/ratio (e)  ordinal
(b)  nominal (f)  nominal
(c)  approximately interval (g)  approximately interval
(d)  interval/ratio (h)  nominal

1.5 (a)  discrete (d)  continuous (g)  continuous
(b)  continuous (e)  continuous
(c)  discrete (f)  discrete

1.6 (a)  observational study
(b)  experiment (independent variable: prescribed hours of sleep deprivation)
(c) experiment (independent variable: two programs; possible confounding variable: 

self-selection of program)
(d)  observational study
(e)  experiment (independent variable: different rehabilitation programs)
(f)  experiment (independent variable: on campus or off campus)

Chapte r  2

2.1 
RATING TALLY* f
10 /  1
 9 //  2
 8 ///  3
 7 ////  5
 6 //  2
 5 //  2
 4 /  1
 3 //// /  6
 2 //  2
 1 /  1

Total 25

*Tally column usually is omitted from the finished table.

2.2 (a)  Calculating the class width,

 

123 69 54
5.4

10 10

Round off to a convenient number, such as 5.
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 ANSWERS TO SELECTED QUESTIONS  421

IQ TALLY* f
120–124 / 1
115–119 0
110–114 // 2
105–109 /// 3
100–104 //// 4

95–99 //// / 6
90–94 //// // 7
85–89 //// 4
80–84 /// 3
75–79 /// 3
70–74 / 1
65–69 /   1

Total 35

*Tally column usually is omitted from the finished table.

(b)  64.5–69.5

2.3 Not all observations can be assigned to one and only one class (because of gap between 
20–22 and 25–30 and overlap between 25–30 and 30–34). All classes are not equal in 
width (25–30 versus 30–34). All classes do not have both boundaries (35–above).

2.4 Outliers are a summer income of $25,700; an age of 61; and a family size of 18. No 
outliers for GPA.

2.5 GRE RELATIVE f
725–749 .01
700–724 .02
675–699 .07
650–674 .15
625–649 .17
600–624 .21
575–599 .15
550–574 .14
525–549 .07*
500–524 .02
475–499  .01

Totals 1.02

*From 13/200 = .065, which rounds to .07.

2.6 
(a) (b)

CUMULATIVE CUMULATIVE
GRE f PERCENT(%)

725–749 200 100
700–724 199 100
675–699 196 98
650–674 182 91
625–649 152 76
600–624 118 59
575–599 76 38
550–574 46 23
525–549 19 10
500–524 6 3
475–499 2 1
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422 ANSWERS TO SELECTED QUESTIONS

2.7 The approximate percentile rank for weights between 200 and 209 lbs is 92 (because 
92 is the cumulative percent for this interval).

2.8

(d)  Percentile rank for films with a PG rating is 55 (from 
11

20
 multiplied by 100).

2.9 

NOTE: Ordinarily, only either (a) a histogram, or (b) a frequency polygon would be shown. 
When closing the left flank of (b), imagine extending a line to the midpoint of the 
first unoccupied class (–10,000 to –1) on the left, but stop the line at the vertical 
axis, as shown.

(c)  Lopsided.

2.10 

NOTE: The order of the leaves within each stem depends on whether you entered IQ 
scores column by column (as above) or row by row.

2.11 (a)  Positively skewed (d)  Bimodal
(b)  Normal  (e)  Negatively skewed
(c)  Positively skewed

(a) (b) (c)
MOVIE RELATIVE CUMULATIVE
RATINGS f f(%) f
NC-17 2 10 20
R 4 20 18
PG-13 3 15 14
PG 8 40 11
G   3   15   3
   Totals 20 100%

7 8
8 5 8
9 8 9 6

10 8 2 9 6 4
11 8 7 1 3
12 0 6 3 4
13 2 7
14 1 3

20

15

10

5

40,0000 80,000

Income

120,000

f

(a) (b)
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 ANSWERS TO SELECTED QUESTIONS  423

2.12 
200

150

100

50

0
African

American
Asian

American
Hispanic White

f 
(M

ill
io

n
s
)

2.13 (a)  Widths of two rightmost bars aren’t the same as those of two leftmost bars.
(b) Histogram is more appropriate, assuming numbers are for a continuous quantita-

tive variable.
(c) Height of the vertical axis is too small relative to the width of the horizontal axis, 

causing the histogram to be squashed.
(d) Poorly selected frequency scale along the vertical axis, causing the histogram to be 

squashed.
(e) Bars have unequal widths. There are no wiggly lines along vertical axis indicating a 

break between 0 and 50.
(f) Height of the vertical axis is too large relative to the horizontal axis, causing the 

differences between the bars to be exaggerated.
2.17 (a)

AGE
SMALL TOWN U.S. POPULATION
RELATIVE f (%) RELATIVE f (%)

65–above 21 12
60–64 11 4
55–59 9 5
50–54 8 7
45–49 9 7
40–44 8 8
35–39 6 7
30–34 5 7
25–29 5 7
20–24 4 7
15–19 4 7
10–14 4 7
5–9 3 7
0–4     3      7   

Totals 100% 99%

(b) Among small-town residents, there are relatively more older people and relatively 
fewer younger people.
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424 ANSWERS TO SELECTED QUESTIONS

(c)  

2.19 (a)  Hispanics (by 35.9 million)
(b)  Hispanics (by 246%)
(c)  Whites increased by 9% while the general population increased by 33%.
(d) Asian American and Hispanic populations are growing most rapidly. (Or some varia-

tion on this conclusion, such as that the non-white population is growing more 
rapidly than the white population.)

Chapte r  3

3.1  mode = 63

3.2  mode = 27.4

3.3  median = 63

3.4  median = 27.15 (halfway between 26.9 and 27.4)

3.5  
672

mean 61.09
11

3.6  
163.3

mean 27.22
6

3.7 (a)  negatively skewed because the median exceeds the mean
(b)  positively skewed because the mean exceeds the median
(c)  positively skewed
(d)  negatively skewed

3.8 mode = DB (Daytona Beach)
 Impossible to find the median when qualitative data are unordered, with only nominal 

measurement.

3.9 mode = 3
 median = 3
 mean = 3.28

3.12 Two different averages are being used to describe the central tendency in a skewed 
distribution of pilots’ salaries. Management is probably using the mean (because of its 

15%

20%

10%

20 40
Age

60 65-above

5%

0

Small Town

U.S. Population

R
e
la

ti
ve

 f
 (

%
)
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 ANSWERS TO SELECTED QUESTIONS  425

concern about total expenditures), while the pilots’ union is probably using the median 
(because of its concern about the actual salaries of typical, middle-ranked pilots).

Chapte r  4

4.1 (a)  small
(b)  large

4.2 (a)  $80,000 to $100,000
(b)  $70,000
(c)  $110,000
(d)  $88,000 to $92,000; $86,000; $94,000

4.3 (a)   False. Relatively few students will score exactly one standard deviation from the 
mean.

(b) False. Students will score both within and beyond one standard deviation from the 
mean.

(c)  True
(d)  True
(e)  False. See (b).
(f)  True

4. 4 
2 2 2 2(1 3) (3 3) (4 3) (4 3) 6

1.41
4 1 3

s

4. 5 (a)  

729
137

8 5.73 2.39
8

(b) 
 

1849
325

9 14.95 3.87
9 1

s

4.6 (a)  computation formula since the mean is not a whole number.

(b)  

2304
314

10 9.28 3.05
10 1

s

4.7 (a)  18 hours
(b)  23 hours
(c)  df = 1 in (a) and df = 3 in (b)
(d)  When all observations are expressed as deviations from their mean, the sum of all 

deviations must equal zero.

4.8 (a)  range = 25; IQR = 65 – 60 = 5
(b)  range = 11; IQR = 4 – 1 = 3

4.9 (a)   a1 larger than a2. Graduating high school seniors with very low SAT scores tend not 
to become college freshmen.

(b)  b1 larger than b2

(c)  c2 larger than c1

(d)  about the same
(e)  e1 larger than e2

(f)   f2 larger than f1

Witte11e_Appendix_B.indd   425 11/16/2016   12:27:55 PM



426 ANSWERS TO SELECTED QUESTIONS

4.13 (a)   A $70 per month raise would increase the original mean (by $70) but would not 
change the original standard deviation. Raising everyone’s pay by a constant 
amount has no effect on variability.

(b) A 5 percent per month increase would increase both the original mean and the 
standard deviation (by 5 percent). Raising everyone’s pay by 5 percent generates 
a larger raise in actual dollars for higher-paid employees and thus increases vari-
ability among monthly wages.

4.18 (a)   False. Degrees of freedom refer to the number of values free to vary in the sample, 
not in the population.

(b)  True
(c)  True
(d) False. All observations are assumed to be equal in quality. Degrees of freedom are 

introduced because of mathematical restrictions when sample observations are 
used to estimate a population characteristic.

Chapte r  5

NOTE: Answers reflect the complete tabular entry—for instance, .0571, rather than the 
usual procedure of rounding answers to two digits to the right of the decimal point.

5.1 (a)  2.33 (d)  0.00
(b)  –0.30 (e)  –1.50
(c)  –1.60

5.2 (a)  .0359  (d)  .4505 
(b)  .1664  (e)  .4750
(c)  .0013 

5.3 

5.5 

(a1)  (b1)  C′ (c1)  z = –1.00 
answer = .1587

(a2)  (b2)  C (c2)  z = 1.50 
answer = .0668

(a3)  (b3)  .5000 + B (c3)  z = 2.00 
answer = .5000 + .4772

 = .9772

(a1)   (b1)  C (c1) z = 0.70 
.2420

(a2)  (b2) .5000 + B (c2) z = 0.15 
.5000 + .0596 = .5596

(a3)  (b3) larger B – 
smaller B 
or larger C –   
smaller C

(c3) z = 0.20; z = 0.40 
.1554 – .0793 = .0761 
or .4207 – .3446 = .0761

(a4)  (b4) B′ + B (c4) z = –0.30; z = 0.20 
.1179 + .0793 = .1972 

(a5)  (b5) C (c5) z = 0.50 
.3085

(a6)  (b6) C′ + C 
or 2(C)

(c6) z = –1.00; z = 1.00 
.1587 + .1587 = .3174

(a7)  (b7) B′ + B 
or 2(B)

(c7) z = –0.50; z = 0.50 
.1915 + .1915 = .3830 
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5.6 (a)  1200 + (–2.33)(120) = 920.40
(b)  1200 + (0.00)(120) = 1200
(c) 1200 + (1.65)(120) = 1398 

or 1200 + (1.64)(120) = 1396.80
(d)  1200 + (–1.41)(120) = 1030.80

5.7 (a)  0.33 (c)  0.75
(b)  –0.20 (d)  0.40

5.8 (a)  A test score of 45 from distribution c because it converts to the largest z score 
(0.75).

(b) Distribution b, because it yields a larger z score (2.40) than any other distribution.

5.9 

5.10 (a)  mean   (h)  mean (o)  mean
(b)  standard deviation (i)  standard deviation (p)  standard deviation
(c)  z            (j)  one         (q)  z

(d)  standard deviations     (k)  .5000 or 
1

2
       (r)  negative

(e)  above        (l)  mean        (s)  decimal
(f)   below     (m)  beyond        (t)  z (or standard)
(g)  one       (n)  negative

5.15 (a)  83 + (–1.64)(20) = 50.2
 or 83 + (–1.65)(20) = 50
(b)  .9599
(c)  .1357
(d)  83 + (±2.33)(20) = 

129.6

36.4

(e)  .2896

(f)  83 + (±1.96)(20) = 
122.2

43.8

(g)  .7021

(h)  83 + (0.84)(20) = 99.8

(i)  83 + (±1.88)(20) =
 

120.6

45.4

(j)  .8643 
(k) 0 since exactly 61 equals 61.000 etc. to infinity, a point along the base of the 

 normal curve that is associated with no area under the normal curve.

5.18 (a)  mean exceeds median
(b)  −0.75
(c)  0.50

Chapte r  6

6.1 (a)   Positive. The crime rate is higher, square mile by square mile, in densely populated 
cities than in sparsely populated rural areas.

(b) Negative. As TV viewing increases, performance on academic achievement tests 
tends to decline.

(c)  Negative. Increases in car weight are accompanied by decreases in miles per gallon.

𝝁 = 0; 𝝁 = 50; 𝝁 = 100; 𝝁 = 500;
σ = 1 σ = 10 σ = 15 σ = 100

(a) 0.80 58 112 580
(b) 1.67 33.3 74.95 333
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(d) Positive. Increases in educational level—grade school, high school, college—tend 
to be associated with increases in income.

(e) Positive. Highly anxious people willingly spend more time performing a simple 
repetitive task than do less anxious people.

6.2 (a)  I, D, F (c)  E, H
(b)  B, H, E (d)  No. The relationship is positive.

6.3 (a)  Cars with more total miles tend to have lower resale values.
(b)  Students with more absences from school tend to score lower on math achieve-

ment tests.
(c)  Little or no relationship between anxiety level and college GPA.
(d)  Older schoolchildren tend to have better reading comprehension.

6.4 (a)  simple cause-effect  (b)  complex  (c)  complex  (d)  complex

6.5 
4

.65
4 9.33

r

6.6 (a)   No. The new correlation would have the same numerical value but the opposite 
sign, that is, it would equal −.2981. The change from positive to negative reflects 
the original tendency for males, the group now with the larger code of 2, to have 
lower high school GPAs.

(b) Yes. The new negative correlation still reflects the original tendency of females, 
now coded as 1, to have higher high school GPAs than males, now coded as 2.

(c) Yes. The actual numerical value of the correlation, .2981, reflects only the pattern 
of predictability across pairs of z scores which, in turn, show no traces of the arbi-
trary codes assigned to females and males. The positive value of r reflects only the 
relatively higher coding of females (20) than males (10).

(d) Ten. The fifth variable would add four new correlations to the original six.

6.10  (a)   False. This statement would be true only if a perfect negative relationship (−1.00) 
described the relationship between TV viewing time and test scores.

(b)  False. Correlation does not necessarily signify cause-effect.
(c)  True
(d)  True
(e)  False. See (b).
(f) False. Although correlation does not necessarily signify cause-effect, it opens the 

possibility of cause-effect.

Chapte r  7

7.1 (a)  approximately 5–6 percent
(b)  approximately 2–3 percent

7.2 (a)  
50

(.30)
25

b  = .42; a = 8 – (.42)(13) = 2.54

(b)  Y ′ = (.42)(15) + 2.54 = 8.84
(c)  Y ′ = (.42)(11) + 2.54 = 7.16

7.3 (a)  

2

|

50 1 .30 50 .91
1.38 1.17

35 2 33
Y Xs

(b)  Roughly indicates the average amount by which the prediction is in error.

7.4 (a)  9 percent predicted.
(b)  91 percent not predicted.
(c)  9 percent refers to the variability of all estimated reading times.
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7.5 (a)  No
(b) The r2 of .25 for parents and children is about four times greater than the r2 of .07 

for foster parents and foster children.

7.6 (a)   No, because the observed decline could be due to regression toward the mean, 
given that the students scored high on the anxiety test prior to attending the clinic.

(b) An experiment where students who score high on the anxiety test are randomly 
assigned either to attend the stress-reduction clinic or to be in a control group.

7.11 (a)  True
(b) False. Sons of short fathers will tend to be taller than their fathers but still shorter 

than the mean for all sons.
(c)  False. Regression toward the mean is only a tendency, so there will be exceptions.
(d) False. Taken as an entire group, adult sons will be as tall as their fathers. (In fact, 

a comparison of entire groups might reveal that sons tend to be slightly taller 
because of an improvement in nutrition across generations.)

(e) False. Given the subset of tall sons, their fathers will tend to be shorter because of 
regression toward the mean.

(f)  True

Chapte r  8

8.1 (a)  Yes
(b)  No. Citizens of Wyoming aren’t a subset of citizens of New York.
(c)  Yes
(d)  No. All U.S. presidents aren’t a subset of all registered Republicans.
(e)  Yes

8.2 Expressions in 8.1(c) and 8.1(e) involve hypothetical populations.

8.3 (a)   False. Sometimes, just by chance, a random sample of 10 cards fails to represent 
the important features of the whole deck. More about this problem in Chapter 11.

(b)  True
(c)  False. Although unlikely, 10 hearts could appear in a random sample of 10 cards.
(d)  True

8.4 (a)   There are many ways. For instance, consult the tables of random numbers, using 
the first digit of each 5-digit random number to identify the row (previously labeled 
1, 2, 3, and so on), and the second digit of the same random number to locate a 
particular student’s seat within that row. Repeat this process until five students 
have been identified. (If the classroom is larger, use additional digits so that every 
student can be sampled.)

(b) Once again, there are many ways. For instance, use the initial 4 digits of each 
random number (between 0001 and 3041) to identify the page number of the tele-
phone directory and the next 3 digits (between 001 and 480) to identify the particu-
lar line on that page. Repeat this process, using 7-digit numbers, until 40 telephone 
numbers have been identified.

8.5 (a)   For instance, if the first digit is odd (1, 3, 5, 7, or 9), the first subject is assigned to 
group A, and if the first digit is even (0, 2, 4, 6, or 8), the first subject is assigned 
to group B. To ensure equal groups, the second subject is assigned automatically to 
the group opposite that for the first subject. Repeat this procedure for the remaining 
five pairs of subjects.

  There are other acceptable rules, all involving pairs of subjects (to ensure  
equal group sizes). For instance, if the first digit equals 0, 1, 2, 3, or 4, the first 
subject is assigned to group A; otherwise, the first subject is assigned to group 
B, and so on.
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(b) Answer shows two possible assignment rules. In practice only one assignment rule 
actually would be used.

RANDOM NUMBER ASSIGNMENT ASSIGNMENT
SUBJECT# (TOP ROW, TABLE H) RULE 1* OR RULE 2**

1 1 A A

2 – automatically B automatically B
3 0 B A
4 – automatically A automatically B
5 0 B A
6 – automatically A automatically B
7 9 A B
8 – automatically B automatically A
9 7 A B

10 – automatically B automatically A
11 3 A A
12 – automatically B automatically B

*Odd digits = group A; even digits = group B.
**Digits 0, 1, 2, 3, 4 = group A; digits 5, 6, 7, 8, 9 = group B.

(a)  60
.60

100
  (d)   35

.875
40

(b)  45 5 50
.50

100 100
 (e)   45 45

.90
45 5 50

(c)   45
.75

60

100
Couples

60
Improved

15
No Children

45
Children

40
Unimproved

35
No Children

5
Children

8.6  (a)  
1

12
 (b)  

11

12
 (c)  

2

12

8.7  (a)  1 1 1
12 12 144

(b)  1 1 1
12 12 144

(c)  2 2 4
12 12 144

8.8 
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8.9 (a)  .0250
(b)  .0250 + .0250 = .0500 
(c)  .4750 + .4750 = .9500 
(d)  .0049 + .0049 = .0098 

8.14 (a)  1 1 1
2 2 4

(b)  1 1 1
2 2 4

(c)  1 1 2
4 4 4

8.18 (a)  .98
(b)  (.98)(.98)(.98)(.98)(.98)(.98) = .89
(c)  1 – .89 = .11
(d)  (.02)(.02) = .0004
(e) 1.00 (According to Hoadley, the Challenger catastrophe led to several improve-

ments, including the addition of a third set of truly independent O-rings.)

8.20 (a)  False. The multiplication rule is not valid when events are dependent.
(b)  is larger than 1/144.
(c)  False. The value of the conditional probability is not known.

8.21 1,000
Women

990
No Breast Cancer

.99

.90 .10 .20 .80

.01

891
True

Negative

99
False

Positive

10
Breast Cancer

2
False

Negative

8
True

Positive

(a)  
99 8 107

.107
1,000 1,000

(b)  8 8
.075

99 8 107

(c)  
891

.998
891 2

Chapte r  9

9.1 (a)  (1) 2,2  (6) 4,2  (11) 6,2  (16) 8,2  (21) 10,2
        (2) 2,4  (7) 4,4  (12) 6,4  (17) 8,4  (22) 10,4
        (3) 2,6  (8) 4,6  (13) 6,6  (18) 8,6  (23) 10,6
        (4) 2,8  (9) 4,8  (14) 6,8  (19) 8,8  (24) 10,8
        (5) 2,10  (10) 4,10  (15) 6,10  (20) 8,10  (25) 10,10
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(b)  

9.2 (a)  μ  (b)  X   (c)  X   (d)  X   (e)  s  (f)  σ

9.3 (a)  False. It always equals the value of the population mean.
(b)  True
(c) False. Because of chance, most sample means tend to be either larger or smaller 

than the mean of all sample means.
(d)  True

9.4 (a)  True
(b)  False. It measures variability among sample means.
(c)  False. It decreases in value with larger sample sizes.
(d)  True

9.5 (a)  False. The shape of the population remains the same regardless of sample size.
(b) False. It requires that the sample size be sufficiently large—usually between 25 

and 100.
(c) False. It ensures that the shape of the sampling distribution approximates a normal 

curve, regardless of the shape of the population (which remains intact).
(d) True

Chapte r  10

10.1 (a)  z
566 560

30 36

6

5
1 20

/
.

(b)  z
24 25

4 64

1

5
2 00

/ .
.

(c)  z
82 75

14 49

7

2
3 50

/
.

(d)  z
136 146

15 25

10

3
3 33

/
.

10.2 (a)  Different numbers appear in H0 and H1.
(b)  Sample means (rather than population means) appear in H0 and H1.

10.3 (a)  Sixth-grade boys in her school district average 10.2 pushups. H0: μ = 10.2
(b) On average, weights of packages of ground beef sold by a large supermarket chain 

equal 16 ounces. H0: μ = 16
(c)  The marriage counselor’s clients average 11 interruptions per session. H0: μ = 11

10.4 (a)  Retain H0 at the .05 level of significance because z = 1.74 is less positive than 1.96.
(b)  Retain H0 at the .05 level of significance because z = 0.13 is less positive than 1.96.
(c) Reject H0 at the .05 level of significance because z = −2.51 is more negative  

than  –1.96.

X PROBABILITY
10 1/25
 9 2/25
 8 3/25
 7 4/25
 6 5/25
 5 4/25
 4 3/25
 3 2/25
 2 1/25
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10.5 (a)   The observed difference between $80,100 and $82,500 cannot be interpreted at 
face value, as it could have happened just by chance. A hypothesis test permits us 
to evaluate the effect of chance by measuring the observed difference relative to 
the standard error of the mean.

(b) All female members of the APA with a Ph.D. degree and a full-time teaching 
appointment.

(c)  H0: μ = 82,500
(d)  H1: μ  82,500
(e)  Reject H0 at the .05 level of significance if z  1.96 or z  –1.96

(f)  
80,000 82,500 2,400

4.00
6000 600

100

z

(g) Reject H0 at the .05 level of significance because z = –4.00 is more negative than 
–1.96.

(h) The average salary of all female APA members (with a Ph.D. and a full-time teach-
ing appointment) is less than $82,500.

10.8 Research Problem
 Does the mean IQ of all students in the district differ from 100?

  Statistical Hypotheses
 H0: μ = 100
 H1: μ  100

 Decision Rule
 Reject H0 at the .05 level of significance if z equals or is more positive than 1.96 or 

if z equals or is more negative than –1.96.
 Calculations

 Given that X X
105

15

25

15

5
3;    

 
105 100 5

1.67
3 3

z

Decision
  Retain H0 at the .05 level of significance because z = 1.67 is less positive than 

1.96.
Interpretation
  There is no evidence that the mean IQ of all students differs from 100.

Chapte r  11

11.1 (a)  H0: μ = 60
   H1: μ  60

(b)  H0: μ  0.54
   H1: μ > 0.54
  Justification: to increase rainfall

(c)  H0: μ  23
  H1: μ < 23
   Justification: weight-reduction program

(d)  H0: μ  134
   H1: μ > 134
   Justification: life-prolonging drug

11.2 (a)   Reject H0 at the .01 level of significance because z = –2.34 is more negative 
than –2.33.

(b) Reject H0 at the .01 level of significance because z = –5.13 is more negative 
than –2.33.
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(c) Retain H0 at the .01 level of significance because z = 4.04 is less negative than 
–2.33. (The value of the observed z is in the direction of no concern.)

(d) Reject H0 at the .05 level of significance because z = 2.00 is more positive than 
1.65.

(e) Retain H0 at the .05 level of significance because z = –1.80 is less positive than 
1.65. (The value of the observed z is in the direction of no concern.)

(f) Retain H0 at the .05 level of significance because z = 1.61 is less positive  
than 1.65.

11.3 (a)   Reject H0 at the .05 level of significance if z equals or is more positive than 1.96 of 
if z equals or is more negative than –1.96.

(b) Reject H0 at the .01 level of significance if z equals or is more positive than 2.33.
(c) Reject H0 at the .05 level of significance if z equals or is more negative than –1.65.
(d) Reject H0 at the .01 level of significance if z equals or is more positive than 2.58 or 

if z equals or is more negative than –2.58.

11.4 (a)  Correct decision (True H0 is retained)
  Type I error
  Correct decision (False H0 is rejected)
  Type II error

(b)  
STATUS OF H0

DECISION TRUE H0 (INNOCENT) FALSE H0 (GUILTY)

Retain H0 Correct Decision: Type II Error:
(Release) Innocent defendant is  

  released.
Guilty defendant is  
  released (Miss).

Reject H0

(Sentence)
Type I Error:
Innocent defendant is  
  sentenced (False Alarm).

Correct Decision:
Guilty defendant is  
  sentenced.

11.5 A false H0 will never be rejected.

11.6 (a)  True
(b)  True
(c) False. The one observed sample mean originates from the true sampling  

distribution.
(d) False. If the one observed sample mean has a value of 103, an incorrect decision 

would be made because the false H0 would be retained.

11.7 (a)  True
(b) False. The critical value of z (1.65) is based on the hypothesized sampling 

 distribution.
(c) False. Since the true sampling distribution goes below 100, a sample mean less 

than or equal to 100 is possible, although not highly likely.
(d)  True

11.8 (a)  Because of the small sample size, only very large effects will be detected.
(b) Because of the large sample size, even small, unimportant effects will be 

detected.

11.9 (a)  .3
(b)  .4
(c)  .9
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11.10 (a)   The power for the 12-point effect is larger than .80 because the true sampling 
distribution is shifted further into the rejection region for the false H0.

(b) The power for the 5-point effect is smaller than .80 because the true sampling 
distribution is shifted further into the retention region for the false H0.

11.14 (a)  H0: μ  0.54, that is, cloud seeding has no effect on rainfall.

STATUS OF H0

DECISION TRUE H0 FALSE H0

Retain H0 Correct Decision:
Conclude that there is  
   no evidence that cloud 

seeding increases rainfall 
when in fact it does not.

Type II Error:
Conclude that there is no  
   evidence that cloud 

seeding increases rainfall 
when in fact it does.

Reject H0 Type I Error:
Conclude that cloud seeding  
   increases rainfall when in 

fact it does not.

Correct Decision:
Conclude that cloud seeding  
   increases rainfall when 

infact it does.

Chapte r  12

12.1 $62,600

12.2 (a)  3.82 ± 1.96 
.4

64
 = 

3.92

3.72

(b) We can claim, with 95 percent confidence, that the interval between 3.72 and 
3.92 includes the true population mean reading score for the fourth graders. All of 
these values suggest that, on average, the fourth graders are underachieving.

12.3 (a)   False. We can be 95 percent confident that the mean for all subjects will be 
between 507 and 527.

(b) True
(c) False. We can be reasonably confident—but not absolutely confident—that the 

true population mean lies between 507 and 527.
(d) False. This particular interval either describes the one true population mean or 

fails to describe the one true population mean.
(e) True
(f) True

12.4 (a)   Switch to an interval having a lesser degree of confidence, such as 90 percent or 
75 percent.

(b) Increase the sample size.

12.5 (a)   False. The interval from 66 to 74 percent refers to possible values of the popula-
tion proportion.

(b) False. We can be reasonably confident—but not absolutely confident—that the 
true population proportion is between 66 and 74 percent.

(c)  True
(d)  True

12.7 (a)  80,100 ± 2.58 
6,000

100
 = 

81,648

78,552

(b) We can claim, with 99 percent confidence, that the interval between $78,552 and 
$81,648 includes the true population mean salary for all female members of the 
American Psychological Association. All of these values suggest that, on average, 
females’ salaries are less than males’ salaries.
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12.10 (a)  3   (b)  1   (c)  5   (d)  4

Chapte r  13

13.1 (a)  ±2.179 (c)  1.697
(b) –2.539 (d)  ±2.704

13.2 (a)  
147

14.7
10

X

(b) 

21609
2167

6.1010 .68 .82
10 1 9

.82 .82
.26

3.1610
X

s

s

13.3 Research Problem
  Does the mean weight for all packages of ground beef drop below the specified 

weight of 16 ounces?
Statistical Hypothesis

  H0: μ  16
  H1: μ < 16
Decision Rule  

  Reject H0 at the .05 level of significance if t  –1.833 given df = 10 – 1 = 9.
Calculations

     

14.7 16
5.00

.26
t

Decision
  Reject H0.
Interpretation

  The mean weight for all packages drops below the specified weight of 16 ounces.

13.4 (a)  14.7 ± (2.26)(.26) = 
15.29

14.11

(b) We can be 95 percent confident that the interval between 14.11 and 15.29 
ounces includes the true population mean weight for all packages.

13.5 Research Problem
  On average, do library patrons borrow books for longer or shorter periods than 

the currently specified loan period of 21 days?
Statistical Hypotheses

  H0: μ = 21
  H1: μ  21
Decision Rule

  Reject H0 at the .05 level of significance if t  2.365 or t  –2.365 given  
df = 8 – 1 = 7.

Calculations

  

20164
2652

142 817.75 4.33
8 8 1

4.33 17.75 21
1.53 2.12

1.538
X

X s

s t
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Decision
  Retain H0 at the .05 level of significance because t = –2.12 is less negative  

than –2.365.
Interpretation

  No evidence that, on average, library patrons borrow books for longer or shorter 
periods than 21 days.

13.7 (a)  Research Problem
  Is the temperature of the earth getting warmer?
Statistical Hypotheses

  H0: μ  0.0 0(where 0.00 is the mean deviation from the twentieth-century average)
  H1: μ > 0.00
Decision Rule

  Reject H0 at the .01 level of significance if t  2.821, given df = 10 – 1 = 9.
Calculations

  

11.43
1.14

10
X

 

130.64
13.15

10 0.10
10 1

s

  

.10
.03

10
x

s
 

1.14 0.00
38.00

.03
t

Decision
  Reject H0 at the .01 level of significance because the t of 38.00 exceeds the criti-

cal t of 2.821.
Interpretation

  The temperature of the earth is getting warmer.
(b) Since H0 was rejected, a confidence interval is appropriate.

  

1.24,
1.14 (3.25)(.03)

1.04

  We can be 99 percent confident that the interval between 1.04 and 1.24 degrees 
Fahrenheit includes the true mean increase in global temperature above the 
average temperature for the twentieth century.

Chapte r  14

14.1 (a)  H0: μ1 – μ2 = 0 (c)  H0: μ1 – μ2  0
 H1: μ1 – μ2  0 H1: μ1 – μ2 < 0

(b)  H0: μ1 – μ2  0 (d)  H0: μ1 – μ2 = 0
 H1: μ1 – μ2 > 0 H1: μ1 – μ2  0

14.2 (a)  ±2.080  (c)  –2.423
(b)  1.706  (d)  ±2.921

14.3 Research Problem
  Is there a difference, on average, between the puzzle-solving times required by 

subjects who are told that the puzzle is difficult and those required by subjects 
who are told that the puzzle is easy?

Statistical Hypotheses
  H0: μ1 – μ2 = 0
  H1: μ1 – μ2  0

Decision Rule
  Reject H0 at the .05 level of significance if t  2.101 or t  –2.101, given  

df = 10 + 10 – 2 = 18.
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Calculations

 

1 2

1 2

2 2

1 2

2

158 90
15.8 9.0

10 10

158 90
3168 671.6 1036 226

10 10

671.6 226 49.87 49.87
49.87 3.16

10 10 2 10 10

15.8 9.0 0
2.15

3.16

p X X

X X

SS SS

s s

t

Decision
  Reject H0 at the .05 level of significance because t = 2.15 exceeds 2.101.
Interpretation

  Puzzle-solving times are longer, on average, for subjects who are told that the 
puzzle is difficult than for those who are told that the puzzle is easy.

14.4 (a)  p < .001 (d)  p > .05
(b)  p < .05 (e)  p > .05
(c)  p < .01

14.5 a2, b1, c2, d1, e2

14.6 a2, b1, b2, c1, c2, e1, e2

14.7 (a)  2 (c)  3
(b)  2 (d)  1

14.8 (a)  
15.8 9.0

.96
7.06

d

(b) Puzzle-solving times are longer, on average, for subjects who are told that the 
puzzle is difficult (X = 15.8, s = 8.64) than for those who are told that the puzzle 
is easy (X = 9.0, s = 5.01), according to the t test [t (18) = 2.15, p < .05, d = .96].

14.9 (a)   The t test for equal variances should be reported. This test is appropriate because 
the F test for equal variances has a large p-value of 0.8125.

(b) The more appropriate (exact) one-tailed p = .0285 (from .0569 divided by 2).
(c) The confidence limits (CLs) for this interval are –0.178 to 10.1777. The dissimilar 

signs (and inclusion of zero) are consistent with the two-tailed p-value of .0569 
which, in turn, would have resulted in the retention of the null hypothesis.

14.10 (a)   The difference between means for experiment B is more likely to be viewed as 
real because of its smaller variability.

(b) Research Problem
 Do the population means differ from zero for experiment B?

 Statistical Hypotheses
  H0: μB* – μB = 0
  H1: μB* – μB  0

 Decision Rule
  Reject H0 at the .05 level if t  2.179 or if t  –2.179, given df = 7 + 7 – 2 = 12.

 Calculations

  2 0
6.67

.30
t

 Decision
 Reject H0 at the .05 level since t = 6.67 exceeds 2.179.
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 Conclusion
  Population means differ for experiment B.

(c) For experiment C, 
2 0

1.96
1.02

t .

 Therefore, since t = 1.96 doesn’t exceed 2.179, retain H0.
(d) For experiment B, p < .001, while for experiment C, p > .05.
(e) The difference between the means for experiment B is probably real, while that 

for experiment C is merely transitory.

(f)  2
6.06

0.33
Bd , a very large effect.

14.13 (a)  Research Problem
 Is the mean performance of college students in an introductory biology 

course affected by the grading policy?
 Statistical Hypotheses

  H0: μ1 – μ2 = 0
  H1: μ1 – μ2  0

  Decision Rule
   Reject H0 at the .05 level of significance if t  2.042 or t  –2.042, given  

df = 20 + 20 – 2 = 38 (read as 30 in Table B).
 Calculations

 

86.2 81.6 0
3.07

1.50
t

 Decision
  Reject H0 at the .05 level of significance because t = 3.07 exceeds 2.042.

 Interpretation
   Introductory biology students have higher achievement scores, on average, 

when awarded letter grades rather than a simple pass/fail.
(b) The calculated t ratio would have been equal to –3.07 rather than 3.07. Most 

important, however, the same interpretation would have been appropriate: Intro-
ductory biology students have higher achievement scores, on average, when 
awarded letter grades rather than a simple pass/fail.

(c) Because of self-selection, groups might differ with respect to any one or several 
uncontrolled variables, such as motivation, aptitude, and so on, in addition to the 
difference in grading policy. Hence, any observed difference between the mean 
achievement scores for these two groups could not be attributed solely to the 
difference in grading policy.

(d) p < .01

(e) 
86.2 81.6

.92
5

d

(f) Introductory biology students have higher mean achievement scores when 
awarded letter grades (X = 86.2, s = 5.39) rather than a simple pass/fail (X = 
81.6, s = 4.58), according to the t test [t (38) = 3.07,p < .01, d = .92].

14.14 (a)  Research Problem
   Does alcohol consumption cause an increase in mean performance errors  

on a driving simulator?
 Statistical Hypotheses

  H0: μ1 – μ2  0
  H1: μ1 – μ2 > 0

 Decision Rule
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  Reject H0 at the .05 level of significance if t  1.671, given df = 60 + 60 – 2 = 
118 (read as 60 in Table B).

 Calculations

  26.4 18.6
3.25

2.4
t

 Decision
  Reject H0 at the .05 level of significance because t = 3.25 exceeds 1.671.

 Interpretation
   Alcohol consumption causes an increase in mean performance errors on a 

driving simulator.
(b) p < .001

(c) 7.8 ± (2.00)(2.4) = 
12.6

3.6

   We are 95 percent confident that the interval from 3.0 to 12.6 describes the 
increase in population mean performance errors attributable to alcohol.

(d) 
26.4 18.6

.59
13.15

d

(e) Mean errors on a driving simulator are significantly greater when alcohol is 
 consumed (X  = 26.4, s = 13.99) than when no alcohol is consumed (X  = 18.6,  
s = 12.15), according to a t test [t (118) = 3.25, p < .001, d = .59].

 (Incidentally, compared to the very rare value of p < .001 for the t ratio, the 
comparatively modest standardized estimate of .59 for effect size illustrates the 
immunity of d to the large sample size of 60 subjects per group.)

14.19 Might reflect a type I error or even an inflated type I error due to other similar studies 
that failed to find statistical significant results.

Chapte r  15

15.1 (a)  two independent samples
(b)  two related samples, repeated measures
(c)  two related samples, matched pairs
(d)  two related samples, matched pairs

15.2 Research Problem
  When schoolchildren are matched for home environment, does vitamin C consump-

tion reduce the mean estimated severity of common colds?
Statistical Hypotheses

  H0: μD  0
  H1: μD < 0

Decision Rule
  Reject H0 at the .05 level of significance if t  – 1.833, given df = 10 – 1 = 9.

Calculations

  

2
15 15

1.5 37 14.5
10 10

14.5 1.27
1.61 1.27 0.40

10 1 10

1.5 0
3.75

.40

D

D D

D SS

s s

t
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Decision
  Reject H0 at the .05 level of significance because t = –3.75 is more negative than 

–1.833.
Interpretation

  When schoolchildren are matched for home environment, vitamin C consumption 
reduces the mean estimated severity of common colds.

15.3 –1.50 ± (2.262)(0.40) = –1.50 ± 0.90 = 
0.60

2.40

 When schoolchildren are matched for home environment, we are 95 percent confident 
that the interval between –0.60 and –2.40 covers the reduction in estimated severity 
of colds.

15.4 
1.50

1.18.
1.27

d

 According to Cohen’s guidelines, this is a large effect, equivalent to more than one 
standard deviation.

15.5 (a)  t test for two independent samples
(b)  t test for two related samples, matched pairs
(c)  t test for two independent samples
(d)  t test for one sample
(e)  t test for two related samples, repeated measures

15.6 Research Problem
  For the population of California taxpayers, is there a relationship between educa-

tional level and annual income?
Statistical Hypotheses

  H0: ρ = 0
  H1: ρ  0

Decision Rule
  Reject H0 at the .05 level of significance if t  2.060 or t  –2.060, given  

df = 27 – 2 = 25.
Calculations

  

2

.43 0 .43
2.39

.18
1 .43

27 2

t

Decision
Reject H0 at the .05 level of significance because t = 2.39 exceeds 2.060.

Interpretation
For the population of California taxpayers, there is a relationship (positive) 
between educational level and annual income.

15.7 (a)  Research Problem:
  Does physical exercise cause an increase in the mean GPAs of students, 

given that pairs of students are originally matched for their GPAs?
 Statistical Hypotheses

H0: μD  0
H1: μD > 0

 Decision Rule
  Reject H0 at the .01 level of significance if t = 3.143, given df = 7 – 1 = 6.
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 Calculations

  

2
1.56 1.56

.22 .48 .48 .35 .13
7 7

.13 .14 .14
.02 .14 .05

7 1 2.657

.22 0
4.40

.05

D

D D

D SS

s s

t

 Decision
 Reject H0 at the .01 level of significance because t = 4.40 exceeds 3.143.

 Conclusion
  Physical exercise causes an increase in mean GPAs when pairs of  students 

are matched for their original GPAs.
(b) p < .01

(c) 
.22

1.57
.14

d

(d) Physical exercise causes an increase in mean GPDAs (D  = .22, sD = .14), accord-
ing to a t test [t (6) = 4.40, p < .01, d = 1.57], when pairs of students are matched 
for their original GPAs.

15.10 (a)  Research Problem
 Is there a decline in the mean running time of blood-doped athletes?

 Statistical Hypotheses
  H0: μD  0

  H1: μD > 0
 Decision Rule

 Reject H0 at the .05 level of significance if t  1.796, given df = 12 – 1 = 11.
 Calculations

 Given that D  = 51.33 and sD = 66.33,

  

66.33 51.33 0
19.17 2.68

19.1712
D

s t

 Decision
 Reject H0 at the .05 level of significance because t = 2.68 exceeds 1.796. 

 Interpretation
  Blood doping causes a decline in the mean running time (for athletes who 

serve as their own controls).
(b) p < .05
(c) Yes. Although the appearance of the test results would change (since now negative 

rather than positive difference scores would support the research hypothesis), H0 
still would have been rejected, and the interpretation would have been the same.

(d) 51.33 ± (2.20)(19.17) = 
93.50

9.16

 We can claim, with 95 percent confidence, that the interval between 9.16 and 
93.50 seconds includes the true effect of blood doping. Being positive, all of 
these differences suggest that blood doping has the desired effect.

(e) 
51.33

0.77
66.33

d , a large effect.

(f) For athletes who serve as their own controls, blood doping causes a decline in 
mean running time ( 51.33,D  66.33,Ds  p < .05, 0.77d ).
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(g) Counterbalancing eliminates any possible bias due to the order of testing.
(h) The interval between tests would have been too short to eliminate the lingering 

effects of blood doping on those subjects who were tested first with real blood. 
Consequently, any effect due to blood doping would tend to be obscured.

15.14 (a)  Research Problem
   Does regression toward mean occur for top ten batters between 2014 and 2015?

 Statistical Hypotheses
  H0: μD  0
  H1: μD > 0

 Decision Rule
  Reject H0 at the .05 level of significance if t ≥ 1.833, given df = 10 − 1 = 9.

 Calculations
  Given that 17.9D  and sD = 22.76,

  

22.76
7.20

10
D

s
 

17.9 0
2.49

7.20
t

 Decision
  Reject H0 at the .05 level of significance because t = 2.49 exceeds 1.833.

 Interpretation
   Regression toward the mean occurs for the top ten batters between 2014 

and 2015.
(b) p < .05
(c) 17.90 2.262(7.20)  

34.19

1.61

 We can claim, with 95 percent confidence, that the interval between 1.61 and 
34.19 points includes the true decline due to regression toward the mean. 

(e) 
17.90

.79
22.76

d  a large effect.

(d) The top ten major league batters for 2014, on average, regressed toward the 
mean for 2015 with a mean drop of 17.90 points of batting average, that was 
statistically significant (.05). This is a large effect (d = .79).

Chapte r  16

16.1 

TYPE OF VARIABILITY

BETWEEN GROUPS WITHIN GROUPS

(a) No No
(b) Yes No
(c) No Yes
(d) Yes Yes

16.2 (a)  random error
(b)  treatment effect
(c)  one

16.3 (a)  4.41 (c)  3.26
(b)  4.16 (d)  2.48
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16.4 (a)  p < .05 (c)  p > .05
(b)  p < .01 (d)  p < .05

16.5 (a)  Research Problem
  On average, are the number of eye contacts initiated by shy students affected 

when they attend either zero, one, two, or three workshop sessions on asser-
tive training?

 Statistical Hypotheses
  H0: μ0 = μ1 = μ2 = μ3

  H1: H0 is false.
 Decision Rule

   Reject H0 at the .05 level of significance if F  2.95 (from Table C), given  
dfbetween = 3 and dfwithin = 28.

 Calculations
  F = 10.84. See (b) for more information.

 Decision
   Reject H0 at the .05 level of significance because F = 10.84 is larger than 

2.95.
 Interpretation

   Average number of eye contacts is affected by attendance at either zero, 
one, two, or three sessions of an assertiveness training workshop.

(b)  
SOURCE SS df MS F

Between 154.12 3 51.37 10.84*
Within 132.75 28 4.74
Total 286.87 31

*Significant at the .05 level.

16.6 
2 154.12

.54,
286.87

 a large effect, according to the guidelines.

16.7 (a)  HSD (k = 4, dfwithin = 24) = (3.90) 
4.74

3.00
8

 

ALL POSSIBLE ABSOLUTE DIFFERENCES BETWEEN  
PAIRS OF MEANS

0X  = 1.63 X 1 = 3.13 X 2 = 5.00 X 3
 = 7.50

X 0 = 1.63 — 1.50 3.37* 5.87*

X 1 = 3.13 — 1.87 4.37*

X 2 = 5.00 — 2.50

X 3 = 7.50 —

*Significant at the .05 level.

  

3 0

2 0

3 1

5.87 5.87
, 2.69

2.184.74

3.37 3.37
, 1.55

2.184.74

4.37 4.37
, 2.00

2.184.74

d X X

d X X

d X X
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(b) Students who attend either two or three workshop sessions initiate, on average, 
more eye contacts than those who attend zero sessions. Furthermore, those who 
attend three sessions initiate, on average, more eye contacts than those who 
attend one session. All three significant differences had large effect sizes, with d 
values ranging from 1.55 to 2.69.

16.8 (a)  
2 54.00

.71
76.00

(b) 3.67 1.915errorMS  (which also is listed as the pooled standard deviation).

(c) Only the limits for CI between 0 and 48 hours have the same signs (both nega-
tive) in agreement with the one significant difference between 0 and 48 hours 
described in Table 16.8.

16.10 (a)  

SOURCE SS DF MS F

Between 106.05 2 53.03 13.70*
Within 34.87 9  3.87
Total 140.92 11

*Significant at the .05 level.

(b) 2 106.05
.75

140.92
, a large effect, according to the guidelines.

(c) HSD (k = 3, dfwithin = 9) = (3.95) 
3.87

4
 = (3.95)(0.98) = 3.87

 

ALL POSSIBLE ABSOLUTE DIFFERENCES  
BETWEEN PAIRS OF MEANS

0X  = 2.60 X 24 = 5.33 X 48 = 9.50

X 0 = 2.60 — 2.73 6.90*

X 24 = 5.33 — 4.17*

X 48 = 9.50 —

*Significant at the .05 level.

(d) 48 0

6.90
, 3.50

3.87
d X X

 
48 24

4.17
, 2.12

3.87
d X X

(e) Aggression scores for subjects deprived of sleep for 0 hours (X = 2.60, s = 2.07), 
for 24 hours (X = 5.33, s = 1.53), and for 48 hours (X = 9.50, s = 2.08) differ sig-
nificantly [F (2,9) = 13.70, MSE = 3.87, p < .05, η2 = .75]. According to Tukey’s 
HSD test, the mean differences between the 24- and 48-hour groups (4.17) and 
between the 0- and 48-hour groups (6.90) are significant (HSD = 3.87, p < .05, 
d = 2.12, 3.50).

16.12 (a)  4
(b)  21
(c)  A and B
(d)  D. Because of the small number of subjects, only a larger treatment effect would 

have been detected.
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(e)  C. Because of the relatively large number of subjects, even a fairly small treat-
ment effect would have been detected.

(f)  For A, p < .05   For C, p > .05
 For B, p < .01   For D, p > .05

Chapte r  17

17.1 Variability due to individual differences is present in outcomes b and c but not in out-
come a. It is greater in outcome b.

17.2 
SOURCE SS df MS F

Between 70.33  2 35.17 8.73*
Within 68.17 15
 Subject 27.83  5
  Error 40.34 10 4.03
Total 138.50 17

*Significant at the .05 level, since F(2,10) = 8.73 exceeds the critical F of 4.10.

17.3 2 70.33
.64

70.33 40.34
p

17.4 (a)  HSD (k = 3, dferror = 10) = (3.88) 
4.03

6
 = (3.88)(.82) = 3.18

 

ALL POSSIBLE ABSOLUTE DIFFERENCES  
BETWEEN PAIRS OF MEANS

silenceX  = 7.17 white noiseX  = 5.00 rockX  = 2.33

silenceX  = 7.17 — 2.17 4.84*

white noiseX  = 5.00 — 2.67

rockX  = 2.33 —

*Significant at the .05 level.

(b) d(silence, rock) = 
7.17 2.33

2.41
4.03

(c) The partial eta-squared, 2
p , equals .64, a large effect. Mean reading comprehen-

sion is significantly higher when silence is compared with rock, with a standard-
ized effect size. d, equivalent to almost two and one-half standard deviations.

17.5 
SOURCE SS DF MS F

Between 1,200 3 400 4.00*
Within 8,800 44
Subject 5,500 11
Error 3,300 33 100
Total 10,000 47

*Significant at the .05 level.
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17.6 (a)  
SOURCE SS df MS F

Between 154.12 3 51.37 16.62*
Within 132.75 28
  Subject  67.87  7
  Error  64.88  21 3.09
Total 286.87 31»

*Significant at the .05 level.

NOTE: SSerror = 64.88 was obtained from SSwithin – SSsubject = 132.75 – 67.87

(b)  2 154.12
.70

154.12 64.88
p

 HSD (k = 4, dferror = 20) = (3.96) 
3.09

8
 = 2.46

ALL POSSIBLE ABSOLUTE DIFFERENCES BETWEEN  
PAIRS OF MEANS

0X  = 1.63 X 1 = 3.13 X 2 = 5.00 X 3= 7.50
X 0 = 1.63 — 1.50 3.37* 5.87*

X 1 = 3.13 — 1.87 4.37*

X 2 = 5.00 — 2.50*

X 3 = 7.50 —

*Significant at the .05 level.

 

3 0

3 1

3 2

2 0

5.87
, 3.34

3.09

4.37
, 2.48

3.09

2.50
, 1.42

3.09

3.37
, 1.91

3.09

d X X

d X X

d X X

d X X

(c) Because of the smaller error term for repeated measures (compared to that in 
Question 16.5 for independent samples with exactly the same data), results 
for repeated measures are more dramatic: The value of F is 16.62 compared 
to 10.84; an additional pair of means, 

2X  and 
0X , is significantly different; 

and all comparable standardized effect estimates, d, are increased by about  
25 percent.
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Chapte r  18

18.1 

18.2 (a)   (b)

 The two lines in (a) should cross (in any manner). Note that the solid line represents 
the simple effect of type of criminal for attractive defendants, whereas the broken line 
represents the simple effect of type of criminal for unattractive defendants.

 The two lines in (b) should be parallel and sloped from upper left to lower right.

18.3 (a)  Research Problem
   Do viewing time and type of program, as well as the interaction of these two 

factors, affect mean aggression scores?
 Statistical Hypotheses

  H0: no main effect for columns or viewing time (or 0 1 2 4).
  H0: no main effect for rows or type of program (or μcartoon = μreal life).
  H0: no interaction effect.
  H1: H0 is false.

 Decision Rule
   Reject H0 at the .05 level of significance if Fcolumn  4.07, given 3 and 

8 degrees of freedom; if Frow  5.32, given 1 and 8 degrees of freedom; and 
if Finteraction   4.07, given 3 and 8 degrees of freedom.

 Calculations

 

F

F

F

column

row

interaction

16 35

0 02

0 08

.

.

.

    See ( ) fob rr more information.

Plain Veg. Sal.
Topping

Every. Plain Veg. Sal.
Topping

Every.Thick Thin
Crust

8

6

4

2

0

M
e
a
n
 P

re
fe

re
n
c
e

8

6

4

2

0

M
e
a
n
 P

re
fe

re
n
c
e

8

6

4

2

0

M
e
a
n
 P

re
fe

re
n
c
e

Thick

Thin

Interpretation: H0 for interaction
is suspect.

Interpretation: H0 for crust is
not suspect.

Interpretation: H0 for topping is
suspect.

Swindler Robber
Type of Criminal

Unattractive

Unattractive

Attractive

Attractive

Swindler Robber
Type of Criminal

M
e
a
n
 P

ri
s
o
n
 S

e
n
te

n
c
e

M
e
a
n
 P

ri
s
o
n
 S

e
n
te

n
c
e
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 Decision
  Reject H0 for column (viewing time) at the .05 level of significance because  

F = 16.35 exceeds 4.07.
 Interpretation
  Viewing time affects mean aggression scores. There is no evidence, how-

ever, that mean aggression scores are affected either by the type of program 
or the interaction between viewing time and type of program.

(b) 

SOURCE SS df MS F
Column 144.19  3 48.06 16.35*
(Viewing Time)
Row 0.07  1 0.07 0.02
(Type of Program)
Interaction 0.68  3 0.23 0.08
Within 23.50  8 2.94

  Total 168.44 15

 *Significant at the .05 level.

18.4 2 144.19
( ) .86,

144.19 23.50
p viewing time  a large effect size, according to the guide-

lines.

18.5 HSD (k = 4, dfwithin = 8) = (4.53) 
2.94

4
 = (4.53)(0.86) = 3.90

ALL POSSIBLE ABSOLUTE DIFFERENCES BETWEEN  
PAIRS OF MEANS

0X  = 0.25 1X  = 0.75 2X  = 4.00 3X  = 7.75
X0 = 0.25 — 0.50 3.75 7.50*

X1 = 0.75 — 3.25 7.00*

X2 = 4.00 — 3.75

X3 = 7.75 —

*Significant at the .05 level.

 On average, aggression scores are higher for a viewing time of 3 hours compared to a 
viewing time of either 0 hours or 1 hour.

18.6 SSse (degree of danger at zero) = 
2 2 2(16) (20) (36)

4
2 2 4

   (where the 2 in the denominator refers to the sample size in each cell, n)

 MSse (degree of danger at zero) = 4 4
1

 (where the 1 in the denominator refers to the number of degrees of freedom for 
the simple effect, dfse = r – 1)

 Fse (degree of danger at zero) = 4

5.33 
= 0.75, nonsignificant, given 1 and 6 degrees 

of freedom

 Fse (degree of danger at two) = 
100

5.33
 = 18.76 (p < .01)

 Fse (degree of danger at four) = 
144

5.33
 = 27.02 (p < .01)
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450 ANSWERS TO SELECTED QUESTIONS

 d (degree of danger at two) = 
17 7

5.33  
= 4.33; 

 d (degree of danger at four) = 
21 9

5.33  
= 5.19

 As expected, given the significant interaction, simple effects are inconsistent. Both 
simple effects for degree of danger at two and at four are significant, while that for 
degree of dangerat zero is nonsignificant. Standardized effect size estimates at two 
and four are very large, each being equivalent to more than four standard deviations. 
This analysis suggests that mean reaction times for nondangerous conditions exceed 
those for dangerous conditions in crowds of two people and in crowds of four people.

18.7 (a) 

SOURCE df
Food deprivation (F ) 1
Reward amount (R ) 1
F × R 1
Within 36
 Total 39

(b)  Effects

FOOD DEPRIVATION REWARD AMOUNT INTERACTION
(1) Yes Yes Yes
(2) Yes Yes No
(3) Yes No Yes
(4) No Yes Yes
(5) Yes No No
(6) No Yes No
(7) No No Yes
(8) No No No

(c)  Outcome (8) probably would be least preferred, since it contains no effects.

18.8 (a)  Effects for food deprivation and reward amount but not interaction.
(b)  Effects for food deprivation, reward amount, and interaction.
(c)  Effect for interaction, but not for food deprivation or reward amount.

18.10 (a)  

6

4

2

0 500 1000
Vitamin C Dosage

1500M
e
a
n
 N

u
m

b
e
r 

o
f 

D
a
ys

Interpretation: H0 for vitamin C
dosage is suspect.

6

4

2

0

0

500 1000
Vitamin C Dosage

1500M
e
a
n
 N

u
m

b
e
r 

o
f 

D
a
ys

Interpretation: H0 for interaction is
not suspect.

6

4

2

0 1/2

1/2
1

1
Sauna Exposure

M
e
a
n
 N

u
m

b
e
r 

o
f 

D
a
ys

Interpretation: H0 for sauna
exposure is suspect (although not
as much as H0 for vitamin
C dosage).

Sauna
Exposure
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(b) 
SOURCE SS df MS F
Column 33.64 3 11.21 17.52*
(Vitamin C)
Row (Sauna)  5.05 2  2.53  3.95*
Interaction  0.95 6  0.16  0.25
Within 15.33 24  0.64
  Total 54.97 35

*Significant at the .05 level.

(c) Since the interaction is nonsignificant, Fse tests for simple effects are  inappropriate. 
Given a significant main effect for vitamin C,

 2 33.64
( min ) .69,

33.64 15.33
p vita C  a large effect.

 HSD (k = 4, dfwithin = 24) = (3.90) 
0.64

9  
= 1.01

ALL POSSIBLE ABSOLUTE DIFFERENCES BETWEEN  
PAIRS OF COLUMN MEANS

X 0 = 4.44 X 500 = 3.22 X1000 = 2.67 X1500 = 1.78

X 0 = 4.44 — 1.22* 1.77* 2.66*

X 500 = 3.22 — 0.55 1.44*

X1000 = 2.67 — 0.89

X1500 = 1.78 —

*Significant at the .05 level.

 

500 0 1000 0

1500 0 1500 500

1.22 1.22 1.77
, 1.53 , 2.21

0.80 0.800.64

2.66 1.44
, 3.33 , 1.80

0.80 0.80

d X X d X X

d X X d X X

 All standardized estimates of effect sizes are large.
 Given a significant main effect for sauna,

 2 5.05
( ) .25,

5.05 15.33
p sauna  a large effect.

 HSD (k = 3, dfwithin = 24) = (3.53)
0.64

12
 = (3.53)(0.22) = 0.78

ALL POSSIBLE ABSOLUTE DIFFERENCES BETWEEN  
PAIRS OF ROW MEANS

X 0 = 3.50 X1/2 = 3.00 X1 = 2.58
X 0= 3.50 — 0.50 0.92*

X1/2 = 3.00 — 0.42

X1= 2.58 —

*Significant at the .05 level.

 1 0

0.92
( , )

0.80
d X X

 
= 1.15, a large standardized effect

Witte11e_Appendix_B.indd   451 11/16/2016   12:28:10 PM



452 ANSWERS TO SELECTED QUESTIONS

(d) The main effect for vitamin C was significant [F (3, 24) = 17.52; MSE = 0.64, 
p < .01, η2

p = .69], as was the main effect for sauna [F (2, 24) = 3.95; p < .05, 
η2

p = .25], but not the interaction [F (6, 24) = 0.25, ns]. On average, fewer days  
of discomfort occur for subjects who receive vitamin C dosages of 500 mg  
( 500X  = 3.22, d = 1.53), 1000 mg ( 1000X  = 2.67, d = 2.21), and 1500 mg ( 1500X  
= 1.78, d = 3.33) compared to those control subjects who receive no vitamin C  
( 0X  = 4.44). Furthermore, on average, fewer days of discomfort occur for sub-
jects who receive vitamin C dosages of 1500 mg compared to those who receive 
only 500 mg (d = 1.80). Finally on average, fewer days of discomfort occur for 
subjects with daily sauna exposures of 1 hour ( 1X  = 2.58, d = 1.15) compared to 
those with no daily sauna exposure ( 0X  = 3.50).

Chapte r  19

19.1 (a)  H0: PA = PB = 1
2

(b)  H0: Pnorth = Peast = Psouth = Pwest = 1
4

(c)  H0: PMon = PTue = PWed = PThu = PFri = PSat = PSun = 1
7

(d)  H0: Pweekday = 5
7
; Pweekend = 2

7

19.2 (a)  Research Problem
   The attribute most desired by a population of college students is equally 

distributed among various possibilities.
  Statistical Hypotheses
  H0: Plove = Pwealth = Ppower = Phealth = Pfame = Pfamily happiness = 1

6
  H1: H0 is false.
 Decision Rule
  Reject H0 at the .05 level of significance if χ2  11.07, given df = 5.
 Calculations

 

2 2 2 2
2

2 2

(25 15) (10 15) (5 15) (25 15)

15 15 15 15

(10 15) (15 15)
23.33

15 15

 Decision
  Reject H0 at the .05 level of significance because  χ2 = 23.33 exceeds 11.07.
 Interpretation

The attribute most desired by a population of college students is not equally 
distributed among various possibilities.

(b) p < .001

19.3 (a)  Educational level and attitude toward right-to-abortion legislation are independent.
(b) Clients and nonclients are not distinguishable on the basis of—or are indepen-

dent of—whether or not their parents are divorced.
(c) Employees’ annual evaluations are independent of whether they have fixed or 

flexible work schedules.

19.4 (a)  Research Problem
  Is hair color related to susceptibility to poison oak?

 Statistical Hypotheses
  H0: Hair color and susceptibility to poison oak are independent.
  H1: H0 is false.
 Decision Rule
  Reject H0 at the .01 level if χ2  11.34 given df = (2 – 1)(4 – 1) = 3.
 Calculations
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2 2 2 2 2
2

2 2 2

(10 18) (30 36) (60 54) (80 72) (20 12)

18 36 54 72 12

(30 24) (30 36) (40 48)
15.28

24 36 48
 Decision

 Reject H0 at the .01 level of significance because χ2 = 15.28 exceeds 11.34.
 Interpretation

  There is a relationship between hair color and susceptibility to poison oak.
(b)  p < .01

19.5 
2 15.28

.05 (between a small and a medium effect, according to Cohen's
300(2 1)

guidelines)
cφ

 

19.6 (a)  Odds ratio for returned letters from campus

51/ 19 2.68
OR 2.37

69 / 61 1.13

A returned letter is 2.37 times more likely to come from campus than from off-
campus.

(b) 
69 / 61 1.13

OR .42
51/ 19 2.68

 A returned letter is .42 times less likely to come from off-campus than from  
campus.

19.7 There is a relationship between hair color and susceptibility to poison oak [ χ2 (3,  
n = 300) = 15.28, p < .01, ϕ2

c = .05]

19.8 (a)  30
(b) Either the next-to-last set of percents (designated as Row Pct because they sum 

to 100 percent in each row) for Yes or returned letters, that is, 32.50, 25.00, and 
42.50, or the same set of percents for the No or unreturned letters, that is, 26.25, 
50.00, and 23.75. When compared with the total percents, that is, 30.00, 35.00, 
and 35.00, either set of percents spotlights the relatively low rate of returns in 
suburbia and the relatively high rates on campus.

(c)  Square “Cramer’s V (phi),” that is, (.265)(.265) = .07.

19.10 (a)  Research Problem
Are people more likely to die after rather than before a major holiday?

Statistical Hypotheses
H0: Pbefore = Pafter = 1

2
H1: H0 is false.

Decision Rule
Reject H0 at the .05 level of significance if χ2   3.84, given df = 1.

Calculations
2 2

2 (33 51.5) (70 51.5)
13.29

51.5 51.5

Decision
Reject H0 at the .05 level of significance because χ2 = 13.29 exceeds 3.84.

Interpretation
People are more likely to die after rather than before a major holiday.
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(b) p < .001
(c) More elderly California women of Chinese descent died of natural causes during a  

1-week period after rather than before the Harvest Moon Festival [ χ2(1, n = 103) 
= 13.29, p < .001, ϕ2

c = .13].

19.13 (a)   Yes. All frequencies end in multiples of 10, suggesting that the observed frequen-
cies might be fictitious, as is actually the case (both for this exercise and for some 
others in this chapter) in order to simplify computations.

(b) Research Problem
Is the religious preference of students related to their political affiliation?

Statistical Hypotheses
H0: Religious preference and political affiliation are independent.
H1: H0 is false.

Decision Rule
Reject H0 at the .05 level of significance if χ2  21.03, given df = (5 – 1)(4 – 1) 
= 12.

Calculations

2
2 2 230 20

20

30 20

20

100 40

40
220

( ) ( ) ( )

Decision
Reject H0 at the .05 level of significance because χ2 = 220 exceeds 21.03.

Interpretation
There is a relationship between the religious preference of students and their 
political affiliation.

(c) 

 

2 220
.15, a medium effect size, according to the 

500(4 1)
(unadjusted) guidelines. (See footnote on page 378.)

cφ

19.14 (a)  Research Problem
Is there a relationship between the type of accommodation and survival rate?

Statistical Hypotheses
H0: Type of accommodation and survival rate are independent.
H1: H0 is false.

Decision Rule
Reject H0 at the .05 level of significance if χ2  3.84, given that df = (c – 1)
(r – 1) = (2 – 1)(2 – 1) = 1.

Calculations

2 2 2 2
2 (299 217.52) (186 267.48) (280 361.48) (526 444.52)

217.52 267.48 361.48 444.52

30.52 24.82 18.37 14.94 88.65

Decision
Reject H0 at the .05 level of significance because χ2 = 88.65 exceeds 3.84.

Interpretation
Type of accommodation and survival rate are not independent. (Survival rate 
was lower in steerage.)

(b)  
2 88.65

.07 (The strength of the relationship is medium, 
1291(2 1)

according to Cohen’s guidelines)

cφ

Witte11e_Appendix_B.indd   454 11/16/2016   12:28:11 PM



 ANSWERS TO SELECTED QUESTIONS  455

NOTE:  The relatively modest value of .07 for ϕ2
c compensates for the role of the very 

large sample size of 1291 in generating the highly significant χ2 value of 88.65 
and a minuscule approximate p-value of .000.

(c)  
299 / 280 1.07

OR 3.06
186 / 526 .35

A cabin passenger is 3.06 times more likely to have survived than a steerage 
passenger.

Chapte r  20

20.1 (a)  1, 2, 3, 4.5, 4.5, 6, 7, 9, 9, 9, 11
(b)  1, 2.5, 2.5, 4.5, 4.5, 6, 7, 8, 9, 10
(c)  1, 3.5, 3.5, 3.5, 3.5, 6, 7, 8.5, 8.5, 10

20.2 (a)  Research Problem
Do therapy groups with directive leaders (1) produce more or less growth (in 
members) than therapy groups with nondirective leaders (2)?

Statistical Hypotheses
H0: Population distribution 1 = Population distribution 2
H1: Population distribution 1  Population distribution 2

Decision Rule
Reject H0 at the .05 level of significance if U ≤ 5, given n1 = 6 and n2 = 6.

Calculations
U1 = 31
U2 = 5
U = 5

Decision
Reject H0 at the .05 level of significance because U = 5 equals 5.

Interpretation
Therapy groups with directive leaders produce less growth than those with 
nondirective leaders.

(b)  p = .05 (since the calculated U equals the critical U for p = .05)

20.3 (a)   Each distribution of difference scores tends to be non-normal, with “heavy” tails 
and a “light” middle.

(b) Research Problem
Does a quit-smoking workshop cause a decline in cigarette smoking?

Statistical Hypotheses
H0: Population distribution 1 ≤ Population distribution 2
H1: Population distribution 1 > Population distribution 2

NOTE:  The directional H1 assumes that both population distributions have roughly simi-
lar shapes.

Decision Rule
Reject H0 at the .05 level (directional test) if T equals or is less than 5 given n = 8.

Calculations
R+ = 34
R– = 2
T = 2

Decision
Reject H0 at the .05 level of significance because T = 2 is less than 5.

Interpretation
A quit-smoking workshop causes a decline in smoking.
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(c)  p < .05
(d)  Smoking is significantly less after a quit-smoking workshop [T (n = 8) = 2,  

p < .05].

20.4 (a)   Observed scores tend not to be normally distributed. There is no obvious cluster of 
scores in the middle range of each of the five groups.

(b)  Research Problem
Are motion picture ratings associated with the number of violent or sexually 
explicit scenes in films?

Statistical Hypotheses
H0: Population dist. NC-17 = Population dist. R = Population dist. PG-13 = 
Population dist. PG = Population dist. G
H1: H0 is false.

Decision Rule
Reject H0 at the .05 level if H ≥ 9.49, given df = 4.

Calculations

2 2 2 2 212 (114) (75.5) (69) (49.5) (17)
3(25 1)

25(25 1) 5 5 5 5 5

.02[5239.30] 78.00

26.79

H

Decision
Reject H0 at the .05 level of significance because H = 26.79 exceeds 9.49.

Interpretation
Motion picture ratings are associated with the number of violent or sexually 
explicit scenes in films.

(c)  p < .001

Chapte r  21

21.1 Two-variable χ2

21.2 t for two independent samples

21.3 t for two related samples (repeated measures)

21.5 One-variable χ2

21.6 One-factor F

21.9 Two-factor F

21.10 t for two independent samples

21.11 t for correlation coefficient
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Tables

A PROPORT IONS  (OF  AREA )  UNDER  THE  STANDARD  NORMAL 

CURVE  FOR  VALUES  OF  z

B  CR IT ICAL  VALUES  OF  t

C  CR IT ICAL  VALUES  OF  F

D  CR IT ICAL  VALUES  OF  
2

E  CR IT ICAL  VALUES  OF  MANN–WHITNEY  U

F  CR IT ICAL  VALUES  OF  WILCOXON  T

G  CR IT ICAL  VALUES  OF  q  FOR  TUKEY ’S  HSD  TEST

H  RANDOM NUMBERS

Table A entries were computed by the second author.

Table B is taken from Table 12 of E. Pearson and H. Hartley (Eds.), Biometrika Tables 
for Statisticians, Vol. 1, 3rd ed. Cambridge: University Press, 1966, with permission of 
the Biometrika Trustees.

Table C is taken from Statistical Methods, by George W. Snedecor and William 
G.  Cochran, 8th ed. Ames: Iowa State University Press, 1989, with permission of 
Wiley-Blackwell, Inc., a subsidiary of John Wiley & Sons, Inc.

Table D is taken from Table 8 of E. Pearson and H. Hartley (Eds.), Biometrika Tables 
For Statisticians, Vol. 1, 3rd. ed. Cambridge: University Press, 1966, with permission 
of the Biometrika Trustees.

Table E is taken from the Bulletin of the Institute of Educational Research, 1953, 
Vol. No. 2, Indiana University, with permission of the publishers.

Table F is taken from F. Wilcoxon and R. A. Wilcox. Some Rapid Approximate 
 Statistical Procedures, 2nd edition. Pearl River, New York: Lederle Laboratories. 
1964, with permission of the American Cyanamid Company.

Table G is taken from Table 29 of E. Pearson and H. Hartley (Eds.), Biometrika Tables 
for Statisticians, Vol. 1, 3rd ed. Cambridge: University Press, 1966, with permission of 
the Biometrika Trustees.

Table H reprinted from page 1 of A. Million Random Digits with 100,000 Normal 
 Deviates, Rand, 1994. RP-295, 200 pp. Used by permission.
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Table Aa

PROPORTIONS (OF AREA) UNDER THE STANDARD NORMAL CURVE FOR VALUES OF z

z

A CB

z

A

z

A CB

z

A

z

A CB

z

A

A

–z

CBA

–z

A

–z

CBA

–z

A

–z

CBA

–z

a Discussed in Section 5.3.
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Table Aa (Continued)
PROPORTIONS (OF AREA) UNDER THE STANDARD NORMAL CURVE FOR VALUES OF z

z

A CB

z

A

z

A CB

z

A

z

A CB

z

A

A

–z

CBA

–z

A

–z

CBA

–z

A

–z

CBA

–z
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Table Ba

CRITICAL VALUES OF t

0

Two-tailed or Nondirectional Test
LEVEL OF SIGNIFICANCE

tcrit–tcrit 0

One-tailed or Directional Test
LEVEL OF SIGNIFICANCE

tcrit

a Discussed in Section 13.2.
* 95% level of confidence.
** 99% level of confidence.
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Table Da

CRITICAL VALUES OF 2

LEVEL OF SIGNIFICANCE

0 χ 2
crit

a Discussed in Section 19.4.
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Table Ea

CRITICAL VALUES OF MANN–WHITNEY U

a Discussed in Section 20.3. To be significant, the observed U must equal or be less than the value shown in the table. 
Dashes in the table indicate that no decision is possible at the specified level of significance.
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Table Ea (Continued)
CRITICAL VALUES OF MANN–WHITNEY U
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Table Fa

CRITICAL VALUES OF WILCOXON T

a Discussed in Section 20.4. To be significant, the observed T must equal or be less than the value shown in the table. 
Dashes in the table indicate that no decision is possible at the specified level of significance.
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Table Ga

CRITICAL VALUES OF q  FOR TUKEY’S HSD TEST

a Discussed in Section 16.10.

Witte11e_Appendix_C.indd   469 11/18/2016   6:28:53 PM



470 TABLES

Table H
a

RANDOM NUMBERS

a Discussed in Section 8.4.
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Glossary

Numbers in parentheses indicate the section in which the 
term is introduced.

Addition rule: Add together the separate probabilities of sev-
eral mutually exclusive events to find the probability that any 
one of these events will occur. (8.8)

Alpha (α): The probability of a type I error, that is, the prob-
ability of rejecting a true null hypothesis. (11.7) Also see level 
of significance.

Alternative hypothesis (H
1
): The opposite of the null 

hypothesis. Often identified with the research hypothesis. (10.6)

Analysis of variance (ANOVA): An overall test of the null 
hypothesis for more than two population means. (16.1)

Approximate numbers: Occur whenever numbers are 
rounded off, as is always the case with values for continuous 
variables. (1.6)

Bar graph: Bar-type graph for qualitative data with gaps 
between adjacent bars. (2.10)

Beta ( ): The probability of a type II error, that is, the prob-
ability of retaining a false null hypothesis. (11.8)

Bimodal: Describes any distribution with two obvious peaks. 
(3.1)

Central limit theorem: Regardless of the population shape, 
the shape of the sampling distribution of the mean will approxi-
mate a normal curve if the sample size is sufficiently large. (9.6)

Conditional probability: The probability of one event, given 
the occurrence of another event. (8.9)

Confidence interval (CI): A range of values that, with a 
known degree of certainty, includes an unknown population 
characteristic, such as a population mean. (12.2)

Confidence interval for 𝝁
1
 – 𝝁

2
 (or 𝝁

D
): A range of values 

that, in the long run, includes the unknown effect (difference 
between population means) a certain percent of the time. (14.8)

Confounding variable: An uncontrolled variable that com-
promises the interpretation of a study. (1.6)

Constant: A characteristic or property that can take on only 
one value (1.6)

Continuous variable: A variable that consists of numbers 
whose values, at least in theory, have no restrictions. (1.6)

Correlation coefficient: See Pearson correlation coefficient.

Correlation matrix: A table showing correlations for all pos-
sible pairs of variables. (6.8)

Counterbalancing: Reversing the order of conditions for 
equal numbers of all subjects. (15.1)

Critical z score: A z score that separates common from rare 
outcomes and hence dictates whether the null hypothesis should 
be retained or rejected. (10.7)

Cumulative frequency distribution: A frequency distribu-
tion showing the total number of observations in each class and 
all lower-ranked classes. (2.5)

Curvilinear relationship: A relationship that can be described 
best with a curved line. (6.2)

Data: A collection of observations or scores from a survey or 
an experiment. (1.4)

Decision rule: Specifies precisely when the null hypothesis 
should be rejected (because the observed value qualifies as a 
rare outcome). (10.7)

Degrees of freedom (df ): The number of values free to vary, 
given one or more mathematical restrictions. (4.6)

Dependent variable: A variable that is believed to have been 
influenced by the independent variable. (1.6)

Descriptive statistics: The area of statistics concerned with 
organizing and summarizing information about a collection of 
actual observations. (1.2)

Difference score (D ): The arithmetic difference between 
each pair of scores in repeated measures or, more generally, in 
two related samples. (15.1)

Directional test: See One-tailed test.

Discrete variable: A variable that consists of isolated numbers 
separated by gaps. (1.6)

Distribution-free tests: Tests, such as U, T, and H, that make 
no assumptions about the form of the population distribution. 
(20.2)

Effect: Any difference between a true and a hypothesized 
population mean. (11.8) Also, any difference between two (or 
more) population means. (14.1) See also Treatment effect.

Estimated standard error of difference between  sample 

means (
1 2X X

s – ): The standard deviation of the sampling 
distribution of difference between means used whenever the 
unknown variance common to both populations must be esti-
mated. (14.5)

Estimated standard error of the mean ( X
s ): The stan-

dard deviation of the sampling distribution of the mean used 
whenever the unknown population standard deviation must be 
 estimated. (13.6)

Estimated standard error of the mean difference (
D

s ):  
The standard deviation of the sampling distribution of the mean 
difference used whenever the unknown population standard 
deviation for difference scores must be estimated. (15.5)
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Expected frequency (f
e
): The hypothesized frequency for 

each category, given that the null hypothesis is true. Used with 
the chi-square test. (19.3)

Experiment: A study in which the investigator decides who 
receives the special treatment. (1.6)

File drawer effect: The publication only of statistically sig-
nificant reports. (14.11)

Frequency distribution: A collection of observations pro-
duced by sorting observations into classes that show their fre-
quency ( f ) of occurrence. (2.1)

Frequency distribution for grouped data: A frequency 
distribution produced whenever observations are sorted into 
classes of more than one value. (2.1)

Frequency distribution for ungrouped data: A frequency 
distribution produced whenever observations are sorted into 
classes of single values. (2.1)

Frequency polygon: A line graph for quantitative data that 
emphasizes the continuity of continuous variables. (2.8)

F  ratio: Ratio of the between-group mean square (for subjects 
treated differently) to the within-group mean square (for sub-
jects treated similarly). (16.5)

F
se
 test for simple effects: A test of the effect of one factor on 

the dependent variable at a single level of another factor. (18.9)

Histogram: A bar-type graph for quantitative data, with no 
gaps between adjacent bars. (2.8)

Hypothesized sampling distribution: Centered about the 
hypothesized population mean, this distribution is used to gen-
erate the decision rule. (11.8)

Independent events: The occurrence of one event has no 
effect on the probability that the other event will occur. (8.9)

Independent variable: The treatment that is manipulated by 
the investigator in an experiment. (1.6)

Inferential statistics: The area of statistics concerned about 
generalizing beyond actual observations. (1.2)

Interaction: The product of inconsistent simple effects. (18.3)

Interquartile range (IQR): The range for the middle 50 
percent of all scores. (4.7)

Interval/ratio measurement: Locates observations along a 
scale having equal intervals and a true zero. (1.5)

Kruskal-Wallis H  test: A test for ranked data when there are 
more than two independent groups. (20.5)

Least squares regression equation: The equation that 
minimizes the total of all squared predictive errors for known Y 
scores in the original correlation analysis. (7.3)

Level of confidence: The percent of time that a series of con-
fidence intervals includes the unknown population characteris-
tic, such as the population mean. (12.4)

Level of measurement: Rules that specify the extent to 
which a number actually represents some attribute. (1.5)

Level of significance (α): The degree of rarity required of 
an observed outcome to reject the null hypothesis. (H

0
) (10.7)

Linear relationship: A relationship that can be described best 
with a straight line. (6.2)

Main effect: The effect of a single factor when any other fac-
tor is ignored. (18.1)

Mann-Whitney U test: A test for ranked data when there are 
two independent groups. (20.3)

Margin of error: That which is added to and subtracted from 
some sample value, such as the sample proportion or sample 
mean, to obtain the limits of a confidence interval. (12.7)

Mean: See Population mean or Sample mean.

Mean of the sampling distribution of the mean ( X):  
The mean of all sample means always equals the population 
mean. (9.4)

Mean square (MS ): A variance estimate obtained by dividing 
a sum of squares by its degrees of freedom. (16.4)

Measures of central tendency: A general term for the vari-
ous averages that attempt to describe the middle or typical value 
in a distribution. (3.1)

Measures of variability: A general term for various mea-
sures of the amount by which scores are dispersed or scattered. 
(4.1)

Median: The middle value when observations are ordered 
from least to most. (3.2)

Meta-analysis: A set of data-collecting and statistical proce-
dures designed to summarize the various effects reported by 
groups of similar studies. (14.10)

Mode: The value of the most frequent observation or score. 
(3.1)

Multiple comparisons: The possible comparisons whenever 
more than two population means are involved. (16.10)

Multiple regression equation: A least squares equation that 
contains more than one predictor or X variable. (7.7)

Multiplication rule: Multiply together the separate probabili-
ties of several independent events to find the probability that 
these events will occur together. (8.9)

Mutually exclusive events: Events that cannot occur 
together. (8.8)

Negative relationship: Occurs insofar as pairs of observa-
tions tend to occupy dissimilar and opposite relative positions 
in their respective distributions. (6.1)

Negatively skewed distribution: A distribution that includes 
a few extreme observations in the negative direction. (2.9)
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Nominal measurement: Sorts observations into different 
classes or categories. (1.5)

Nondirectional test: See Two-tailed test.

Nonparametric tests: Tests, such as U, T, and H, that evalu-
ate entire population distributions rather than specific popula-
tion characteristics. (20.2)

Normal curve: A theoretical curve noted for its symmetrical 
bell-shaped form. (5.1)

Null hypothesis (H
0
): A statistical hypothesis that usually 

asserts that nothing special is happening with respect to some 
characteristic of the underlying population. (10.5)

Observational study: A study that focuses on the detection of 
relationships between variables not manipulated by the investi-
gator. (1.6)

Observed frequency (f 
0
): The obtained frequency for each 

category. Used with the chi-square test. (19.3)

Odds ratio (OR): Indicates the relative occurrence of one value 
of the dependent variable across the two categories of the inde-
pendent variable. (19.12)

One-factor ANOVA: The simplest type of analysis of variance 
that tests for differences among population means categorized 
by only one independent variable. (16.1)

One-tailed (or directional) test: The rejection region is 
located in just one tail of the sampling distribution. (11.3)

One-variable χ 2 test: Evaluates whether observed frequen-
cies for a single qualitative variable are adequately described by 
hypothesized or expected frequencies. (19.1)

Ordinal measurement: Arranges observations in terms of 
order. (1.5)

Outlier: A very extreme observation. (2.3)

Partial squared curvilinear correlation ( 2
p ): The propor-

tion of explained variance in the dependent variable after one 
or more sources have been eliminated from the total variance. 
(17.8)

Pearson correlation coefficient (r ): A number between 
–1.00 and 1.00 that describes the linear relationship between 
pairs of quantitative variables. (6.3)

Percentile rank of an observation: Percentage of scores in 
the entire distribution with similar or smaller values than that 
score. (2.5)

Point estimate: A single value that represents some unknown 
population characteristic, such as the population mean. (12.1)

Pooled variance estimate (sp
2): The most accurate estimate 

of the population variance (assumed to be the same for both 
populations) based on a combination of two sample sums of 
squares and their degrees of freedom. (14.5)

Population: Any complete set of observations. (1.3)

Population correlation coefficient ( ): A number between 
+1.00 and –1.00 that describes the linear relationship for all 
paired observations in a population. (15.9)

Population mean (𝝁): The balance point for a population, 
found by dividing the total value of all scores in the population 
by the number of scores in the population. (3.3)

Population size (N ): The total number of scores in the popu-
lation. (3.3)

Population standard deviation ( ): A rough measure of the 
average amount by which scores deviate from the population 
mean. (4.5)

Positively skewed distribution: A distribution that includes 
a few extreme observations in the positive direction. (2.9)

Positive relationship: Occurs insofar as pairs of observa-
tions tend to occupy similar relative positions in their respective 
distributions. (6.1)

Power (1 – ): The probability of detecting a particular effect. 
(11.11)

Power curve: Shows how the likelihood of detecting any pos-
sible effect varies for a fixed sample size. (11.11)

Probability: The proportion or fraction of times that a particu-
lar event is likely to occur. (8.7)

p-Value: The degree of rarity of a test result, given that the null 
hypothesis is true. (14.6)

Qualitative data: A set of observations where any single 
observation is a word, letter, or code that represents a class or 
category. (1.4)

Quantitative data: A set of observations where any single 
observation is a number that represents an amount or a count. 
(1.4)

Random assignment: A procedure designed to ensure that 
each person has an equal chance of being assigned to any group 
in an experiment. (1.3)

Random error: The combined effects of all uncontrolled fac-
tors on the scores of individual subjects. (16.2)

Random sampling: A sample produced when all potential 
observations in the population have an equal chance of being 
selected. (1.3)

Range: The difference between the largest and smallest scores. 
(4.2)

Ranked data: A set of observations where any single observa-
tion is a number that indicates relative standing. (1.4)

Ratio measurement: See Interval/ratio measurement.

Real limits: Located at the mid-point of the gap between adja-
cent tabled boundaries. (2.2)

Regression equation: See Least squares regression  equation.
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Regression fallacy: Occurs whenever regression toward the 
mean is interpreted as a real, rather than a chance, effect. (7.7)

Regression toward the mean: A tendency for scores, par-
ticularly extreme scores, to shrink toward the mean. (7.8)

Relative frequency distribution: A frequency distribution 
showing the frequency of each class as a part or fraction of the 
total frequency for the entire distribution. (2.4)

Repeated measures: Whenever the same subject is mea-
sured more than once. (15.1)

Repeated-measures ANOVA: A type of analysis that tests 
whether differences exist among population means with mea-
sures on the same subjects. (17.1)

Research hypothesis: Usually identified with the alternative 
hypothesis, this is the informal hypothesis or hunch that inspires 
the entire investigation. (10.6) See Alternative hypothesis.

Sample: Any subset of scores from a population. (1.3)

Sample correlation coefficient (r ): A number between 
+1.00 and –1.00 that describes the linear relationship between 
paired observations in a sample. (6.3)

Sample mean (X ): The balance point for the sample, found 
by dividing the total value of all scores in the sample by the 
number of scores. (3.3)

Sample size (n ): The total number of scores in the sample. 
(3.3)

Sample standard deviation (s ): A rough measure of the 
average amount by which scores in the sample deviate from 
their mean. (4.5)

Sample standard deviation of difference scores (s
D
): A 

rough measure of the average amount by which difference 
scores in the sample deviate from the mean difference score. 
(14.5)

Sampling distribution of the mean: The probability distri-
bution of means for all possible random samples of a given size 
from some population. (9.1)

Sampling distribution of t : The distribution that would be 
obtained if a value of t were calculated for each sample mean for 
all possible random samples of a given size from some popula-
tion. (13.2)

Sampling distribution of 1 2X X : Differences between 
sample means based on all possible pairs of random samples 
from two underlying populations. (14.3)

Sampling distribution of z : The distribution of z values that 
would be obtained if a value of z were calculated for each sam-
ple mean for all possible random samples of a given size from 
some population. (10.2)

Scatterplot: A special graph containing a cluster of dots that 
represents all pairs of observations. (6.2)

Simple effect: The effect of one factor on the dependent vari-
able at a single level of another factor. (18.3)

Squared correlation coefficient ( 2r ): The proportion of 
variability in one variable that is predictable from its relation-
ship with another variable. (7.6)

Squared Cramer’s phi coefficient (
2
c ): A very rough esti-

mate of the proportion of explained variance (or predictability) 
between two qualitative variables. (19.11)

Squared curvilinear correlation (η2): The proportion of 
variance in the dependent variable that can be explained by or 
attributed to the independent variable. (16.9)

Squared partial curvilinear correlation. See Partial 
squared curvilinear correlation.

Standard deviation: A rough measure of the average amount 
by which observations deviate from their mean. (4.4)

Standard error of estimate (s
y|x

): A rough measure of the 
average amount of predictive error. (7.4)

Standard error of the difference between means,  

(
1 2X X

): A rough measure of the average amount by which 

any sample mean difference deviates from the difference 
between population means. (14.3)

Standard error of the mean (
X

): A rough measure of the 
average amount by which sample means deviate from the popu-
lation mean. (9.5)

Standard error of the mean difference (
D
): The standard 

deviation of the sampling distribution for the mean difference. 
(15.3)

Standard normal curve: The one tabled normal curve for z 
scores with a mean of 0 and a standard deviation of 1. (5.3)

Standard score: Unit-free score expressed relative to a known 
mean and a known standard deviation. (5.7)

Standardized effect estimate, Cohen’s d : Describes effect 
size by expressing the observed mean difference in standard 
deviation units. (14.9)

Statistical significance: Implies only that the null hypoth-
esis is probably false, but not whether it’s false because of a 
large or small effect. (14.7)

Stem and leaf display: A device for sorting quantitative data 
on the basis of leading and trailing digits. (2.8)

Sum of squares (SS ): The sum of squared deviation scores. 
(4.5)

t ratio: A replacement for the z ratio whenever the unknown 
population standard deviation must be estimated. (13.3)

Transformed standard score (z ): A standard score that, 
unlike a z score, usually lacks negative signs and decimal points. 
(5.7)
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476 GLOSSARY

Treatment effect: The existence of at least one difference 
between the population means. (16.2)

True sampling distribution: Centered about the true popu-
lation mean, this distribution produces the one observed mean 
(or z). (11.8)

Tukey’s HSD test: A multiple comparison test for which the 
cumulative probability of at least one type I error never exceeds 
the specified level of significance. (16.10)

Two independent samples: Observations in each sample are 
based on different (and unmatched) subjects. (14.1)

Two-factor ANOVA: A more complex type of analysis of 
variance that tests whether differences exist among population 
means categorized by two factors or independent variables. 
(18.1)

Two related samples: Each observation in one sample is 
paired, on a one-to-one basis, with a single observation in the 
other sample. (15.1)

Two-tailed (or nondirectional) test: Rejection regions are 
located in both tails of the sampling distribution. (11.3)

Two-variable χ 2 test: Evaluates whether observed frequen-
cies reflect the independence of two qualitative variables. (19.7)

Type I error: Rejecting a true null hypothesis. (11.6)

Type II error: Retaining a false null hypothesis. (11.6)

Unit of measurement: The smallest possible difference 
between scores. (2.2)

Variability between groups (in ANOVA): Variability among 
scores of subjects who, being in different groups, receive differ-
ent experimental treatments. (16.2)

Variability within groups (in ANOVA): Variability among 
scores of subjects who, being in the same group, receive the 
same experimental treatment. (16.2)

Variable: A characteristic or property that can take on differ-
ent values. (1.6)

Variance: The mean of all squared deviation scores. (4.3)

Variance estimate (in ANOVA): See Mean square.

Wilcoxon T  test: A test for ranked data when there are two 
related groups. (20.4)

z score: A unit-free score that indicates how many standard 
deviations an observation is above or below the mean of its dis-
tribution. (5.2)

z test for a population mean: A hypothesis test that evalu-
ates how far the observed sample mean deviates, in standard 
error units, from the hypothesized population mean. (10.2)
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Index

A
Addition rule. See Probability
Alpha (α) error. See Type I error.
Alternative hypothesis, 188. See also 

Hypothesis.
Analysis of variance, 293

alternative hypothesis, 293 
ANOVA tables, 305, 331, 352
assumptions, 316, 336, 360
comparison of one–factor 

and repeated measures, 323, 332
and two-factor, 340

degrees of freedom, 303, 329, 351
effect size, 308, 313, 333
F ratio, 296, 330, 343, 352
F test, 296, 324, 343
interaction, 341, 344
interpretation with graphs, 346
meaning of, 293
mean squares, 299, 304, 329, 352
multiple comparisons, 311, 314, 333, 354
null hypothesis, 297
one-factor test, 293
other types, 360
overview, 315, 358
published reports, 315, 335, 358
repeated measures, 323
simple effects, 355
squared curvilinear correlation, 309,  

333, 353
sum of squares, 300, 326, 349
tables, 305, 331
t2, 308
Tukey’s HSD test, 312, 333, 354
two-factor test, 345
variability between groups, 294
variability within groups, 295
variance estimates, 299, 304, 326, 347 

ANOVA, 293
Approximate,

numbers, 11
percentile ranks, 31

Arithmetic mean. See Mean.
Average(s),

and skewed distributions, 53
common usage, 56
for qualitative data, 55
for quantitative data, 48
for ranked data, 56
mean, 51
median, 49 
mode, 48
which?, 53

B
Bar graph, 39
Beta (ß) error, 209 See Type II error.
Bimodal distribution, 38

C
Cause-effect,

and correlation, 116
and experiments, 116

Central limit theorem, 176
Central tendency, measures of, 47
Chi square,

alternative hypothesis, 367, 444
degrees of freedom, 370, 376
expected frequencies, 376, 374
small, 380
formula, 368
null hypothesis, 366, 373
observed frequencies, 367
odds ratio, 378
one–variable test, 366, 370
precautions, 380
published reports, 380
sample size selection, 380
squared Cramer’s coefficient, 377
tables, 369, 376
two-variable test, 372, 376

Class intervals, 25
midpoint of, 35

Cohen, J., 114, 214, 262, 311
Cohen’s d, 262, 282, 334
Cohen’s rule of thumb,

for analysis of variance, 311, 333
for chi square, 378
for t test, 262, 283

Common outcome, 161, 184
Computer outputs, 120

Minitab, 316
SAS, 267, 381
SPSS, 121

Conditional probability, 158
an alternative approach 159
erroneous, 259

Confidence, level of, 226
Confidence interval,

and effect of sample size, 227
compared to hypothesis test,  

228, 404
defined, 222
false, 224
for difference between population 
means, 260
independent samples, 260
related samples, 281
for population percent, 228
for single population mean, 225, 241
interpretation of, 226, 260
other types of, 230
true, 223

Confounding variable, 14
Conover, W., 400
Constant, 11
Continuous variable, 11
Convenience sample, 5

Correlation,
and cause-effect, 116
and outliers, 118
and range restrictions, 114
coefficient, Cramer’s phi, 120
Pearson r, 113
point biserial, 119
population, 285
Spearman rho, 119
formulas, 117
hypothesis test for, 285
meaning of, 113
matrix, 120
or mean difference?, 285
other types of, 119
scatterplots for, 109

Counterbalancing, 276
Criterion variable, 141
Critical z scores, 199

table of, 203
Cumulative frequency distribution,

for qualitative data, 31
for quantitative data, 30

Cumulative percentages, 30
Curvilinear relationship, 111

D
Data,

defined, 6
graph, 33
grouped, 24
overview, 6, 10
qualitative, 6
quantitative, 6
ranked, 6
ungrouped, 23

Decision rule, 189
Decisions, 190

strong, 197
weak, 197

Degrees of freedom,
defined, 75
in analysis of variance, 303, 324, 351 
in chi square, 370, 376
in correlation, 286
in one sample, 238
in two samples, 254

Dependent events, 158
Dependent variable, 13
Descriptive statistics, 22–145

compared to inferential statistics,  
404

defined, 3
Deviations from mean, 52, 64
Difference,

between population means, 247
between sample means, 248

Difference score, 274
Directional and nondirectional tests, 199
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478 INDEX

Discrete variable, 11
Distribution, 

bimodal, 38
multimodal, 48
normal, 37, 83
sampling, 170
shape of, 37
skewed, negatively, 38, 53
positively, 38, 53

Distribution-free tests, 387

E
Effect, 208 See also Main effect.

lingering, 276
sequence, 276

Effect size, 282, 308, 333, 372
Error,

bar, 266
random, 297
statistical and nonstatistical, 229
 type I, 205
 type II, 205 

Estimate,
interval. See Confidence interval.
point, 222

Exact percentile ranks, 31
Expected frequency, 367, 374
Experiment, 5, 12, 154

F
F test

folded, 267
for means, 296. See also Analysis of 
variance.
for simple effects, 355
for variances, 267

Fallacy, regression, 142
False alarm, 205. See also Type I error.
File drawer effect, 265
Frequencies and conditional probabilities, 

159
Frequency distribution, 23 

constructing, 27
cumulative, 30
for qualitative data, 31
for quantitative data, 23
grouped, 24
ungrouped, 23
gaps between boundaries, 24
guidelines for constructing, 24
interpreting, 32 
real limits, 26
relative, 28 
typical shapes, 37

Frequency polygon, 35

G
G*Power, 216, 294
Gallup Organization, 149
Gaps between classes, 24
Gigerenzer, G. 159
Glossary (Appendix), 471
Gosset, W., 234
Graphs,

constructing, 41

for qualitative data, 39
for quantitative data, 34
misleading, 40
typical shapes, 37 

Greek letters, significance of, 173

H
H (Kruskal-Wallis) Test, 398
and ties, 400

as replacement for F, 396
calculation, 397
decision rule, 398
degrees of freedom, 398
statistical hypotheses, 396
tables, 398

Histogram, 33
Homogeneity of variance, assumption of, 

266, 336, 360
Homoscedasticity, assumption of, 135
Howell, D., 215, 267, 314, 336
HSD, Tukey’s test, 312, 333, 354
Huff, D., 41
Hypothesis,

alternative, 188
choice of, 188
directional, 199
nondirectional, 199
null, 188
defined, 188
secondary status of, 198
research, 189, 198

Hypothesis tests,
and four possible outcomes, 204
and p-values, 255
and step-by-step procedure, 186
common theme of, 238
compared to confidence intervals,  

228, 404
for qualitative data. See  

Chi square.
for quantitative data. See F, t,  

and z tests.
for ranked data. See H, T, and  

U tests.
guidelines for selecting, 404
less structured approach to, 257
published reports of, 257, 315, 380

I
Importance, checking, 282, 335, 378
Independent,

events, 157
samples, 246
variable, 12

Inferential statistics, 146–410
compared to descriptive statistics,  

404
defined, 3 

Interaction, 341, 344
Internet sites, 120

Minitab, 264
SAS, 267, 381
SPSS, 121
U.S. Census Bureau, 149

Interquartile range, 76

Interval/ratio measurement, 9
approximating, 10

Interval estimate. See Confidence interval.

K
Keppel, G., 360
King, B.M., 227
Kruskall-Wallis test. See H test.

L
Least squares regression, 130
Level of confidence, 226
Level of significance,

and p-values, 257
as type I error, 202
choice of, 190, 202
defined, 189

Levels of measurement. See Measurement.
Levene’s test, 267
Linear relationship, 111
Lopsided distribution. See Skewed 

distribution.
LSD test, 314

M
Main effect, 340
Mann-Whitney test. See U test.
Margin of error, 228
Matching subjects, 276
Math background, 15
Math review (Appendix), 411
Mean,

and skewed distributions, 53
as balance point, 52
as measure of position, 66
difference or correlation?, 285
for qualitative data, 58
for quantitative data, 51
for ranked data, 58
of difference scores, 274
of population, 52
of sample, 51
of sampling distribution of mean,  

173
sampling distribution of, 269
special status of, 54
standard error of, 174

Mean absolute deviation, 63
Mean squares, 304, 329, 352
Measurement

and type of data, 7
approximating interval, 9
definition of, 7
levels of,

interval/ratio, 9
nominal, 8
ordinal, 8

of nonphysical characteristics, 9
Median,

for qualitative data, 55
for quantitative data, 49

Meta-analysis, 264
Minitab printouts, 264
Minium, E., 227
Miss, 205. See also Type II error.
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Mode,
and bimodal distributions, 48
and multimodal distributions, 48
for qualitative data, 55
for quantitative data, 48

Multimodal distribution, 48
Multiple comparisons, 311 

other tests of, 314
with Tukey’s test, 314, 333, 354

Multiple regression equations, 141
Multiplication rule. See Probability.
Mutually exclusive outcomes, 156

N
Negatively skewed distribution, 38
Negative relationship, 110
Nominal measurement, 8
Nondirectional test and directional test, 199
Nonparametric tests, 387
Normal bivariate population, 286
Normal distribution, 83

and central limit theorem, 176
and z scores, 86
compared to t distribution, 235
general properties, 84, 89
problems, finding proportions, 90
finding scores, 95
guidelines for solving, 99
standard, 87
tables, 88

Null hypothesis, 197, 234, 247, 259, 277
Numerical codes, 8

O
Observed frequency, 367
Observational study, 13
Odds ratio, 378
Omega squared, 311
One-tailed and two-tailed tests, 199
Ordinal measurement, 8
Outcomes, common and rare, 184, 196
Outlier, 27, 118
Overview,

data, 10
descriptive or inference, 404
hypothesis tests, 196
guidelines to, 405
hypothesis tests or confidence 
intervals, 228, 404
one- and two-factor ANOVA, 340
quantitative or qualitative data, 404
surveys or experiments, 154
three t tests, 283

P
p-value,

and level of significance, 257
approximate, 256
defined, 255
exact, 257
finding, 256
merits of, 257
published reports of, 257
reported by others, 257

Parameter, 387

Parametric test, compared to nonparametric 
test, 387

Partial squared curvilinear correlation, 2
p,

defined, 333
guidelines for, 333 

Pearson, K., 113
Pearson r, 113. See also Correlation.
Percent,

population, 228 
sample, 228

Percentile ranks, 31
Percents or proportions, 29
Placebo

control group, 204
effect, 204

Point biserial correlation, 119
Point estimate, 222
Pooled variance estimate, 254
Population,

correlation coefficient, 285
defined, 3, 149
hypothetical, 149
mean, 52
mean of difference scores, 277
percent, 228
real, 149
standard deviation, 64
estimating, 73

Positive relationship, 110 
Positively skewed distribution, 38
Power, 213
Power curves, 214
Prediction. See regression
Predictor variable, 141
Probability,

and addition rule, 156
and multiplication rule, 157
and statistics, 161
as area under curve, 161
conditional, 158
defined, 155

Protected t test, 314

Q
Qualitative data,

averages for, 55
compared with quantitative data, 404
defined, 6
frequency distributions for, 31
graph for, 39
hypothesis test for, 404
measures of variability for, 78 
ordered, 8

Quantitative data, 
averages for, 48
compared with qualitative data, 404
defined, 6
frequency distributions for, 23
graphs for, 33
hypothesis tests for, 405
measures of variability for, 61

R
Random assignment of subjects, 5, 153
Random error, 295

Random numbers, tables of, 151
Random sample, 

and hypothetical populations, 153
defined, 4, 151
tables of random numbers for, 151

Range, 62
Ranked data, 6, 387 
Ranks,

assigning, 389, 394
ties in, 390

Rare outcome, 161, 196
Regression,

and more complex equations, 141
and predictive errors, 129
and 2r , 136
and standard error of estimate, 133
assumptions, 135
equation, 130 
fallacy, 142
least squares, 130
toward the mean, 141

Rejecting null hypothesis, 198
Related samples, 276
Relationship between variables, 108

curvilinear, 111
linear, 111
negative, 110
perfect, 111
positive, 110
strength of, 110

Relative frequency distribution, 28
Repeated measures, 274

assumptions, 283
complications, 276, 325
individual differences, 275
Replication, 264

Reports, published, 265, 335, 358, 380
Research hypothesis, 187, 198
Research problem, 187
Retaining null hypothesis, 197

S
Sample(s),

all possible, 170
convenience, 5
correlation coefficient, 285
defined, 4, 150
mean, 51
mean of difference scores, 274
percent, 228
standard deviation, 71
random, 151
variance, 71

Sample size,
and probability of type II error, 211
and standard error, 211
equality of, 154
selection of,

for confidence interval, 227
for one sample, 227
for two samples, 260

Sampling distribution, 
constructed from scratch, 170
of difference between means,

independent samples, 248
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related samples, 277
of F, 296
of mean, defined, 169
hypothesized, 183
hypothesized and true, 208
mean, 173
shape, 176
standard error, 174
of t, 
of z, 185
other types of, 178

Sampling variability of mean, 169
SAS printouts, 267, 381
Scatterplot, 109
Scheffe’s test, 314
Sequence effect, 276
Sig. 121 See p-value.
Significance, level of. See Level of 

significance.
Simple effect, 355
Skewed distribution, 38
Spearman correlation coefficient, 119
SPSS printouts, 121
Squared curvilinear coefficient. See Variance 

interpretation of η2.
Standard deviation,

in descriptive statistics, 63
and mean absolute deviation, 63
and normal distribution, 85
formulas, 71, 76
general properties, 64
measure of distance, 66
in inferential statistics, 71
degrees of freedom, 75, 255

Standard error,
estimated, 238
importance of, 196
of difference between means,

independent samples, 250
related samples, 278

of estimate, 133
of mean, 174

Standard normal distribution, See Normal 
distribution.

Standard scores,
general properties, 101
T scores, 101
transformed, 101
z scores, 86, 100, 185

Statistics,
descriptive, 3, 22
inferential, 3, 146–410

Statistical significance, 258
Stem and leaf display, 36
“Student.” See Gosset, W.
Studentized range, 312
Sum of products, 117
Sum of squares, 68, 299, 326

calculating with means, 69, 300
calculating with totals, 70, 300, 326, 349

Summation sign, 51 
Surveys, 5, 154

T
Test of hypothesis, See Hypothesis tests.
Ties in ranks. See Ranks.
Treatment effect, 247, 295
t Test,

and degrees of freedom, 238, 254
and F test, 308
and z test, 235
assumptions, 242, 266, 283
expressed as ratio, 237, 250
for correlation coefficient, 285
for one population mean, 237
for two population means, 

independent samples, 246
related samples, 278

protected, 314
tables, 235

T Test (Wilcoxen), 394
and ties, 400
as replacement for t, 392 
calculation, 393
decision rule, 394
statistical hypotheses, 393
tables, 394

Tukey’s HSD test, 312, 333, 357
Two-tailed and one-tailed tests, 199
Type I error,

and effect of multiple tests, 311
defined, 205
probability of, 207

Type II error,
and difference between true and 
hypothesized population means, 207
and sample size, 211
defined, 205
minimizing, 206
probability of, 208

U
U Test (Mann-Whitney), 390

and ties, 400 
as replacement for t, 387
calculation, 388
decision rule, 391
statistical hypotheses, 388
tables, 390

Unit of measurement,
and correlation, 114 
defined, 24

V
Variability,

comparing, two experiments, 61
degrees of freedom, 75

interquartile range, 76
mean absolute deviation, 63
measures of, 60 

for qualitative data, 78
for quantitative data, 61 

range, 62
standard deviation,

descriptive statistics, 63
inferential statistics, 71

variance,
descriptive statistics, 63
inferential statistics, 71

Variable
confounding, 14
continuous, 11
criterion, 141
defined, 11
dependent, 13
discrete, 11
independent, 12

Variance,
defined, 63
estimates of,

in analysis of variance, 299, 347
pooled, 254
in descriptive statistics, 63

weakness of, 64
Variance, homogeneity of. See Homogeneity 

of variance, assumption of.
Variance interpretation,

of 2r , 139
of η2, 309

of 2
p, 333, 353

of 2
c , 377

W
Web site, for book, 16
Wickens, T. 360
Wilcoxen test. See T test.

Z
z Score,

and converting to X, 96
and hypothesis tests, 186
and non-normal distributions, 100
and normal distribution, 87
and other standard scores, 101
critical, 189
defined, 86
general properties, 86

z Test,
compared to t test, 235
for population mean, 185
for two population means, 249
tables of critical values, 203

Sampling distribution, (Continued)
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Important Symbols
Numbers indicate the section where each symbol is introduced and defined.

Greek Letters

α (alpha) 
level of significance

probability of a type I error

10.7
11.7

 (beta)  probability of a type II error  11.8
2 (eta)  squared curvilinear correlation  16.9
2
p 

 (partial eta)   squared partial curvilinear 

 correlation  17.8
 (mu)  population mean  3.3

1 2   difference between two population 

means  14.2

D 
  population mean of difference scores  15.2

 (rho)  population correlation coefficient  15.9
∑ (summation)  take the sum of  3.3

 (sigma)  population standard deviation  4.5
2 population variance  4.5

X standard error of mean  9.5
2
c  

 (phi)  squared Cramer’s phi coefficient  19.11
2  chi-square ratio  19.3

English Letters

CI  confidence interval  12.2
D  difference between paired scores  15.1
D  sample mean of difference scores  15.1
d  Cohen’s estimate of effect size  14.9
df  number of degrees of freedom  4.6
F  F ratio  16.5
F

se
  F ratio for a simple effect  18.9

f  frequency  2.1
f

e
  expected frequency in a sample  19.3

f
o
  observed frequency in a sample  19.3

H  Kruskal-Wallis H test for ranked data  20.5
H

0
  null hypothesis  10.5

H1  alternative hypothesis  10.6
HSD  Tukey’s critical value  16.10
IQR  interquartile range  4.7
MS  mean square  16.5
MSE  mean square error  16.12
N  population size  3.3
n  sample size  3.3
OR  odds ratio  19.12
p   probability of some outcome given that the null 

hypothesis is true  14.6
Pr( )   probability of the outcome in  parentheses  8.7
r  sample correlation coefficient  6.3

2r  squared correlation coefficient  7.6

sy|x  standard error of estimate  7.4
SP

xy
  sum of products  6.5

SS  sum of squares  4.5
s  sample standard deviation  4.5

Ds    sample standard deviation of difference 

scores  15.5

xs   estimated standard error of the mean  13.6
1 2x xs    estimated standard error of the difference 

between two sample means  14.5
D

s    estimated standard error of the mean difference 

scores  15.5
s2   sample variance  4.5

2
ps    pooled sample variance  14.5

T   Wilcoxon T test for ranked data  20.4
t   t ratio  13.3
U   Mann-Whitney U test for ranked data  20.3
X   any unspecified observation or score  3.3
X    sample mean  3.3

1 2X X    difference between two sample 

means  14.3
Y   a score paired with X  6.2
Y′   predicted score  7.3

z
 

standard score

ratioz
5.2

10.2

z′   transformed standard score  5.7
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Guidelines for Selecting 
the Appropriate Hypothesis Test

Wilcoxon

T Test

(Ch. 20)

Mann-Whitney

U Test

(Ch. 20)

t for two

related samples

(Ch. 15)

t for two

independent

samples

(Ch. 14)

t for a

correlation

coefficient

(Ch. 15)

NO
(DIFFERENCE)

NO

INDEPENDENT

SAMPLES

YES

RELATED

SAMPLES

t for one

sample

(Ch. 13)

YES
(RELATIONSHIP)

[If any assumption is seriously violated

or original observations  are ranks . . .]

[Are paired observations

evaluated for a relationship?]

TWO GROUPS

[Are quantitative observations paired?]

NO YES

[Are observations cross-classified?]

TYPE OF DATA

[Are observations numbers?]

One-Factor

F Test

(Ch. 16)

Two-Factor

F Test

(Ch. 18)

NO

F for ANOVA

[Are quantitative

observations classified

for two factors?]

NUMBER OF GROUPS

YES

Two-Variable

χ2 Test

(Ch. 19)
Repeated-

measures

F Test

(Ch. 17)

ONE THREE NO YESTWO

YES

QUANTITATIVE

NO

QUALITATIVE

[Are multiple observations

made for same subject?]

Kruskal-Wallis

H Test

(Ch. 20)

One-Variable

χ2 Test

(Ch. 19)
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